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Abstract

Estimation of swell conditions in coastal regions is important for a variety of pub-

lic, government, and research applications. Driving a model of the near-shore wave

transformation, from an offshore global swell model such as NOAA WaveWatch3,

is an economical means to arrive at swell size estimates at particular locations of

interest. Recently, some work (e.g. Browne et al. (2006)) has examined an artifi-

cial neural network (ANN) based, empirical approach to wave estimation. Here,

we provide a comprehensive evaluation of two data driven approaches to estimat-

ing waves nearshore (linear and ANN), and also contrast these with a more tradi-

tional spectral wave simulation model (SWAN). Performance was assessed on data

gathered from a total of 17 near-shore locations, with heterogenous geography and

bathymetry, around the continent of Australia over a 7 month period. It was found

that the ANNs out-performed SWAN and the non-linear architecture consistently

out-performed the linear method. Variability in performance and differential per-

formance with regard to geographical location could largely be explained in terms

of the underlying complexity of the local wave transformation.
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1 Introduction1

Knowledge of swell conditions at specific nearshore locations is important for2

coastal research, marine engineering, and policy development. Although global3

swell models are an effective approximation of open swell conditions, they be-4

come less accurate in the nearshore zone. Many forms of remote sensing suffer5

from similar issues; satellite observations, for example, due to the manner in6

which they are sensed and averaged, normally pertain only to deeper ocean7

locations, typically 30km away from the the shoreline (Kalra et al., 2005).8

Variations in nearshore bathymetry, local wind-generated seas and the effects9

of artificial structures transform deep water swell due to reflection, shoaling,10

refraction, diffraction and breaking (Londhe and Deo, 2004). At a particular11

location, local topography may lead to attenuation or accentuation of long or12

short period swells, either directly, or by the contribution of local wind condi-13

tions. This makes the estimation of onshore wave heights, even given reliable14

offshore swell measurements, a non-trivial exercise.15

The ability to estimate and predict onshore wave heights at the shore is of16

significant public interest in countries such as Australia, due to the high level17

of public activity in or near the break zone. There is a clear need for this18

∗ corresponding author: m.browne@griffith.edu.au
1 Griffith Centre for Coastal Management, Gold Coast campus, Griffith University
PMB 50 Gold Coast Mail Centre QLD 9726
2 School of Information and Communications Technology, Griffith University
3 CoastalWatch Australia, Suite 3, 66 Appel Street, Surfers Paradise QLD 4217

2



data both as a general advisory to the public concerned with recreational use19

of the near-shore zone, and for life-guards concerned with providing advice in20

order to ensure public safety. Much of the Australian coastline is characterised21

by both high density structures, and highly dynamic sediment evolution, and22

monitoring of onshore wave heights is important for monitoring and managing23

coastal development. Finally, scientific and engineering evaluations of partic-24

ular locations and structures in this zone depend on reliable data on wave25

action.26

Currently, estimation of onshore wave heights from visual inspection is carried27

out on a regular basis, and this information is broadcast through private and28

commercial channels. The conventional approach is for this estimation to be29

performed and recorded manually by human observers, using a combination30

of heuristics, local knowledge, and offshore wind and wave models published31

by government agencies. Numerical models based on wave propagation theory32

have been neglected as a practical onshore wave height estimation tool due33

to a combination of factors: complexity of implementation, high amounts of34

processor time required, the need for accurate local bathymetric surveys, and35

general inaccuracy, even when the previous conditions are met. However, there36

is a clear need to substitute an objective and automated approach for human37

observations of onshore wave activity, which are expensive, time consuming,38

and prone to the usual forms of human failure and error.39

In academic research, the propagation of swell in nearshore areas is conven-40

tionally studied by running either an actual, or a virtual simulated physical41

model (Londhe and Deo, 2004). Physical scale models require a significant42

investment of resources for their construction and simulation. For this reason,43

physical modeling using numerical computer simulation incorporating the lo-44
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cal physical environment and local swell conditions is often used. The Simu-45

lating Waves NearShore (SWAN) numerical model is an example of a popular46

approach for modeling wave propagation in the near-shore zone. However, nu-47

merical models themselves require care and expertise in their implementation.48

For example, a wave prediction system based on a numerical model must often49

contend with physical processes on a wide range of scales. These techniques50

are also sensitive to accuracy of the bathymetric data for the study area, and51

the quality of driving data at the model boundaries. Typically, hours of pro-52

cessing time is required for simulation of a region with adequate temporal and53

spatial resolution. Due to technical issues that may arise, results are sometimes54

unsatisfactory, especially in the break-zone.55

Empirical wave recordings and observations are used to calibrate and validate56

theoretical (Booij et al., 1999a) and empirical (Komar and Gaughan, 1972;57

Caldwell, 2004) approaches to modelling the wave transformations that occur58

as they progress from deep to shallow water. The method of Caldwell (2004),59

for instance, was based on comparisons between buoy-measured Hs in deep60

water in close proximity to locations where visual observations were taken of61

trough to crest vertical wave height at the break point. There has been interest62

in developing empirical, data-driven models of nearshore wave characteristics63

for many years (Booij et al., 1999a). For example, an empirical method of64

obtaining surf height at the breakpoint from offshore wave data was derived65

from observations by Komar and Gaughan (1972). Following this approach,66

an alternative measure of surf height, Hsurf , was developed for coastal zones67

with narrow shelves, steep bottom slopes and high refraction,68

Hsurf = HbKr(Hb), (1)69

4



where Kr is the empirical estimation of the refraction coefficient as a function70

of shoaling and buoy-estimated breaker height, Hb:71

Kr = −0.0013Hb
2 + 0.1262Hb + 0.3025. (2)72

The method is based on comparisons between buoy-measured Hs in deep water73

in close proximity to locations where visual observations were taken of trough74

to crest vertical wave height at the break point. We note the particular oper-75

ational definitions of wave height in the break zone (e.g. tough-crest height,76

assessed visually): it should be recognised that it is usually impossible to mea-77

sure breaking wave height using a fixed wave gauge, since the spatial point78

of breaking varies with incident wave conditions. Estimating near-shore wave79

height through modelling the shallow-water wave transformation via simpli-80

fied equations that are optimised using real-world data may be considered a81

’semi-empirical’ approach.82

In their application to analysis in the physical sciences, artificial neural net-83

works (ANNs) can be regarded as strongly empirical, as opposed to model-84

based approaches to estimate and predict wave behaviour (Deo and Jagdale,85

2003). ANNs are a flexible learning architecture which rely on the presentation86

of input and target data, rather than a theoretical model, for the estimation87

of an underlying physical relationship. As general purpose function approxi-88

mators, ANNs purposely impose no constraints on the final model generated,89

although the size of the neural network necessarily limits the overall complex-90

ity of the modelled function. In their role of associating temporally, spatially,91

or modally distinct measurements of wind-wave activity, they must approxi-92

mate the physical propagation of wave energy. The effect of local geography93

or bathymetry is inferred from the co-variation of input-target pairs, rather94
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than explicitly determined. Thus, a representative corpus of training data is95

essential for the function approximation potential of an ANN to be realised.96

The use of ANNs has been reported for numerous applications in the geo-97

logical and marine sciences, and in particular have been used for forecasting98

wave climate time series (Deo et al., 2001; Agrawal and Deo, 2002). Tsai and99

Lee (1999) utilised neural networks for forecasting tidal variability and Tsai100

et al. (1999) used neural networks for forecasting wave heights at near-shore101

locations, using measurements from other locations as input, finding that us-102

ing multiple sites as input increased the accuracy of predictions. Some work103

has tested ANNs for specific oceanic structural and engineering tasks: (Mase104

and Kitano, 1999) used feed-forward networks to estimate wave force impact105

on a marine structure, and (Mase et al., 1995) found that a similar ANN ar-106

chitecture accurately predicted damage levels on a breakwater resulting from107

wave action. ANNs have recently shown to produce superior estimates of wave108

spectra from wave parameters than those provided by theoretical or statistical109

predictions (Naithani and Deo, in print, 2005). Non-linear empirical models110

have been shown to approximate well the underlying wave physics (Tolman111

et al., 2005).112

ANNs have been applied to estimating missing wave buoy data (Balas et al.,113

2004), and recently Kalra et al. (2005) have detailed an ANN-based effort to114

map offshore wave data to coastal locations, reporting superior performance115

of ANNs compared to a linear statistical approach. The authors estimated116

wave activity in the near-shore region from satellite monitoring at offshore117

locations. Scotto and Soares (2000) concluded that in estimating significant118

wave height of sea-states using non-linear autoregressive (AR) models, linear119

models satisfactorily modelled the lower statistical moments, but non-linear120
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models better approximated the higher moments such as skewness and kurto-121

sis. Also using an AR model, Ho and Yim (2005), recently demonstrated the122

feasibility of interpolating missing buoy data between two wave measuring123

stations.124

Neural networks have been demonstrated to be superior to conventional ap-125

proaches for forecasting significant wave height in open water, in a variety of126

situations (Deo et al., 2002, 2001; Deo and Kumar, 2000; Balas et al., 2004).127

Rao and Mandal (2005) focused on ANNs as an alternative to numerical mod-128

elling for estimating wave-fields generated by cyclone events. Browne et al.129

(2006) emphasised the use of ANNS for bridging of modes of observation (i.e.130

global model output / logged buoy data / visual observations) in the context131

of bringing offshore estimates to estimate activity in the near-shore zone. It132

has been shown that non-linear ANN approaches outperformed linear statis-133

tical and numerical modelling, in the estimation of both human observations134

at the beach, and wave-rider buoy data.135

Apart from the welcome comparison of ANN performance with that of linear136

regression by Kalra et al. (2005), there have been insufficient comparisons137

of ANNs with other forms of swell estimation, such as linear predictors, and138

numerical modelling. Work reported by Browne et al. (2006) represented a139

first step towards a systematic comparison between ANNs, statistical, and140

numerical modelling approaches. However, this work needs to be extended to141

include a greater variety of geographical areas, and longer study time periods.142

As neural networks are unconstrained general-purpose function approxima-143

tors, with potentially thousands of degrees of freedom, care must be taken in144

their application in order to ensure that the underlying function is in fact well145
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approximated, allowing in turn for good generalisation to new data. Over-146

fitting, which results from a high ratio of model degrees-of-freedom to pre-147

sented data, is a particularly common pitfall for engineering and scientific ap-148

plications of ANNs. These issues have led to concerns being raised regarding149

the validity of previous work in applying ANNs to wave estimation. For exam-150

ple, a method of wave forecasting using neural networks was recently reported151

by Makarynskyy (2004), and subsequently challenged by Medina (2005) due to152

issues related to over-fitting, lack of baseline performance comparisons, and an153

insufficient degree of cross-validation. Inappropriate application of ANNs of-154

ten leads to spuriously high performance estimates. It must be also noted that155

as a strongly empirical approach, ANNs do not provide the insight into wave156

propagation processes that is provided by full-scale numerical modelling. How-157

ever, the advantages include computational efficiency and potentially greater158

predictive power, without the need for detailed geographic information, or the159

laborious testing of a range of physical model parameters.160

Recent research is increasingly focusing on the use of neural networks in the161

role of an unconstrained empirical function approximation tool for estimating162

the relationship between geographically or temporally displaced observations163

of wave height. However, to-date little attention has been paid to applying164

them to approximate the deep-to-shallow water wave transformation. The165

current paper is focused on mapping offshore global wind-wave observations166

to activity observed at particular onshore locations. This requires the model167

to incorporate the effects of a number of physical processes such as bottom168

friction, diffraction and refraction, generated by an interaction of local geog-169

raphy and bathymetry with the offshore wave field. Recent studies by Kalra170

et al. (2005) and Browne et al. (2006), have reported superior performance171
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by ANNs. However, each study considered only a single geographical location172

for a relatively short time, which prevented strong conclusions regarding the173

relative efficacy of ANNs to be drawn.174

The present study attempts definitive testing of ANNs for modeling the nearshore175

wave transformation: bringing global ocean wave model output to nearshore176

locations, and demonstrating a potentially useful tool for emulating expensive177

surf reporter observations. A comprehensive evaluation of empirical methods is178

attempted by considering a total of 17 onshore locations across 5 geographical179

regions distributed across the continent of Australia, for a period of 8 months.180

ANNs are compared with baseline, linear and model-based approaches and181

explanations for the differential performance are provided. Detail is provided182

on the technical implementation and validation of ANN performance, which as183

discussed above, is critical for establishing an accurate benchmark of perfor-184

mance. The SWAN numerical model is applied for performance comparisons,185

and in order to investigate the characteristics of the study areas.186

2 Method187

2.1 Study Regions188

As noted above, in order to achieve a comprehensive evaluation of spectral,189

linear, and ANN based modeling, the present study considered five regions190

in Australia, each with distinct properties, in both in terms of bathymetry191

and wave climate. This is illustrated in the regional maps (Figs 2,3 & 4). The192

red filled circles denote the onshore locations considered in this study, while193

the red stars indicate the theoretical location of the NOAA WW3 grid point.194
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Figure 2 maps the bathymetry of each region, which shows a range of profiles,195

from open, exposed beaches, to sheltered bays, along with a range of island196

and headland features. Figure 3 plots the mean wave height, as estimated by197

the SWAN model from the NOAA data over the time period of interest: this198

may be considered in conjunction with table 2 to provide a view of regional199

and intra-regional wave climate variability. Finally, figure 4 shows the degree200

of linear relationship (correlation r) of the SWAN model output at each point201

within each region, to that region’s NOAA WW3 grid point, over the study202

period. Lighter values indicate a smaller proportion of the variability being203

explained by a linear relationship with offshore conditions, and hence indicate204

a greater proportion of non-linear wave effects in the SWAN model output205

at that point. We consider this to be a useful guide to the model-estimated206

complexity in the wave-transformation over each locale with each study region.207

2.2 Data208

In the following sections we describe the various forms of data used in this209

study; bathymetric surveys used as input to the numerical physical model,210

driving variables from NOAA WaveWatch 3 (NWW3), and visual surf reporter211

estimates of Hs.212

2.2.1 NOAA WaveWatch 3213

The driving variables for all models tested in this study were drawn from214

global wave model data gathered from the NWW3 model at 6 grid locations in215

various regions off the coast of Australia from 12/01/05 to 9/8/05. The NWW3216

model provided updates four times daily, at 4am, 12pm (midday), 6pm, and217
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12am (midnight). The NWW3 variables were; significant wave height, primary218

swell direction, primary swell period, wind direction, wind speed, secondary219

swell direction, secondary swell period, wind wave direction, and wind wave220

period. NWW3 generates swell forecasts at every three hours from +3 to +180221

hours ahead of the current time as well as a single analysis at 0 hours, which222

represents the model state, given current measured data. In the present study,223

only the 0 hour state information was used. For the purpose of presenting the224

NWW3 variables to the ANNs for empirical prediction, variables in degree225

format present an issue because of the discontinuity at the 0◦/360◦ point.226

Each of the directional variables; primary swell direction, wind direction and227

wave direction were transformed to Cartesian co-ordinates (’northerliness DN
228

and ’easterliness’ DE):229

DN = cos
(πD

180

)
, DE = sin

(πD

180

)
, (3)230

The locations of the NWW3 grid points are shown in table 2. Table 2 displays231

the cross-correlation matrix between Hs at the various grid points. As ex-232

pected, there are correlations between nearby grid points; i.e. between Queens-233

land (QLD) and North New South Wales (NNSW) regions, and between the234

South Australia (SA) and Victorian (VIC) grid points. However, 11 of the 15235

cross-correlations are below 0.3, indicating that overall, the swell conditions236

around the continent had a significant degree of statistical independence dur-237

ing the study period. This entails that to a large extent, although the regions238

were considered over the same time period, the study regions represent inde-239

pendent sources of testing the estimation methods. The univariate statistics240

of the NWW3 estimated Hs in table 2 also illustrate the heterogeneous nature241

of the offshore swell conditions around Australia. Southern areas (i.e. VIC,242
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SA and Western Australia (WA)) had higher and more variable seas, whilst243

NNSW and QLD were characterised by greater skewness in Hs, primarily due244

to the large contribution that intermittent tropical storm events make to the245

overall variability of Hs in these areas.246

2.2.2 Bathymetric Data247

Bathymetric data is a key parameter to undertake nearshore wave modelling.248

Bathymetric data were required for 5 areas of the Australian Coast from deep249

water to shallow water in order to compute the wave propagation from the250

NWW3 output grid points to the surf reporter locations. The publicly avail-251

able Geoscience Australia bathymetric database (www.ga.gov.au) was used to252

generate the whole bathymetry of 4 areas.253

The database contains data around the Australian margin since 1963 from a254

variety of systems and levels of accuracy. A total of 931 surveys are currently255

registered, whose extent is 34N - 79S, 90 - 180E. The typical point data spacing256

is 25-200 m. Approximately 20% of these surveys were acquired by Geoscience257

Australia, the other component being surveys from other institutions, such258

as oil exploration companies and the National Geophysical Data Centre to259

which various institutions have contributed. Swath bathymetry in deep water,260

laser airborne depth sounder (LADS) data, points digitised from Australian261

Hydrographic Service charts on the shelf and predicted bathymetry from satel-262

lite altimetry (Smith and Sandwell, 1997) have been brought together. The263

database grid was computed at a cell size of 0.01 (36” or 1111 metres) as a264

compromise between conveying detail and limiting the file size.265

For the Gold Coast area, accurate bathymetry data were provided by the Gold266
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Coast City Council. ETA lines covering the Gold Coast from the Gold Coast267

Seaway to Tweed Heads and refined bathymetric surveys around Burleigh268

Heads and Currumbin Creek estuary were combined with the Geoscience Aus-269

tralia database for the offshore information (typically used from 20 to 80 m270

depth).271

2.2.3 Surf Reporter Data272

In collaboration with the Australian surf monitoring firm CoastalWatchTM,273

the study relied on a network of professional surf reporters for performing daily274

visual estimates of significant wave height at each of the 17 beach locations.275

Estimates were made using a mobile internet link and time-stamped. Visual276

inspection was usually performed once per day, between 6am and 8am, but277

during dynamic periods a second visual estimate was made in the afternoon.278

Table 1 displays the number of observations and number of days for which279

observations were recorded for each of the 17 beaches. As the surf reports280

were the limiting source of data for optimizing the models, this table also281

summarizes the number of input / target data pairs available for analysis.282

Table 3 displays the univariate statistics for the surf reporter observations at283

each beach study site. As expected, both overall significant wave height and284

variability are significantly less than the open ocean estimates produced by285

NWW3. With reference to the regional maps and the NWW3 statistics, it may286

be seen that there is variability between the various study areas corresponding287

to both offshore swell characteristics between regions, and local geographic288

features. At certain nearby beaches, where local geography and bathymetry289

is relatively homogeneous, there is a high degree of similarity between the290

univariate statistics of the beaches. This is supported by table 4, which displays291
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the normalised bivariate correlations in Hs between the surf reporter sites. The292

Sydney, New South Wales (SNSW) beaches in particular, which are grouped293

in a relatively small region in and around Sydney, and similar exposure to294

offshore swell, have a high degree of inter-dependence. In general however,295

there is wide variability in the univariate moments due to the different swell296

conditions prevailing in the different continental locations, and considerable297

variety in local geography and bathymetry.298

2.3 Analysis and Simulation299

2.3.1 ANN Background300

ANNs are widely accepted as a valuable tool for modeling, approximation,301

and classification (Kostanic (2001); Bishop (1995); Ripley (1996)). The com-302

mon fully inter-connected feed-forward architecture implements a mapping303

y = f(x) : <m → <n and is optimized by providing multiple (assumed304

noisy) paired samples of the input and target output {ip ∈ <m, tp ∈ <n}.305

The transfer function g, which generates a unit’s output given net activation306

from connections to units in the previous layer, should generally be smooth307

and have a well bounded range for any input; e.g. g : (−∞,∞) → (−1, 1)308

for the tan-sigmoidal case (logistic and gaussian functions are also common309

basis functions). Assuming the activation function at each layer i = {1, ..., L}310

is homogenous, an ANN implements the function311

f(x) = f(a0) = hL(hL−1(hL−...(h1(a0)))) (4)312
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with the layer transformation h defined by313

ai = hi(ai−1) = gi

(
Wi

[
aT

i−1 1
])

(5)314

where the set of free parameters (termed weights) in the system {Wi} deter-315

mine the particular non-linear mapping, noting that a0 = x is an m element316

vector, aL = y an n element vector, and necessarily the dimensions {d1
i , d

2
i }317

of Wi have the constraints d1
1 = m + 1, d2

L = n + 1, and d1
i = d2

i−1. This318

notation represents the constant or bias term as a unit input appended to319

the output vector of the previous layer. ANNs are usually conceptualised as320

a series of neural layers, with forward interconnections between subsequent321

layers, as shown in figure 1.322

A common application of feed-forward networks for estimation involves a fixed323

architecture or topology, with two or three layers L, and an arbitrary num-324

ber of neurons (defined by d2
i ) in each layer. Training a neural network usu-325

ally involves minimising an error function (e.g. for mean-square error (MSE),326

εn =
∑

p (yp − tp)
2), utilising local gradient search algorithms operating on327

−δεn/δ{Wi}, the derivative of the error function with respect to the free328

weight parameters in the network. Sophisticated and efficient search algo-329

rithms, such as the Levenburg-Marquardt method or conjugate gradient de-330

scent (Marquardt, 1963; Kan and Timmer, 1989), along with modern com-331

putational resources, allow for fast optimisation of medium sized networks.332

Single layer, or linear feed-forward networks converge to a global optimum.333

The function-approximation power of non-linear ANNs with one or more hid-334

den layers is based on the non-linearity of the basis functions in the hidden335

layers. However, this property also entails the presence of local minima in the336

error function. ANN implementation requires acknowledgement that optimi-337
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sation based on local gradients may be expected to yield solutions located338

in some form of local minima: i.e. good but not optimal solutions. Multiple339

runs with random initial {Wi} are a straight-forward way to alleiviate this340

issue. Further, since ANN architectures can involve a large number of free pa-341

rameters, over-fitting of the training data is common: this must be taken into342

account both in model optimization, and in estimating model effectiveness.343

2.3.2 ANN Implementation344

In the present study, the basic feed-forward ANN architecture was used to345

implement three empirical estimates of surf reporter readings of significant346

wave height, Hsr
s . In each case, the 9 NWW3 parameters (given in 2.2.1)347

were used as inputs to the model, with the four directional angle variables348

transformed to 2D Cartesian co-ordinates on the unit circle, leading to a total349

of 13 inputs. Firstly, a simple linear scaling of NWW3 derived Hs, HN
s was350

implemented:351

Ĥsr
s = w1H

N
s + w0 (6)352

with the model weights w determined empirically. Because of the extreme353

simplicity of this model, we refer to this as the baseline-scaled estimate. In354

order to reduce the number of input variables, and hence the number of free355

weights in the networks, principle components analysis (PCA) was applied as a356

pre-processing step 4 . Using a form of scree plot, it was decided that retaining357

the first 6 orthogonal projections of the data retained a reasonable level (>358

92%) of total (normalised) variability in the NWW3 data. Given the vector359

4 As PCA is a standard data pre-processing technique for reducing data dimen-
sionality, it will not be discussed. For more details the reader is directed to Joliffe
(2002).
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of normalised NWW3 driving variables n, and the 13x6 PCA transformation360

matrix P, the linear empirical model is given by361

Ĥsr
s = 〈wT ,

[
nTP 1

]T
〉 (7)362

where 〈·〉 denotes the inner product operation, and the 6-element weight vec-363

tor w is optimized with respect to the training data. All feed-forward ANN364

and non-ANN model optimization was done using the Levenburg-Marqhardt365

(LM) algorithm implemented in MATLAB. Like other iterative optimization366

algorithms, the LM method finds parameter values that minimize the sum367

of squares using local gradient information of the objective function. It is a368

more robust form of Gauss-Newton algorithm (which utilizes first derivative369

information in estimate updates).370

The final empirical model is a non-linear feed-forward neural network utilising371

tan-sigmoid activation functions372

h(x) =
2

1 + e−2x
− 1 (8)373

in the hidden layer, and linear activation in the output layer. The non-linear374

ANN model used a single hidden layer of 6 neurons, the equation being:375

Ĥsr
s =

〈
wT

2 ,
[
h

(
[nTP 1]W1

)
1
]〉

(9)376

with the 6x7 input-to-hidden connection matrix W1 and the 1x7 hidden-to-377

output weight vector wT
2 being determined empirically.378

The multi-layer ANNs used in the study were purposely made as small as379

possible in order to reduce the potential for over-fitting the data: the non-380

linear architecture involved 49 free weights. It was assumed that a reasonable381
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approximation to the shallow-water transformation for a single location would382

not require an overly complex model. The available data for the surf reporters383

at each onshore location varied from 800 to 900 data points. The ANNs were384

trained using a 5-fold combined early-stopping and cross-validation method.385

That is, 80% of the data was used for optimising the free weights in the386

model, with 20% used for cross-validation of the data, and early stopping of387

training. This approach is intended to prevent over-fitting of the training data,388

and for generating reliable estimates of performance on unseen data. For the389

non-linear model given in (9), each partition of the data was used to train390

10 ANNs with identical topology, but different random weight initialisations,391

and the best performing neural net used in each case. Finally the ensemble392

ANN output was calculated by averaging the output of the 10 ANNs upon393

presentation of the entire data set. The ensemble method is known to improve394

performance and generalisation of ANNs, but the performance in this case is395

known to be an overestimate, as the performance calculation is necessarily396

performed on the combined training and test data subsets for all the trained397

neural networks. Therefore, in tables 5 and 6, the validation performance398

column may be treated as a conservative estimate of future ensemble ANN399

performance, whilst the reported ANN ensemble performance is rather more400

optimistic.401

2.3.3 SWAN Background402

SWAN (version 40.41) is a spectral wave model based on the action density403

balance equation (Hasselmann et al., 1973) that describes the evolution of two-404

dimensional wave energy spectra under specified conditions of winds, currents,405

and bathymetry (Booij et al., 1999b; Ris et al., 1998).406
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SWAN can be used on any scale, even if this model is specifically designed407

for coastal applications. This model requires no restriction on wave approach408

angle or directional width. SWAN is able to simulate accurately the wave field409

in coastal areas where reflection and diffraction are not significant. The SWAN410

Cycle III User Manual by Holthuijsen et al. (2002) provides a detailed account411

of the theoretical background, program structures, and implementation.412

SWAN modeling has been used successfully for storm-induced coastal flooding413

assessment applications (Cheung et al., 2003), to drive nearshore wave-induced414

current nearshore models (Castelle et al., 2005), for wind generated waves in415

lakes (Jin and Z.-G., 2001) and in coastal regions (Ou et al., 2002; Castelle416

et al., 2006), and to model the evolution of wave spectra in a wave tank (Wood417

et al., 2001).418

2.3.4 SWAN implementation419

In the present study, SWAN is used in stationary mode. The model considers420

a steady state situation that requires the time of propagation of the waves421

through the domain to be short compared to the variation of water level,422

currents and changes in offshore wave conditions. Triad interaction is taken423

into account in the computations. The breaking wave model chosen herein is424

the bore-based model of Battjes and Janssen (1978), with a constant breaker425

parameter γ = 0.73 following Battjes and Stive (1985). The wave forcing426

provided by the NWW3 nearest output point is to the offshore and lateral427

boundaries of the model. For Western Australia, South Australia, Victoria428

and New South Wales areas, the computational grid is concurrent with the429

Geoscience Australia grid i.e. a regular grid at a cell size of 0.01. For the430
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Queensland area, a curvilinear grid is used for computations with grid cell431

size of O(100 m). During the simulations, the wave information is requested432

at each surf reporter location. The outputs are given in 10 m depth in order433

to avoid an underestimation of wave height due to wave breaking during high434

energy conditions. The tide level is treated as constant equal to 0 in the435

Admiralty Height Datum (AHD), i.e. at mid tide. Stationary computations436

are done every 6 hours, concurrent with the NWW3 output data.437

3 Results438

Table 5 presents the performance of the various empirical models in terms439

of mean absolute error (MAE) for the 17 surf reporter locations, organised440

according to study area. A single NOAA WW3 grid point served as input to441

models for all the surf reporter locations in each study area. For ease of pre-442

sentation, the MAEs are provided in cm rather than metres. The first column443

displays the difference between the raw significant wave heights Hs recorded at444

the offshore NOAA grid point and the surf reporter observations. This base-445

line difference ranged from approximately 0.6m at the Sydney, New South446

Wales beaches, to approximately 2.4m at Trigg Beach, WA and Seaford, SA.447

The next column displays the MAE after linear scaling of offshore Hs using448

eq. (6). At all locations, linear scaling resulted in a significant decrease in the449

MAE. This baseline measure represents the error after linear attenuation of450

wave energy is accounted for. Because of the insignificant degrees of freedom451

for this model (i.e. 1), division of the data into training and validation subsets452

was not performed. For the linear and non-linear ANNs (eq.(7) and (9)), data453

was split into training and validation and test sets, and the results of both454
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are shown. The incremental improvement of the linear and non-linear ANNs455

varied over the test sites. The ensemble ANN performance is also shown. Two456

sample t-tests (N=5) were performed in order to explicitly test the hypoth-457

esis that the non-linear ANN MAE was less than the linear version. Despite458

relatively small incremental improvements in performance in some cases, the459

t-statistics were significant at the .01 probability level for all locations except460

for Warranambool, VIC.461

Table 6 shows similar results for the normalised correlation coefficient R be-462

tween empirical model estimates and surf reporter observations. The R co-463

efficient provides a more sensitive measure of estimation performance. For464

consistency, raw and scaled correlations are included, although they are iden-465

tical due to the fact that R is normalised with respect to univariate variance,466

and linear scaling therefore has no effect of the observed R. Here the improve-467

ment is estimation performance over the baseline is more apparent, and so too468

is the differential improvement over the various locations. Despite the greater469

degrees of freedom in the non-linear versus linear models, generalisation per-470

formance, as measured by the validation columns was consistently better for471

the non-linear networks. This is confirmed by the t-statistics, which indicate472

significant improvement in performance in almost every case.473

Figures 5-9 compare graphically the output of of the best performing non-474

linear neural network with the surf reporter observations. A time series over475

the study time period is shown on the left hand side of each plot. The two error-476

bar plots on the right hand side summarise the relationship between either Hs
477

offshore baseline (middle plot) or ANN network estimated Hs (right plot). In478

both cases, the diagonal line represents Hs as reported by the human observer,479

whilst the mean and standard error at each wave height is summarised by the480
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error bars.481

The full page illustrations provided in figure 2 shows the bathymetric profiles482

for each of the study regions for which bathymetry was available.483

4 Discussion484

We first consider the effectiveness of SWAN modeling for nearshore wave es-485

timation. For each area, there is a significant improvement of the wave es-486

timation in terms of the Mean Standard Error (MAE) at the surf-reporter487

locations in comparison with the NOAA outputs. Thus, the overall degree of488

wave bottom friction over the continental shelf and wave energy shadowing489

behind headlands and islands appears to be correctly estimated. However,490

the results are generally not comparable with either the linear or non-linear491

empirical models.492

The effectiveness of SWAN modeling is, not surprisingly, more effective when493

accurate bathymetry are available and a more refined computational grid is494

used. In the Queensland area, for which this was the case, the correlation495

factor significantly improves in comparison with NOAA output data (from496

0.49 to 0.72), as does the Mean Standard Error (0.94 m to 0.32 m). This area497

is exposed to moderate to high energy southerly to south-easterly swell during498

the winter period. During these wave conditions, the surf reporter location is499

partially sheltered by the Coolangatta headlands. This sheltering and resulting500

wave refraction patterns are mostly responsible for the significant improvement501

of the correlation factor.502

For the other areas, SWAN performance in terms of the correlation statis-503
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tics is significantly worse in comparison to the ANN estimators, and even504

the baseline. This can be explained by many factors. The main concern is505

the bathymetric data, and consequently the coarse computational grid. In the506

Queensland region, comparison of Geoscience Australia bathymetric data and507

bathymetric surveys provided by the Gold Coast City Council showed that508

errors of the order of sometimes a few meters could be measured. The main509

processes affecting the wave propagation exist in the nearshore zone, usually510

between 30-40 m depth. For example, in the New South Wales area, there511

is significant longshore variability of the seabed between 0 and 50 m depth512

which are poorly revealed by Geoscience Australia database. Mid-scale pro-513

cesses such as refraction are poorly simulated by SWAN in the present study.514

Furthermore, for areas with a large and shallow continental shelf such as the515

Western Australia area, calibration of bottom friction is a key parameter for516

an accurate estimation of wave height to the shore. Finally, one of the main517

reasons why SWAN results are not in very good agreement with surf reporter518

wave height estimation is the wave forcing format. Indeed, significant wave519

height, mean period and mean wave angle are provided by NWW3 outputs520

in our areas of interest. Directional wave spectra, which were not available521

in the present study, are necessary for optimal performance of model-based522

estimation techniques.523

The ANN based empirical method used, on the other hand, does not depend524

on careful adjustment of physical parameters (such as bottom friction) and525

handles gracefully sub-optimal input data (i.e. swell parameters in lieu of526

the complete directional spectrum). It was expected that the non-linear ANN527

architecture would perform better than the linear models, and this was borne528

out by the results. Tables 4 and 5 show that non-linear networks consistently529
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out-performed linear networks over the study regions both in terms of standard530

error, and correlation with the surf reporter targets. This need for a non-linear531

model was in accordance with predictions, as a non-linear model was expected532

to be necessary to take into account the interaction of variable offshore forcing533

conditions and complex local bathymetries. From figures 2-4, it is clear that a534

significant proportion of the shared variability in offshore and onshore observed535

swell heights is modulated by non-linear physical processes in the form of536

refraction, wave interactions, and local wind effects.537

The simultaneous prediction of near-shore wave heights over a large number538

of study regions, along with the use of SWAN modeling of wave propagation539

in the region (figures 2-4) allows us to consider the reasons for differential pre-540

diction performance in each study area. The Queensland region, for instance,541

is subject to variability in swell direction, biased towards the south-east. For542

these beaches, the relationship between offshore and onshore swell height is543

moderated strongly by swell direction, with more southerly swells experiencing544

a higher degree of sheltering and refraction. In the case of Seaford SA, both lin-545

ear and non-linear ANNs failed to markedly improve onshore swell estimation.546

This may be explained by the fact that offshore and onshore activity is highly547

decoupled: the highly dynamic offshore wave climate has limited propagation548

to the onshore site due to sheltering. Poor performance at this site also results549

from the inherent difficulty in monitoring small changes in wave height, and550

the fact that a higher proportion of this variability is due to unpredictable551

effects such as localized winds. The utility of non-linear estimation was more552

apparent at Chiton Rocks SA, which may be explained by its more exposed553

aspect, yielding a more consistent relationship between offshore and onshore554

activity, which the empirical models were able to emulate. A non-linear model555
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was more effective because it was able to take into account differential attenu-556

ation due to swell direction. The empirical estimation methods were less useful557

on Sydney (SNSW) beaches, where the baseline relationship between NOAA558

and the surf-reporters was very high. The lack of complexity in the offshore-559

onshore wave transformation meant that there was little further improvement560

that the linear or non-linear models could make on the baseline prediction.561

The South Coast NSW study site was a slight exception to this rule, that we562

explain by its greater distance from the NOAA grid point (it is located further563

south, off-map). The best performance overall, in terms of ANN improvement564

over baseline, was observed at Margaret River and Trigg beach, WA. This is565

consistent with the general relationship observed between local site character-566

istics and the improvement of estimation performance over baseline. That is,567

non-linear ANNs are most effective for estimation when there is a systematic568

yet complex coupling of offshore and onshore wave climates. Best performance569

is observed when local transformative processes such as shoaling, attenuation570

and refraction moderate, but do not completely decouple, the onshore from571

the offshore wave climate. ANNs tended to over-estimate smaller swells. We572

believe this is due to the fact that the ANN models assume a Gaussian error573

distribution. However, this is unrealistic since; a) it is impossible to observe574

negative wave heights, and b) the wave height distribution is positively skewed.575

This could be addressed in future work by utilising a zero-truncated, or quasi-576

binomial distribution.577
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5 Conclusions578

The methodologies considered here have immediate application for near-shore579

wave height estimation. This is significant because the vast majority of hu-580

man activity occurs in the near-shore zone, and swell conditions in this area581

are therefore of greatest interest to coastal managers and the public. When582

combined with a near-shore model, existent global wave models such NWW3583

can provide a reliable and cost-effective source of offshore data in absence584

of in situ measurements. Compared with linear and spectral modeling, this585

study has concluded that near-shore conditions can be inferred from WW3586

parameters most effectively using ANN-based estimation. As well as explicit587

and implicit modeling of the near-shore wave transformation, the paper es-588

tablishes quite strong relationships between a open ocean global wind-wave589

model and onshore visual estimates of wave height provided by experts. The590

empirical approach presented here relies on the availability of a corpus of tar-591

get data for model training: the use of a nation-wide database of expert surf592

reporter records is a unique characteristic of this study. The practical appli-593

cation rests on the ability to replace the manual ratings, with the automatic594

estimates generated by the ANN model. The high correlations and relatively595

small standard-errors obtained by the ANN model on the validation data set596

indicates that 6-12 months of daily observations is sufficient to build a model597

that generalizes well.598
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Table 1
Counts of surf reporter observations and total number of days monitored from
12/01/05 to 9/8/05. Observations were recorded more than once / day during more
dynamic surf conditions.

Region Beach Observations Days

QLD
Surfer’s Paradise 231 201

Sunshine Coast 228 203

WA
Margaret River 229 202

Perth 223 204

SA
Seaford 222 206

Chiton Rocks 210 206

NNSW
Mid Coast 361 206

North Coast 216 206

SNSW
Bondi 374 200

Cronulla 362 204

Manly 377 207

Palm Beach 330 200

South Coast 236 200

VIC
Woolamai 275 200

Portsea 268 200

Torquay 305 206

Warrombool 243 200

(N) (N)
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Table 2
Cross-correlation matrix and univariate mean and higher moments of significant
wave heights Hs recorded at NOAA WW3 grid points from 12/01/05 to 9/8/05.

NNSW QLD SA SNSW VIC WA

North New South Wales (153.75 -31) -

Queensland (153.75, -28) .75 -

South Australia (136.25,-36) -.23 -.24 -

South New South Wales (151.25,-34) .80 .49 -.24 -

Victoria (143.75,-39) -.16 -.23 .77 -.17 -

Western Australia (115.00,-34) -.02 .12 .21 -.11 -.02 -

mean Hs 1.95 1.89 2.91 1.47 2.31 3.06

standard deviation σ2(Hs) 0.85 0.65 1.01 0.78 0.84 1.20

skewness σ3(Hs) 1.48 0.84 0.65 1.87 0.98 1.06

kurtosis σ4(Hs) 6.02 4.26 3.02 8.32 3.88 4.23

(metres)

32



Table 3
Mean and higher moments of surf reporter significant wave height Hs observations
(in metres) from 12/01/05 to 9/8/05.

Region Beach Hs σ2(Hs) σ3(Hs) σ4(Hs)

QLD
Surfer’s Paradise 0.96 0.35 0.0076 0.0475

Sunshine Coast 0.91 0.33 0.0086 0.0540

WA
Margaret River 2.02 0.66 0.0009 0.0177

Perth 0.60 0.28 0.0092 0.0354

SA
Seaford 0.45 0.22 0.0068 0.0324

Chiton Rocks 1.37 0.31 0.0003 0.0231

NNSW
Mid Coast 0.66 0.43 0.0128 0.0419

North Coast 1.03 0.33 0.0116 0.0627

SNSW

Bondi 0.88 0.38 0.0132 0.0592

Cronulla 0.88 0.39 0.0139 0.0608

Manly 0.88 0.38 0.0126 0.0577

Palm Beach 0.89 0.38 0.0128 0.0570

South Coast 0.87 0.45 0.0081 0.0349

VIC

Woolamai 1.40 0.44 0.0002 0.0259

Portsea 1.46 0.46 0.0034 0.0344

Torquay 0.85 0.39 0.0085 0.0366

Warranambool 0.89 0.41 0.0066 0.0360
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Fig. 1 Standard feed-forward ANN architecture708

709

Fig. 2 Bathymetry for five of the study regions710

711

Fig. 3 Mean significant wave height as estimated by the SWAN model when712

driven by NWW3 over the study period713

714

Fig. 4 Normalised correlation coefficient r between the NOAA driving in-715

put and SWAN output significant wave height over the study period. Lighter716

shades indicate local regions affected by more complex wave transformations:717

i.e. a greater proportion of observed wave height variability is not linearly re-718

lated to the wave height at the model boundaries719

720

Fig. 5 ANN estimation performance at Surfer’s Paradise, Queensland721

722

Fig. 6 ANN estimation performance on South Australian beaches723

724

Fig. 7 ANN estimation performance on Western Australian beaches725

726

Fig. 8 ANN estimation performance on Victorian beaches727

728

Fig. 9 ANN estimation performance on New South Wales beaches729
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