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Abstract 

In wave-structure interaction, one of the most important phenomena clearly identified is wave run-
up on offshore structures. In this study, wave run-up on a slender pile due to non-breaking regular 
waves is investigated by means of small-scale experiments performed in the 2 m-wide wave flume 
of Leichtweiss-Institute for Hydraulic Engineering and Water Resources (LWI) in Braunschweig, 
Germany. The test programme is designed to generate a comprehensive data set covering a broader 
range of wave conditions including not only deep and intermediate water conditions but also nearly 
shallow and shallow water conditions, which are missing in the available laboratory studies on 
wave run-up on piles. The relative wave height (H/h), relative water depth (h/L) and slenderness 
of pile (D/L) are identified as the key parameters governing the relative wave run-up (Ru/H). Based 
on these parameters, new formulae covering the range of tested conditions (0.028≤H/h≤0.593, 
0.042≤h/L≤0.861, 0.003≤D/L≤0.206) are developed to predict regular non-breaking wave run-up 
on single piles using a combination of the M5 model tree and nonlinear regression techniques. 
Using statistical accuracy metrics such as agreement index Ia, squared correlation coefficient R2 

and scatter index SI, the performance of the developed formulae is evaluated. It is shown that the 
new formulae outperform the current formulae in predicting regular wave run-up on single piles. 
This success is in part due to the explicit account for the water depth in the new experiments and 
formulae. The proposed model is valid for a wider range of wave conditions and, therefore, more 
appealing for engineering practice compared to those available for the estimation of regular wave 
run-up. 
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1. Introduction  

1.1. Importance of the study 

Europe is the world leader in offshore wind power, with the first offshore wind farm built in 
Denmark in 1991. The design and construction of support structures for offshore wind turbines is 
one of the most challenging issues in civil engineering. One of the important issues in the design 
of offshore support structures (e.g. oil and gas platforms, offshore wind turbines and piers) is wave 
run-up. Wave run-up is referred to the vertical upward rush of water that occurs when an incident 
wave hits a partially immersed structure. It is an important parameter for the assessment of wave 
loads on surface-piercing offshore structures. Wave run-up height also plays an important role in 
designing the free board of offshore support structures.  

A failure of an offshore structure would not only cause significant financial losses, but might also 
result in widespread environmental damages underlining the importance of the safe design of 
support structures. For example, the underestimation of wave run-up on a wind turbine’s support 
structure in the Horns Reef 1 wind turbine park in Denmark led to damage to the structure (Lykke 
Andersen et al., 2011).  

1.2. State of the art 

Considerable studies have been dedicated to wave run-up on vertical piles, including a large 
number of analytical, experimental and numerical studies. Among the investigations on wave run-
up on vertical piles, McCamy and Fuchs (1954) was one of the first researchers to study wave field 
around a vertical pile based on linear diffraction theory. The following formula was proposed for 
the calculation of surface elevation around vertical circular piles. 

( ) ( ) ( )21 2 .cos sin
2
H ka tη θ θ ω ψ= + −                                                                                       (1) 

where η is the surface elevation, θ is the angle measured from the front centre of the pile, H is the 
wave height, k is the wave number, a is the radius of the vertical pile, ω is the angular frequency, 
t is time and ψ is defined as follow: 

( )1tan 2 coskaψ θ−=                                                                                                                      (2) 

For the estimation of wave run-up Ru on the front side of a vertical pile, the following formula was 
proposed: 
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( )( ) 0.52
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1 2uR ka
η

−

= +                                                                                                                     (3) 

The linear diffraction theory is valid only for small wave heights. This theory was also applied by 
Sarpkaya and Isaacson (1981) for the estimation of the wave surface elevation around vertical 
piles. Using different methods, diffraction theory was extended to the second order in some studies 
(e.g. Kim and Hue, 1989; Kriebel, 1990; Martin et al., 2001).  

Based on the so-called velocity stagnation head theory, Hallermeier (1976) proposed a formula for 
the prediction of wave run-up on vertical piles. The idea behind the velocity stagnation head 
concept is that when a wave hits a structure, the kinetic energy of the water particles at the wave 
crest has to be converted into potential energy by rising a distance equal to u2/2g up the pile above 
the crest elevation. Based on this approach, the following formula was proposed for the prediction 
of wave run-up Ru on vertical piles: 

2

max 2u
uR m
g

η= +                                                                                                                            (4) 

where ηmax is the maximum wave crest elevation, m is an adjustment coefficient, u is the water 
particle velocity at ηmax and g is the gravity acceleration. For long waves, in which wave kinematics 
are calculated using solitary wave theory, Hallermeier (1976) proposed m coefficient to be equal 
to 1.  

Niedzwecki and Duggal (1992) studied wave run-up on vertical piles due to regular and irregular 
waves by means of small-scale laboratory tests. Wave run-up values were measured using spaced 
resistance type wave gauges which were placed directly on the surface of the tested pile with a 
diameter of D=0.114 m. Based on the linear wave theory, the maximum wave-induced flow 
velocity was calculated at the still water level (SWL) which resulted in m=6.83 and ηmax=H/2. 
Niedzwecki and Huston (1992) proposed m=6.52 and ηmax=0.56H to alter the linear fit and 
proposed the following formula: 

2

0.56 6.52
2u
uR H
g

= +                                                                                                                    (5) 

Martin et al. (2001) also investigated regular wave run-up on a vertical pile (D=0.11 m) by means 
of small-scale laboratory tests. They compared the results of the laboratory tests with different 
approaches. They found poor agreements between the results of the laboratory tests and those 
obtained from both linear diffraction theory and velocity stagnation head method. By means of 
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small-scale laboratory tests, Mase et al. (2001) studied wave run-up of random waves on a circular 
pier installed on a uniform slope bottom; under various wave conditions and bottom slopes. They 
also derived a prediction formula for the run-up height Ru2%. 

De Vos et al. (2007) experimentally investigated wave run-up on vertical piles exposed to regular 
and irregular waves. Their tests covered only intermediate and deep water conditions. Wave run-
up heights were measured using (i) the resistance-type wave gauges mounted around the pile 
(D=0.12 m) with approximately 2 mm from the pile surface and (ii) video recording. They found 
out that due to the 2 mm distance between the wave gauges and pile surface, wave run-up is slightly 
underestimated for thin run-up layers, which are caused by the highest waves with very high run-
up levels. As they stated, however, the video recording provided accurate measuring of wave run-
up on piles. Lykke Andersen and Frigaard (2006) studied wave run-up on vertical piles due to 
regular and irregular waves by conducting small-scale laboratory tests. The wave run-up levels 
were measured using resistance-type wave gauges placed around the pile with approximately 2 
mm from the pile surface. Their laboratory experiments were limited to intermediate water depth 
(0.85≤h/L≤0.14). 

De Vos et al. (2007) used the velocity stagnation head theory (Eq. 4) for the prediction of wave 
run-up on piles. For the case of regular waves, they reported that m=1 results in the underestimation 
of wave run-up when the horizontal wave-induced flow velocity is calculated based on the linear 
wave theory. They also found out that the formula proposed by Niedzwecki and Duggal (1992) 
overestimates the wave run-up on a single pile. De Vos et al. (2007), however, concluded that m=1 
provides a reasonable estimation of regular wave run-up on vertical piles when the second order 
of Stokes theory is applied for the computation of horizontal flow velocity.  Lykke Andersen et al. 
(2011) re-analysed the laboratory data of De Vos et al. (2007) and found out that stream function 
theory provides less scatter in predicting the adjustment coefficient, m compared to the second 
order of Stokes theory. They also stated that by increasing wave height to water depth ratio or 
relative wave height H/h, the adjustment coefficient m increases; i.e. wave nonlinearity affects 
wave run-up. Motivated by this implication, Peng et al (2012) investigated numerically wave run-
up on single piles. They found out that wave non-linearity significantly affects wave run-up 
heights. They showed, in fact, that wave run-up depends on Ursell number Ur=HL2/h3, which 
includes both H/h and h/L parameters. They also stated that wave run-up increases as the pile 
diameter D increases. They stated that their numerical model might not be valid for Ursell number 
larger than 70. According to the tested wave conditions and water depth, their study is limited to 
intermediate water depth and does not cover shallow water condition.  
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Ramirez et al. (2013) studied wave run-up of irregular waves on vertical piles by conducting large 
scale experiments in the large wave flume (GWK) of the Forschungzentrum Küste (FZK) in 
Hannover, Germany. The focus of their study was on the near breaking and breaking waves. The 
wave run-up events on the tested pile with a diameter of 0.56 m were recorded by a high speed 
video camera as they found out that the wave gauges placed around the pile underestimate wave 
run-up heights. They classified wave run-up heights in three levels, including green water layer 
(level A), thin layer of mixed water and air (level B) and maximum spray (level C).  

Recently, Kazeminezhad and Etemad-Shahidi (2015) investigated regular and irregular wave run-
up on vertical piles using the laboratory data sets of Andersen and Frigaard (2006), De Vos et al. 
(2007) and Ramirez et al. (2013). In contrast to the most of previous studies, in which wave run-
up on vertical piles was estimated based on the velocity stagnation head theory, Kazeminezhad 
and Etemad-Shahidi (2015) estimated wave run-up height for non-breaking waves based on the 
non-dimensional wave parameters. They determined the ratio of wave height to water depth H/h 
and the ratio of the local wave height to deep water wave length H/L0 as the governing parameters 
for the estimation of the relative wave run-up height Ru/H. Based on these two non-dimensional 
parameters and using a combination of the M5 model tree (M5MT) and nonlinear regression 
techniques, they proposed the following formulae for the prediction of regular wave run-up on 
vertical piles: 

0.0550.15

0

0.76            0.41uR H H H
H h L h

−
  = ≤  

   
                                                                              (6) 

0.055 1.50.15
3

0 0

0.65 +3.2 10 0.41          0.41uR H H H H
H L h L h

− −

−    = × − >    
    

                                       (7) 

Their formulae are more practical as the wave run-up Ru can be estimated directly from wave 
parameters (H and L0) and water depth h. However, the proposed formulae (Eqs. 6 and 7) do not 
cover nearly shallow and shallow water conditions. Some of the abovementioned studies proposed 
formulae for the estimation of irregular wave run-up on single piles, which are summarized in 
Table 1 and are not further discussed in this paper. 

1.3. Motivation of this study 

The abovementioned studies have contributed to enhance the knowledge on the estimation of 
regular wave run-up on single piles. However, the conducted laboratory tests were mostly focused 
on vertical piles in intermediate and deep water conditions and there is a lack of information in 
shallow water conditions. As a result, the proposed empirical formulae have some limitations. The 
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empirical formulae, which are developed based on the velocity stagnation head theory, the wave 
kinematics should be necessarily calculated using an appropriate wave theory and the adjustment 
coefficient m is directly affected by the used wave theory. The formulae proposed by 
Kazeminezhad and Etemad-Shahidi (2015) are independent of any wave theory (for the 
determination of wave kinematics). However, their proposed formulae are based on the data sets 
which are limited to deep and intermediate water conditions; while a formula for shallow water 
conditions, where relatively larger wave run-up heights can be expected, is not available. These 
limitations underline the necessity of further investigations of wave run-up on single piles 
considering not only deep and intermediate water depths, where some types of offshore oil 
platforms and wind turbines (e.g. jacket-type support structures) are located, but also shallow and 
nearly shallow conditions, where monopile-type sub-structures for offshore wind turbines and 
piers might be constructed. 

In this study, wave run-up on a slender pile due to non-breaking regular waves is investigated by 
means of small-scale experiments. The performed tests cover a broad range of hydrodynamic 
conditions, which allow us to identify the most relevant non-dimensional hydrodynamic 
parameters affecting the wave run-up on a single pile. Based on the identification of the most 
significant non-dimensional hydrodynamic parameters, new formulae for the estimation of regular 
wave run-up on single piles are developed using a combination of M5 model tree (M5MT) and 
nonlinear regression techniques. The new formulae are developed, based on a wider range of 
parameters and therefore applicable for a wider range of wave conditions and different water 
depths including shallow, intermediate and deep.  

This paper is outlined as follows: The LWI laboratory tests including the model set-up, deployed 
measuring techniques and wave conditions are described in Section 2. Using the LWI laboratory 
tests, the performance of the recently developed formulae for the prediction of regular wave run-
up is then evaluated in Section 3. Next, the M5 model tree (M5MT) approach is briefly introduced. 
In Section 5, the developed new formulae for the prediction of regular wave run-up of single piles 
are presented, and the obtained results are discussed. Finally, the key results are summarized and 
concluding remarks are drawn in Section 6. 

 

2. LWI laboratory tests 

The experimentally investigation of wave run-up on vertical single piles is a part of a research 
project supported by the German Research Foundation (DFG) and entitled “Breaking and Non-
Breaking Wave Load on Pile Group-Supported Marine Structures” (WaPiGS) at Leichtweiß-
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institute (LWI), Technische Universität Braunschweig. The main objective of this research project 
is to improve the understanding of the processes associated with the interaction of waves and pile 
groups. Within this project, a large number of laboratory tests including single pile and pile groups 
with different arrangements were carried out in the 2-m wide wave flume of LWI. The twin wave 
flume of LWI, which is shown in Fig. 1, consists of 2-m and 1-m wide flumes that are 90 m long 
and 1.25 m deep. The position of the tested pile is also shown in Fig 1. The plan view and cross 
section of the model set-up for the case of a single pile are drawn in Figs. 2 and 3, respectively. As 
seen in Fig. 3, the constructed 1-m long pile with a diameter of D=0.05 m was supported from the 
top and stretched to the bottom of the wave flume with a gap of only a 2-cm between piles and 
bottom. As pile dimeter was noticeably smaller than the 2m wide wave flume of the LWI, there 
was no blockage effect from the flume’s wall on the measurements. 

Two high-speed video cameras capable of recording up to 60 images (frames) per second were 
used for measuring wave run-up levels of individual waves. In addition to the high-speed video 
cameras, videos were made to determine the instances of the highest run-up events. In order to 
determine wave run-up levels on the pile from the high-speed video images as accurate as possible, 
marks were placed every 2 cm on the pile. For each test, the wave run-up heights were measured 
for events in a regular wave train including only incident waves (N=5 to 15 waves depending on the 
wave period) without any interaction from the waves reflected from the end of wave flume. The 
wave run-up value used for data analysis is, in fact, the average of these measured wave run-up events in a 
regular wave train. Based on the wave period, the number of run-up events considered for averaging 
was different from 5 to 15 for different tests. The average and relative standard deviation (RSD) of the 
measured wave run-up events in a regular wave train are given in Table 2. Fig. 4 shows an example of a 
run-up event on the tested single pile due to a regular wave with wave height of 0.29 m and wave 
period of 3.5 sec.  

Wave height and period were also measured using deployed wave gauges. In addition to the wave 
run-up, local and total wave-induced forces as well as the moment on the pile were measured using 
the transducers and shown in Fig. 3. An Acoustic Doppler Velocimeter (ADV) was used to 
measure the undisturbed horizontal wave-induced flow velocity at three different relative 
elevations of the water column (z/h = 0.78, 0.53 and 0.28) exactly where the so-called ring 
transducers were placed for measuring the local wave-induced force. More information regarding 
the model set-up and measuring devices can be found in Bonakdar (2014) and Bonakdar and 
Oumeraci (2015). Regular non-breaking waves with 22 different combinations of wave heights 
and periods were tested to cover a broad range of hydrodynamic conditions (Table 2). Relative 
wave height H/h varied from 0.07 to 0.517. Wave steepness varied from 0.008 to 0.073, which 
was the maximum possible wave steepness without incipient breaking. Relative water depth h/L 
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varies from 0.042 to 0.64 meaning that deep, transition and shallow water conditions were 
considered (Table 3). 

 

3. Evaluation of available formulae for the prediction of regular wave run-up 

Before developing a new formula for the estimation of the wave run-up on single piles due to 
regular waves, the performance of the available formulae for the prediction of regular wave run-
up on piles was evaluated using the LWI laboratory data. Among the available studies mentioned 
in Section 1.2, De Vos et al. (2007) and Kazeminezhad and Etemad-Shahidi (2015) proposed 
formulae for regular wave run-up on vertical piles. Based on the velocity stagnation head theory 
(Eq. 4), De Vos et al. (2007) proposed the adjustment coefficient m to be equal to 1 when the 
horizontal wave-induced flow velocity is calculated based on the second order of Stokes theory. 
As shown by Kazeminezhad and Etemad-Shahidi (2015), the data, based on which the formula of 
De Vos et al. (2007) was developed, are in the range of the second, third and fifth orders of Stokes 
as well as Stream Function theories. However, as recommended by De Vos et al. (2007), the 
maximum wave crest elevation, ηmax, and the water particle velocity u at ηmax were calculated based 
on second order Stokes theory and m coefficient was set to 1. The comparison between wave run-
up levels measured in the LWI wave flume and those calculated by De Vos et al. (2007) formula 
is depicted in Fig. 5. The performance of their formula was quantitatively evaluated using 
statistical indicators such as agreement index Ia, squared Pearson correlation coefficient R2, scatter 
index SI, and Bias respectively defined as follow: 
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where xi and yi denote the predicted and the measured values, respectively and n is the number of 
measurements (data). x and y  are the corresponding mean values of the predicted and measured 

parameters. In general, a large scatter is seen in Fig. 5. The main reason of this large scatter is due 
to the fact that the suggested second order Stokes wave theory for the calculation of wave 
kinematics is not valid for waves with a higher degree of non-linearity, especially where stream 
function theory need to be considered. The scatter of the data points is only seen in waves for 
which the stream function theory is appropriate. The performance of the De Vos et al. (2007) 
formula in predicting regular wave run-up was individually evaluated using the tests for which the 
second order Stokes can be applied (Fig. 6). As seen, for these tests, the proposed formula is able 
to estimate wave run-up levels precisely. It can, therefore, be concluded that the formula proposed 
by De Vos et al. (2007) can be used when the suggested second order Stokes is appropriate for the 
calculation of wave kinematics.  

The performance of the Kazeminezhad and Etemad-Shahidi (2015) method (Eq. 6 and 7) in 
predicting regular wave run-ups on vertical piles was also evaluated using the LWI data. Fig. 7 
illustrates the comparison between regular wave run-up heights measured in the LWI wave flume 
and those estimated by their formulae. As demonstrated in Fig. 7, it seems that for the tests with 
H/h≤0.41 the proposed formula (Eq. 6) can reasonably predict the wave run-up heights while for 
the tests with H/h>0.41, the proposed formula (Eq. 7) significantly overestimates wave run-up 
values. The high overestimation of these data points, shown in Fig. 7, affects the accuracy of the 
formulae as confirmed by the statistical indicators (Fig. 7).  

This large scatter between measured and predicted data for the tests with H/h>0.41 might be due 
to the high degree of non-linearity of the waves which might not have been properly considered in 
Eq. 7. In fact, Kazeminezhad and Etemad-Shahidi (2015) used deep-water wave length L0 for the 
wave height to deep water wave length ratio, H/L0. However, for waves with a high degree of non-
linearity, wave length L might be more appropriate. It should also be mentioned that the formulae 
of Kazeminezhad and Etemad-Shahidi (2015) were developed for the estimation of regular wave 
run-up on piles based on the laboratory data sets of Andersen and Frigaard (2006) and De Vos et 
al. (2007). The used data sets, in fact, do not fully cover shallow or nearly shallow water conditions, 
and the minimum relative water depth h/L is 0.084; while the LWI data points with H/h>0.41, for 
which Eq. 7 noticeably overestimates wave run-up, are located in shallow or nearly shallow water 
conditions, and their h/L values vary from 0.042 to 0.074.  

In order to get a better understanding of the proposed formula for the cases with H/h≤0.41 (Eq. 6), 
the result of the comparison of the measured and predicted wave run-up values is separately shown 
in Fig. 8. The values of the four statistical indicators are also shown in Fig. 8. As seen, the proposed 
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formula can accurately predict wave run-up levels for H/h≤0.41. For this condition, agreement 
index Ia is 0.985 and scatter index SI is 12.9%. It can, therefore, be concluded that the formulae 
proposed by De Vos et al. (2007) and Kazeminezhad and Etemad-Shahidi (2015) can predict 
regular wave run-up heights accurately only within the conditions they are valid for. In other 
words, De Vos et al. (2007) formula may not be applied for waves with a higher degree of non-
linearity, especially where stream function theory need to be considered for the calculation of wave 
kinematics; and Kazeminezhad and Etemad-Shahidi (2015) formulae may not be applicable in 
shallow or nearly shallow water conditions.  

These limitations underline the necessity of developing new formulae for a more accurate 
estimation of regular wave run-up on single piles. In order to prevent pre-calculations for the 
determination of wave kinematics, which is one of the main disadvantages of the formulae based 
on velocity stagnation head theory, the approach of Kazeminezhad and Etemad-Shahidi (2015) 
was adopted for this study. This means that the relative wave run-up was estimated as a function 
of the most relevant non-dimensional wave parameters using M5 model tree method introduced in 
the next section.  

 

4. M5 model tree (M5MT) 

The M5 model tree was introduced by Quinlan (1992) and represents one of the most recent 
computational tools for data analysis, which can be applied for prediction purposes. M5MT has a 
unique algorithm and for a given data set of input and output variables, the model provides a unique 
solution for any number of simulations. Recently, M5MT has been successfully employed for 
water level discharge relationship (Bhattacharya and Solomatine, 2005), sediment transport 
(Bhattacharya et al., 2007), stability of rubble-mound breakwaters (Etemad-Shahidi and Bonakdar, 
2009; Etemad-Shahidi and Bali, 2012), prediction of wave run-up on rubble-mound breakwaters 
(Bonakdar and Etemad-Shahidi, 2011), estimation of longitudinal dispersion (Etemad-Shahidi and 
Taghipour, 2012), prediction of scour depth under submarine pipeline (Etemad-Shahidi et al., 
2011), wave overtopping at rubble-mound structures (Jafari and Etemad-Shahidi, 2012), 
estimation of scour depth around circular piers (Etemad-Shahidi et al., 2015), wave induced-force 
on pile groups (Bonakdar et al., 2015) and estimation of wave run-up on single piles 
(Kazeminezhad and Etemad-Shahidi, 2015). 

The concept of the model tree approach is based on dividing complex problems into smaller sub-
problems and solving each sub-problem (Bhattacharya et al., 2007). The concept of M5MT is 
described in Fig. 9 by a simple example with two input parameters (X1 and X2). As shown in Fig. 
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9A, M5MT is similar to an inverse tree with a root node at the top and a number of leaves at the 
bottom. Firstly, the M5MT algorithm constructs a tree by splitting the instance space (data points). 
Fig 9A shows the constructed tree while Fig 9B illustrates the classified data. The splitting 
condition is used to minimize the intra-subset variability in the values down from the root through 
the branch to the node. The variability is measured by the standard deviation of the values that 
reach that node from the root through the branch, the expected reduction in error being calculated 
as a result of testing each attribute at that node. In this way, the attribute (input parameter) that 
maximizes the expected error reduction is chosen. The splitting process is performed only if either 
the output values of all the instances that reach the node, called leaf, vary slightly or a few instances 
remain. The standard deviation reduction (SDR) is calculated as (Quinlan 1992): 

( ) ( )i
i

i

T
SDR sd T sd T

T
= − ×∑                                                                                                       (12) 

where T is the set of examples that reach the node, Ti are the sets that result from splitting the node 
according to the chosen attribute and sd is the standard deviation (Wang and Witten 1997). After 
the initial tree has been grown, the linear regression models are generated, using the data associated 
with that leaf. Fig. 9C shows the possible linear regression models for the given example.  In the 
second step, all sub-trees are considered for pruning. Pruning occurs if the estimated error for the 
linear model at the root of a sub-tree is smaller or equal to the expected error for the sub-tree. In 
this way, the sub-trees which cannot improve the accuracy of the model are pruned. After pruning, 
there is a possibility that the pruned tree might have discontinuities between nearby leaves. If 
required, to compensate discontinuities among adjacent linear models in the leaves of the tree a 
regularization process is performed, which is called smoothing process. Details of the pruning and 
smoothing processes can be found in Wang and Witten (1997). As stated by Kazeminezhad and 
Etemad-Shahidi (2015), M5MT provides a linear relationship between input and output parameters 
at each leaf, while the relationships between the output and input parameters are not necessarily 
linear. Therefore, in this study after classifying homogenous data points using M5MT, nonlinear 
regression technique was used to develop prediction formulae. In order to develop new formulae 
for the estimation of regular wave run-up on single piles, the most relevant influencing parameter 
should firstly be determined. 

 

5. New wave run-up formulae 

In order to develop generic formulae for the estimation of wave run-up on vertical piles due to 
regular waves, the LWI tests, in addition to those of Lykke Andersen and Frigaard (2006) and De 
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Vos et al. (2007) were used. In this way, a more comprehensive data set covering a wider range of 
wave and pile conditions was achieved which may consequently result in more generic prediction 
formulae. Table 4 provides an overview of the hydrodynamic conditions of the abovementioned 
data sets used for the development of the run-up formulae.  

Wave run-up on vertical piles might be influenced by both pile and wave characteristics. This 
might specifically include pile diameter D, wave height H, wave period T, wave length L as well 
as water depth h. The bed characteristics might also affect the wave parameters. As the flat bottom 
is only considered in this study, bed condition is not concerned. Therefore, it can be stated that: 

( ){ }, ,  and  or uR f D h H L T=                                                                                                     (13) 

In order to develop generic formulae, dimensional parameters measured in the small-scale 
laboratory tests cannot be directly used. Hence, non-dimensional parameters influencing wave run-
up height need to be determined. For this purpose, sensitivity analysis was performed to determine 
the most significant non-dimensional parameters out of the possible non-dimensional parameters 
(e.g. wave steepness H/L, relative wave height H/h, relative water depth h/L, scattering or 
slenderness parameter D/L and the Ursell number, Ur=HL2/h3, which may represent the ratio of 
H/L to (h/L)3 or the ratio of H/h to (h/L)2). Finally, it was found that the relative wave run-up on 
the pile Ru/H can be described in the non-dimensional form as follows:  

, ,uR H h Df
H h L L

 =  
 

                                                                                                                     (14) 

The squared Pearson correlation coefficient R2 between the abovementioned non-dimensional 
influencing parameters and the relative wave run-up are given in Table 5. To apply M5MT for the 
analysis of the data, relative wave run-up Ru/H was set as the output of the model and the relative 
wave height H/h, relative water depth h/L, and scattering or slenderness parameter D/L were set as 
the input parameters. In total, 92 tests with regular waves including 22 LWI data, 22 data from 
Andersen and Frigaard (2006) and 48 data from De Vos et al. (2007) were used. M5MT was 
applied for classifying the data and as a result the data set was classified into two subclasses based 
on the relative wave height parameter H/h, which is also known as the splitting parameter with the 
corresponding splitting value of 0.41.  

The result of the data classification is completely in agreement with that presented by 
Kazeminezhad and Etemad-Shahidi (2015). In fact, their model classified their dataset into two 
classes based on the relative wave height H/h with the corresponding splitting value of 0.41. This 
agreement is obtained despite the fact that (i) their dataset did not include LWI data and (ii) the 
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input parameters of their M5MT model including H/h and H/L0 are not the same as those used in 
this study, i.e. H/h, h/L and D/L. This might be due to the high correlation between Ru/H and H/h 
in both models compared to the correlation between other input parameters and Ru/H as shown in 
Table 5. 

After the classification process, formulae were developed using nonlinear regression techniques 
for each subclass. Finally, the simplest and most accurate formulae obtained for the prediction of 
wave run-up on vertical piles due to regular waves were proposed as follows:  

0.117 0.206 0.108

0.863            0.41uR H h D H
H h L L h

−
     = ≤     
     

                                                          (15a) 

0.206 0.108 0.316 2.6 1.16

0.777 +0.138 0.41          0.41uR h D H h D H
H L L h L L h

− −
         = − >         
         

             (15b) 

In the new formulae (Eq. 15a and 15b), wave dispersion is considered by h/L, wave nonlinearity 
by H/h and wave diffraction regime by D/L. It can also be concluded from these formulae that 
relative wave run-up, Ru/H increases as H/h increases which is in agreement with the results of 
previous studies. Besides, relative water depth h/L affects the run-up level and wave run-up 
increases when h/L decreases. These indicate that wave run-up on pile increases with increasing 
non-linearity and decreasing dispersion of the incident wave, which (for non-linear waves) both 
depend on the wave characteristics H and L as well as on water depth h. The new formulae also 
show that the relative wave run-up increases by increasing wave diffraction represented by the pile 
slenderness parameter D/L. The latter was not determined as a significant parameter affecting wave 
run-up heights by Kazeminezhad and Etemad-Shahidi (2015). This might be due to the limited 
range of slenderness parameter considered (0.02≤D/L≤0.07) as compared to those used in this 
study (0.003≤D/L≤ 0.07). 

The performance of the new formulae was quantitatively evaluated using the abovementioned 
statistical indicators. Fig. 10 illustrates the comparison between measurements in the LWI wave 
flume and those estimated by the new proposed formulae. As seen, the scatter between measured 
and predicted Ru values is negligibly small. The statistical parameters also indicate that the new 
formulae can accurately predict regular wave run-up on vertical piles. The scatter diagram of all 
measured and predicted wave run-ups as well as the statistical values are shown in Fig. 11. As 
seen, the data points are densely concentrated on the 45-degree line, which represents the ideal 
correlation. The statistical indicators of Ia=0.983 and SI=16.5% demonstrate the skilfulness of the 
proposed formulae to reproduce the experimental data.  
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For design or a safety assessment, it is recommended to consider the uncertainty of the prediction. 
Therefore, the proposed formulae were modified for design purposes by considering a factor of 
safety of one standard deviation (σ). For Eq. 15a and 15b, the standard deviation (σ) derived from 
the comparison of measurements and predictions is equal to 0.15 and 0.17, respectively. As the 
result, the modified formulae can be proposed as follows: 

( )
0.117 0.206 0.108

0.863 1 0.15            0.41uR H h D H
H h L L h

−
     = + ≤     
                                                      (16a) 

( )
0.206 0.108 0.316 2.6 1.16

1 0.17 0.777 +0.138 0.41          0.41uR h D H h D H
H L L h L L h

− −          = + − >                            
(16b) 

In addition, Eq. 16a and 16b were further modified to consider different levels of acceptable risk 
as follows: 

( )
0.117 0.206 0.108

0.863 1 0.15            0.41uR H h D HM
H h L L h

−
     = + ≤     
                                                      (17a) 

( )
0.206 0.108 0.316 2.6 1.16

1 0.17 0.777 +0.138 0.41          0.41uR h D H h D HM
H L L h L L h

− −          = + − >                           
 (17b) 

where M may be obtained based on desired or acceptable levels of risk (Table 6). As an example, 
M is equal to 2.05 for a 2% risk. 

 

6. Summary, concluding remarks and outlook 

Wave run-up on single piles due to non-breaking regular waves was investigated by means of 
small scale experiments performed in the LWI wave flume. For this purpose, a test programme 
was considered covering a broad range of hydrodynamic conditions including deep, intermediate 
and shallow water conditions. LWI laboratory tests were used for the evaluation of available 
formulae for estimating regular wave run-up on single piles. It was found that De Vos et al. (2007) 
formula is limited to the condition in which second order Stokes is appropriate for the calculation 
of wave kinematics, while Kazeminezhad and Etemad-Shahidi (2015) formulae may not apply for 
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the shallow or nearly shallow water conditions. These confirmed that new formulae were required 
to cover the shallow water condition.  

Relative wave height H/h, relative water depth h/L, and slenderness parameter D/L were 
determined as the most relevant influencing non-dimensional parameters affecting relative wave 
run-up Ru/H.  These non-dimensional parameters are physically meaningful as they represent 
properties of the incident waves such as non-linearity (H/h) and dispersion (h/L) as well as the 
diffraction regime (D/L).  Based on the governing non-dimensional parameters and using LWI 
tests as well as the datasets from the tests of Lykke Andersen and Frigaard (2006) and De Vos et 
al. (2007), new formulae were developed for the prediction of regular wave run-up on single piles. 
The new formulae developed using a combination of the M5 model tree and nonlinear regression 
techniques, dot not need any pre-calculation of the wave kinematics which requires the selection 
of the proper wave theory. In fact, wave parameter H and L, water depth h and pile diameter D can 
be directly used to obtain the necessary non-dimensional input parameters. The proposed formulae 
can accurately estimate regular wave run-up on single piles for a wider range of parameters, and 
are more appealing for engineering practice compared to other available formulae for the 
prediction of regular wave run-up on single piles. The performance of the proposed formulae is 
confirmed by the values of agreement index Ia, squared correlation coefficient R2 and scatter index 
SI, which are 0.983, 0.94 and 16.5%, respectively. The developed formulae are valid for non-
breaking waves within the range of hydrodynamic conditions used in this study. 

Based on the knowledge gained from this study, the following recommendations for further 
research may be drawn:  

(i) The effect of bottom slope on regular wave run-up height of vertical piles might be 
investigated. This might particularly be important for shallow water conditions. 

(ii) As a large amount of studies and data are available for regular waves, a relationship 
between run-up induced by random waves and regular waves would provide a guidance on 
applying run- up formulae and data in engineering practice. 
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Figure Captions 

Fig. 1: Characteristic of twin-wave flume of LWI and position of the tested pile in the flume 

Fig. 2: Plan view of model set-up of LWI tests for the case of single pile 

Fig. 3: Cross-section of model set-up of LWI tests for the case of single pile 

Fig. 4: Side view of one wave run-up event exemplary for the test with wave height of 0.29 m 
and period of 3.5 sec 

Fig. 5: Comparison of measured and predicted regular wave run-ups by De Vos et al. (2007) 
formula for LWI data 

Fig. 6: Comparison of measured and predicted regular wave run-ups by De Vos et al. (2007) 
formula using those of LWI data for which second order Stokes theory is applicable 

Fig. 7: Comparison of measured and predicted regular wave run-ups by Kazeminezhad and 
Etemad-Shahidi (2015) formulae (Eqs. 6 and 7) for LWI data 

Fig. 8: Comparison of measured and predicted regular wave run-ups by Kazeminezhad and 
Etemad-Shahidi (2015) formula (Eq. 6) for LWI data with H/h≤0.41 

Fig. 9: Example of M5 model tree (Developed tree, leaves, classified data and linear equations) 

Fig. 10: Comparison of measured and predicted regular wave run-ups by new formulae (Eq. 15) 
for LWI data 

Fig. 11: Comparison of measured and predicted regular wave run-ups by new formulae (Eq. 15) 
for all used data 
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Table captions 

Table 1. Formulae for the estimation of irregular wave run-up on single piles 

Table 2: The LWI test programme for regular non-breaking waves  

Table 3. Range of the LWI non-dimensional hydrodynamic parameters 

Table 4. Range of the conditions used for the development of the run-up formulae 

Table 5. Correlation between the non-dimensional parameters and relative wave run-up (Ru/H) 

Table 6. Different M factor values for various levels of acceptable risk (Yasa and Etemad-
Shahidi, 2014) 
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Fig. 1: Characteristic of twin-wave flume of LWI and position of the tested pile in the flume 
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Fig. 2: Plan view of model set-up of LWI tests for the case of single pile 
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Fig. 3: Cross-section of model set-up of LWI tests for the case of single pile 
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Fig. 4: Side view of one wave run-up event exemplary for the test with wave height of 0.29 m 
and period of 3.5 sec 
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Fig. 5: Comparison of measured and predicted regular wave run-ups by De Vos et al. (2007) 
formula for LWI data 
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Fig. 6: Comparison of measured and predicted regular wave run-ups by De Vos et al. (2007) 
formula using those of LWI data for which second order Stokes theory is applicable 
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Fig. 7: Comparison of measured and predicted regular wave run-ups by Kazeminezhad and 
Etemad-Shahidi (2015) formulae (Eqs. 6 and 7) for LWI data 
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Fig. 8: Comparison of measured and predicted regular wave run-ups by Kazeminezhad and 
Etemad-Shahidi (2015) formula (Eq. 6) for LWI data with H/h≤0.41 
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Fig. 9: Example of M5 model tree (Developed tree, leaves, classified data and linear equations) 
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Fig. 10: Comparison of measured and predicted regular wave run-ups by new formulae (Eq. 15) 
for LWI data 

 

 

  

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4

Pr
ed

ic
te

d 
Ru

(m
)

Measured Ru (m)

Agreement index (Ia) = 0.985
Squared Pearson correlation coefficient (R2) = 0.942
Scatter index (SI) = 14.5 %
Bias = -0.003



31 
 

  

Fig. 11: Comparison of measured and predicted regular wave run-ups by new formulae (Eq. 15) 
for all used data 
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Table 1. Formulae for the estimation of irregular wave run-up on single piles 

Study Formulae 
 
 
Mase et al. 
(2001) 

,2%

0

0 0

0

0 0

0.004 0.20.24 11.43
tan tan

0.015.exp 1.55 0.77exp 69.46 1.02
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H h
L H

H h
L H

θ θ
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   = − + −   
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Lykke 
Andersen and 
Frigaard 
(2006) 
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Ramirez et al. 
(2013) 
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and Etemad-
Shahidi (2015) 
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Ru,2% is wave run-up levels exceeded by 2% of the waves  
ηmax,2% is the crest level of the 2% highest wave 
u2% is the horizontal wave-induced flow velocity at the wave crest 
θ is bottom slope 
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Table 2: The LWI test programme for regular non-breaking waves 

Test 
number 

Water 
depth 
(m) 

Wave 
height 
(m) 

Wave 
period 
(s) 

Wave 
water 
depth 
(h/L) 

Wave 
steepness 
(H/L) 

Pile 
slenderness 
(D/L) 

Relative 
wave 
height 
(H/h) 

Wave run-
up (Ru) (*) 

(m) 

Ru’s 
Relative 
standard 
deviation 
(RSD) (**) 
(%) 

1 0.64 0.044 0.8 0.643 0.044 0.050 0.070 0.0213 5.45 
2 0.64 0.062 1.0 0.419 0.040 0.033 0.098 0.0328 4.11 
3 0.64 0.080 1.2 0.302 0.036 0.024 0.126 0.0443 1.61 
4 0.64 0.087 2.5 0.108 0.014 0.008 0.136 0.0483 3.17 
5 0.64 0.088 3.5 0.074 0.010 0.006 0.139 0.0481 3.46 
6 0.64 0.105 5.0 0.051 0.008 0.004 0.166 0.0789 1.49 
7 0.64 0.133 1.2 0.302 0.061 0.024 0.208 0.0918 3.91 
8 0.64 0.149 2.0 0.141 0.031 0.011 0.234 0.0986 2.51 
9 0.64 0.153 2.5 0.108 0.025 0.008 0.241 0.1026 4.87 
10 0.64 0.154 3.0 0.088 0.020 0.007 0.242 0.0933 3.56 
11 0.64 0.209 4.7 0.055 0.018 0.004 0.326 0.1841 5.95 
12 0.64 0.213 6.0 0.042 0.014 0.003 0.336 0.2022 1.12 
13 0.64 0.275 4.7 0.055 0.023 0.004 0.430 0.2600 1.30 
14 0.64 0.255 5.5 0.046 0.018 0.003 0.401 0.2353 3.46 
15 0.64 0.275 6.0 0.042 0.018 0.003 0.428 0.2606 2.48 
16 0.64 0.217 1.5 0.210 0.068 0.016 0.342 0.1594 2.62 
17 0.64 0.217 2.0 0.141 0.045 0.011 0.343 0.1710 6.18 
18 0.64 0.228 2.5 0.108 0.037 0.008 0.359 0.1797 1.37 
19 0.64 0.215 3.0 0.088 0.028 0.007 0.339 0.1362 6.25 
20 0.64 0.29 3.5 0.074 0.033 0.006 0.458 0.2993 4.42 
21 0.64 0.328 6.0 0.043 0.022 0.003 0.517 0.3183 1.07 
22 0.64 0.233 1.5 0.211 0.073 0.016 0.370 0.1819 2.87 

(*) Average value of the measured wave run-up events in a regular wave train (N=5 to 15) 

(**) Relative standard deviation of the measured wave run-up events in a regular wave train 
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Table 3. Range of the LWI non-dimensional hydrodynamic parameters 

Wave type Non-breaking regular waves 

Relative water depth (h/L) 0.042 ~ 0.640 

Wave steepness (H/L) 0.008 ~ 0.073 

Pile slenderness (D/L) 0.003 ~ 0.050 

Relative wave height (H/h) 0.07 ~ 0.517 
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Table 4. Range of the conditions used for the development of the run-up formulae 

Data set Wave type Relative wave 
height (H/h) 

Relative water 
depth (h/L) 

Pile 
slenderness 
(D/L) 

Lykke Andersen 
and Frigaard (2006) 

Non-breaking 0.410 ~ 0.520 0.085 ~ 0.140 0.021 ~ 0.070 

De Vos et al. 
(2007) 

Non-breaking 0.028 ~ 0.593 0.084 ~ 0.861 0.020 ~ 0.206 

This study (LWI 
tests) 

Non-breaking 0.070 ~ 0.517 0.042 ~ 0.640 0.003 ~ 0.050 

All data sets Non-breaking 0.028 ~ 0.593 0.042 ~ 0.861 0.003 ~ 0.206 
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Table 5. Correlation between the non-dimensional parameters and relative wave run-up (Ru/H) 

Non-dimensional parameter Squared Pearson correlation coefficient (R2) 

Relative wave height (H/h) 0.60 

Relative water depth (h/L) 0.16 

Pile slenderness (D/L) 0.07 
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Table 6. Different M values for various levels of acceptable risk (Yasa and Etemad-Shahidi, 
2014) 

Acceptable risk (%) M  

2 2.05 

5 1.65 

10 1.28 

33 0.44 

50 0 

 


