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Roof plane segmentation is a complex task since point cloud data carry no connection in-8

formation and do not provide any semantic characteristics of the underlying scanned surfaces.9

Point cloud density, complex roof profiles, and occlusion add another layer of complexity which10

often encounter in practice. In this paper, we present a new technique that provides a better11

interpolation of roof regions where multiple surfaces intersect creating non-manifold points.12

As a result, these geometric features are preserved to achieve automated identification and13

segmentation of the roof planes from unstructured laser data. The proposed technique has14

been tested using the ISPRS benchmark and three Australian datasets, which differ in terrain,15

point density, building sizes, and vegetation. The qualitative and quantitative results show the16

robustness of the methodology and indicate that the proposed technique can eliminate vege-17

tation and extract buildings as well as their non-occluding parts from the complex scenes at18

a high success rate for building detection (between 83.9% to 100% per-object completeness)19

and roof plane extraction (between 73.9% to 96% per-object completeness). The proposed20

method works more robustly than some existing methods in the presence of occlusion and low21

point sampling as indicated by the correctness of above 95% for all the datasets.22
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1. Introduction24

Buildings in urban environment are indispensable components on the terrain and objects of most interest25

for various urban information and management systems. The emergence of spatial data acquisition26

technologies has sped up 3D characterisation of the earth’s surface and objects on it (Song, Wu, and27

Jiang 2015). Among these sources, airborne Light Detection And Ranging (LiDAR) has become the most28

attractive choice for spatial data researchers due to its ability to capture 3D georeferenced spatial points29

of the buildings, roads, vegetation, and other objects expediently at a high point density and accuracy.30

These characteristics make it feasible for automatic extraction and reconstruction of the buildings and31

their distinct features.32

Regarding the detection of the building regions, most of the methods (Awrangjeb and Fraser 2014a,33

Chen et al. 2012, 2014, Gilani, Awrangjeb, and Lu 2016, Gilani, Awrangjeb, and Lu 2015) initiate a34

filtering process using a digital surface model (DSM) or digital terrain model (DTM) to classify the 3D35

point cloud into terrain and off-terrain points, most often, using an elevation threshold. Nevertheless,36

segmentation and labelling of the coplanar LiDAR points into homogeneous surfaces for roof plane ex-37

traction is the most significant process. Two most common strategies reported for roof extraction are38

model-driven (parametric or bottom-up) and data-driven (non-parametric or top-down) (Awrangjeb39

and Fraser 2014a, Chen et al. 2014, Maas and Vosselman 1999). In model-driven approach, a predefined40

catalogue of parameterised roof models is prescribed and the model that best fits the corresponding41

LiDAR points is chosen. Therefore, the final roof shape is always topographically correct, but the deter-42

mination of a specific roof model remains a key issue (Song, Wu, and Jiang 2015). Moreover, a complex43

roof structure cannot be realised if such a parametric roof model is missing in the library (Awrangjeb44

and Fraser 2014a). In data-driven methods, on the other hand, the building’s roof is reconstructed by45

aggregating the individually derived roof planes from a segmentation algorithm. Such methods preserve46

the original structure of an underlying surface. However, a challenge here is to determine a roofs’ topol-47

ogy and the relationship among the plane surfaces. The main advantage is that such methods are not48

restricted to any primitive shape or orientation and can reconstruct any polyhedral building in more49

detail (Awrangjeb and Fraser 2014a, Chen et al. 2014). However, due to the low resolution of the point50

cloud data, curved surfaces and roof features, for instance, chimneys, dormers, and vents cannot be well51

approximated, albeit, possible in the presence of high point density.52
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1.1. Research challenges and contribution53

Roof plane extraction has been a challenge to the research community and found restricted by the54

following quality issues: LiDAR data (1) have systematic and stochastic measurement inaccuracy; (2)55

points are spatially unorganised and have variable point density; (3) have sparsity and gaps due to56

the occlusion by neighbouring objects, e.g., vegetation clusters (Elberink and Vosselman 2011); (4)57

have no connection information among the 3D points; (5) have a presence of noisy laser pulses due58

to physical limitation of data acquisition sensors and multiple reflectance (multipath effect); and (6)59

have no statistical distributional pattern especially for the points around anisotropic surfaces (Sotoodeh60

2006); Also, the absorption of laser pulses by water and the reflection from vents and transparent roof61

structures are few added issues that make roof plane detection more stimulating.62

Urban scenes are characterised by the existence of diverse objects such as buildings, trees, bridges,63

and road infrastructure, offering a high degree of complexity. In many cases, vegetation is found very64

close to the buildings that often occludes parts of the roofs. These buildings are generally ignored and65

therefore, removed during elimination of the false objects. To overcome these limitations, a technique66

aiming at roof plane extraction and building detection using LiDAR data is proposed. The initial idea67

discussing building detection was briefly presented in (Gilani, Awrangjeb, and Lu 2016). Howbeit, this68

paper extends the initial work in the following aspects.69

• Point cloud density is used at different stages of execution for handling sparsely sampled point70

sets and making the proposed technique robust for various data acquisition sources, e.g., airborne and71

terrestrial (mobile) platforms.72

• A roof plane extraction method and a comprehensive objective assessment using several datasets73

have been included in this study. These datasets differ in scene complexity, topographical conditions,74

and point density (1.6 to 35 points/m2).75

• A new LiDAR-based boundary tracing technique is also included that seamlessly extracts inner76

and the outer boundaries of an object without any limitation.77

• Two new algorithms: anisotropic point selection and saliency feature estimation, are introduced78

in this research. The first algorithm identifies points on intersecting surfaces using a local rather a79

global threshold while latter estimates saliency features accurately that help in extracting occluded80

roof planes and is robust to noise.81

The proposed technique has a light computing burden since it uses geographic location and height82

information of a point cloud for roof plane segmentation and boundary extraction. On the contrary,83
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other techniques incorporate more features of LiDAR data that include the timestamp, the strength of84

backscatter (intensity data), colour or scan angle. Note that, the employed point cloud segmentation85

method prefers buildings with planar surfaces which widely exist in urban environments and herein, the86

focus of the proposed study.87

The remainder of the paper is structured as follows: Section 2 presents a review of the segmenta-88

tion paradigms and prominent data-driven techniques for building roof extraction. Further, this section89

describes various saliency feature estimators and the relevant principles. Section 3 discusses the method-90

ology for robust roof extraction and building detection technique including a detailed description of each91

step of the workflow. Section 4 provides a comprehensive performance evaluation and comparative anal-92

ysis of the proposed method using four benchmark datasets. Concluding remarks followed by future93

outlook are finally provided in Section 5.94

2. Literature review95

Buildings are of particular importance amongst the numerous features contained in an airborne LiDAR96

data, which are subsequently processed for the extraction of roof primitives. For this objective, the97

RANdom SAmple Consensus (RANSAC), Hough Transform, and region growing algorithms, which are98

three major contenders, are often utilised for point set segmentation (Boulch and Marlet 2012, Huang99

and Brenner 2011, Schnabel, Wahl, and Klein 2007, Vosselman and Klein 2010). In principle, RANSAC100

is a randomised procedure that iteratively fits an accurate model to a set of observed data which may101

contain outliers. Hough Transform, however, describes the primitives in which each data point casts102

its vote for candidate planes in a parameter space. On the other hand, the region growing algorithm103

finds the primitive shapes from unorganised point cloud by accumulating the neighbouring points into104

a region satisfying some conditions.105

To apprehend the theoretical and practical feasibility of these approaches, Deschaud and Goulette106

(2010) conducted a comparative study. They showed that RANSAC is very efficient for detecting large107

planes in noisy point cloud but very slow for the small planes in large datasets. They, further, demon-108

strated that Hough Transform is computationally expensive and time-consuming for the plane fitting109

and extraction. Moreover, they argued that region growing, on the other hand, is quite robust and fast110

segmentation approach and offers a strong resilience against noise (Liu and Xiong 2008). But, it is not111

highly accurate due to sensitivity and location of initial seed (Deschaud and Goulette 2010). However,112

this issue can better be addressed when global information is used (Liu and Xiong 2008). Since urban113

areas are a blend of variable sized roof primitives where large and small planes are equally important,114
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therefore, in this study, we consider all the raised observations for finding a reliable and robust region115

growing based segmentation algorithm.116

Zhou and Neumann (2008) proposed a region growing technique for segmenting building rooftops.117

They used contouring algorithm to extract the building boundaries. Later, histogram statistics was118

used to determine the principal direction of the buildings and roof planes for footprint generation.119

However, this method works only for flat roofs and needs manual interaction for the identification of120

non-flat surfaces. Awrangjeb and Fraser (2014a) presented a roof plane and building extraction method.121

They first divided the LiDAR data into the ground and non-ground points and then used non-ground122

points for extraction of the buildings and roof planes. This method, although, achieved a reasonably123

high pixel-based accuracy but failed to extract small and occluded roof planes.124

For point cloud filtering, Vosselman (2000) proposed a slope-based classification algorithm that first125

computes the slope between any two adjacent LiDAR points and classifies them as non-ground points126

if the slope value is larger than the threshold. However, selection of the threshold value is critical that127

directly affects the filtering process and can easily flatten terrain details. Rather, a method proposed by128

Arastounia and Lichti (2013) used the points’ height histogram mechanism for dynamic selection of the129

threshold value. A peak in histogram corresponds to the ground surface. The threshold value was chosen130

where the bin entries had decreased dramatically and then remained small. However, this automatic131

selection criterion works fine for the flat terrain and does not accurately produce a threshold value for132

hilly and sloppy surfaces. Yang et al. (Yang, Xu, and Yao 2014) proposed the Gibbs energy model for133

the building objects and fits them into the corresponding LiDAR points using reversible jump Markov134

chain Monte Carlo algorithm. It then refines to get rid of non-ground and outlier points and extract the135

primitive’s outline. There are few other techniques for automatic or semi-automatic object recognition136

such as the ones presented in the following works (Guo and Du 2017, Teimouri, Mokhtarzade, and137

Valadan Zoej 2016).138

An area wide point cloud segmentation is presented by Jochem et al. (2012), where data were processed139

in the form of several overlapping tiles. The candidate building regions of all the tiles were detected140

first and then merged into a single polygon layer for roof plane segmentation. However, the roof planes141

below a certain height (< 1.5 m) and smaller than < 6 m2 area were removed. This technique works142

seamlessly for larger planes and non-occluding building parts. In addition, roof artefacts (e.g. dormers,143

chimneys) cannot be extracted due to the merger of adjacent candidate regions. Sampath and Shan144

(2010) presented a framework to extract and reconstruct polyhedral building roofs from LiDAR point145

cloud data. First, planar and non-planar points were determined through eigenvalue analysis followed146
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by the extraction of the planar surfaces. Then, the roof vertices, ridges, and edges were used using147

adjacency matrix for building reconstruction.148

Building roofs in urban environments vary from flat to steeply pitched surfaces and often, have a149

complex arrangement of slopes, gables, and hips. These distinct parts define sharp features at their150

intersections like edges, ridges, and corners. So, LiDAR points on these features describe fundamental151

characteristics of the underlying geometry and considering them in advance, improves the performance of152

a segmentation process (Park, Lee, and Lee 2012) and thereof, an integral component of our segmentation153

method. Similarly, estimation of saliency features such as, normal and curvature, is an essential step154

in surface approximation process because the quality of the extracted surfaces heavily depends on the155

quality of the estimated point normals (Li et al. 2010, Zhang et al. 2013). Often, Principal Component156

Analysis (PCA) is used but, it overly smoothes the normals at the points near/on the sharp features157

due to non-robust location and scatter analysis (Li et al. 2010, Nurunnabi, Belton, and West 2012).158

Therefore, any segmentation based on these erroneous descriptors results in unreliable and inaccurate159

surfaces (Mitra, Nguyen, and Guibas 2004).160

Furthering to smoothness issue, PCA is also found inefficient in estimating normals in the presence161

of noise and considered a direct and/or indirect reason for the failure of region growing processes (Nu-162

runnabi, Belton, and West 2012). To overcome these limitations, several methods (Boulch and Marlet163

2012, Fleishman, Cohen-Or, and Silva 2005, Li et al. 2010, Mitra, Nguyen, and Guibas 2004, Nurunnabi,164

Belton, and West 2012, Öztireli, Guennebaud, and Gross 2009, Zhang et al. 2013) have been proposed165

which can handle data inconsistencies to a certain extent. To obtain statistically robust normals along166

the sharp features, we propose PCA mollification method that uses pre-computed normals to generate167

consistent point normals. PCA mollification is based on Low-Rank Subspace Clustering framework with168

Prior Knowledge (LRSPCK) technique (Zhang et al. 2013) that uses PCA’s precomputed point normals169

as prior knowledge and employs an unsupervised learning process to gracefully compute robust normals170

around anisotropic regions regardless of data inconsistencies. Another advantage of low-rankness is that171

it better captures the global structure of the data that make it robust to noise (Luo et al. 2014) and172

enables to handle corrupt data (Zhang et al. 2013). In the literature, mollification has been used in173

computer graphics for the representation of geometric models (Öztireli, Guennebaud, and Gross 2009).174

However, to the best of our knowledge, this is a first study for the detection of roof planes and buildings175

from LiDAR data using PCA mollification.176
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2.1. PCA mollification177

PCA internally reduces dimensions of the data and finds a matrix V (representing eigenvectors −→v1 ,−→v2 ,−→v3)178

and scalar λ (representing eigenvalues λ1 ≤ λ2 ≤ λ3), where λi denotes a spatial variation along the179

corresponding −→vi . In case of 3 dimensional point cloud data, first two eigenvectors can describe a planar180

surface where the smallest eigenvalue λ1 corresponding to −→v1 defines a point normal n̂i (Nurunnabi,181

Belton, and West 2012). However, PCA approximates inaccurate normals at the feature points, the182

points not lying on planar surfaces, such as edges. Therefore, we combine LRSPCK at this stage, which183

segments the neighbours of each feature point into several isotropic subspaces and re-estimate these184

normals. An affinity matrix, which is dense amongst the same classes and sparse otherwise, is generated185

by seeking the lowest rank representation on the PCA normals. A plane is then fit to the feature point186

and each of its subneighbourhoods to estimate a fitting residual. A subneighbourhood that exhibits a187

minimum residual is identified as a consistent subneighbourhood and used to approximate an accurate188

normal.189

A careful analysis of LiDAR data shows that building roof planes have diverse geometry and pre-190

dominantly, three invariants generally exist when a dihedral angle at the intersection of two or more191

planes makes; 1) an acute/obtuse angle; 2) a right angle; or 3) a jump edge (from mutually superposing192

surfaces). We demonstrate the robustness of the PCA mollification using three real-world point cloud193

samples and visually assess the quality of the estimated normals. Figure 1 shows that the point normals194

approximated using PCA mollification can accurately approximate the underlying surfaces as compared195

to the PCA.196

(a) (b) (c)

(d) (e) (f)

Figure 1. Point normals for three real-world roof plane samples using PCA (a-c) and (d-f) PCA mollification
using LRSCPK. Planes forming an acute/obtuse angle (left), right angle (middle) and jump edges (right).
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3. Methodology197

Figure 2 shows the workflow of the proposed roof extraction and building detection technique. The198

input data consist of raw LiDAR point set and the corresponding DTM. For this study, DTM with 1199

m horizontal resolution was available for each benchmark dataset. Otherwise, it can be generated using200

any commercial software, such as MARS R© explorer (Merrick 2015). The proposed technique comprises201

of three major stages. First, we separate the LiDAR data into the ground and non-ground point sets and202

use them later to identify the building regions. Second, the proposed segmentation method extracts the203

planar surfaces from the point cloud of each identified building region by using saliency features. Finally,204

a refinement procedure eliminates the non-building planes and then, approximate the boundaries of the205

roof planes and buildings using a proposed boundary tracing algorithm. We used Matlab
R©

2016a for206

all the experiments and utilised the built-in functions, where applicable, to exploit parallel processing207

and gain high performance. The detailed explanation of all the intermediate stages is provided in the208

following sections.209

Building region 
detection

Building rooftop segmentation Removing non-building planes & 
boundary approximation

Separate non-ground points 
from ground points

Building region 
extraction

Separate non-ground points 
from ground points

Building region 
extraction

Elimination of non-building 
planes

Roof facets extraction and 
building detection

Elimination of non-building 
planes

Roof facets extraction and 
building detection

Identification of anisotropic points 
and estimation of saliency features

Seed point selection and 
point cloud segmentation

Planar surface extraction

Identification of anisotropic points 
and estimation of saliency features

Seed point selection and 
point cloud segmentation

Planar surface extraction

LiDAR
 + 

DTM

LiDAR
 + 

DTM

Input data

Figure 2. Workflow of the proposed technique.

3.1. Building region detection210

Figure 3a presents the test dataset which is an urban area named Aitkenvale (AV) situated in Queens-211

land, Australia. The aerial image will be used for the demonstration of different stages of the proposed212

methodology and to show the planimetric accuracy of the extracted roof planes and building boundaries.213

Even though the test dataset is small but it better offers the challenges of vegetation and occlusion as214

shown in Figure 3a and the magnified rectangle. It covers an area of 66 m × 52 m containing moderate215

vegetation and six buildings comprising 24 roof planes. LiDAR coverage of AV comprises of the first216

pulse returns with a point density of 35 points/m2 and a spacing of 0.17 m in both in- and across-flight217

directions.218

The proposed method takes the LiDAR point cloud C ∈ R3 (tri-dimensional space) and its corre-219
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(a) (b) (c) (d)

Occluded 
building

Outer boundaries

Inner boundaries

Figure 3. (a) Aerial image of test dataset, (b) LiDAR point set, (c) Delaunay triangularisation of non-ground
points, and (d) Building region identification. (For interpretation of the references to color in this figure legend,
the reader is referred to the digital version of this article.)

sponding DTM as input. Generally, airborne LiDAR data contain points returned from different features220

such as ground surface, trees, buildings, and other 3D objects. Therefore, we first separate the area of221

interest from other ground objects for the detection of building roof planes. For the reason to separate222

the non-ground points, a height threshold ht = hg + hrf for each LiDAR point is computed using its223

ground-height hg from DTM and a relief factor hrf which is 1 m in this study. This process eliminates224

all the low height objects below hrf including bare-earth, roadside furniture, cars, and bushes while225

preserving the objects above the threshold including buildings and trees. Notably, many points on low226

height trees and bushes may be classified as the non-ground points provided they are above the hrf .227

Figure 3b shows the LiDAR points separated into the ground and non-ground points sketched with blue228

and cyan colours, respectively.229

From this point onwards, we use only the non-ground LiDAR points P ⊆ C for extracting the building230

regions which will subsequently be processed for the detection of roof planes. To identify the building231

regions, a neighbourhood connection among R2 (bi-dimensional space) representation of P is established232

using the Delaunay triangulation as shown in Figure 3c. The edges of any triangle having a length233

≥ 2dmax are determined as anomalous connections (see red lines in Figure 3d), where dmax corresponds234

to the maximum point spacing of the data. These edges are then removed. The resultant triangles form235

contiguous regions which do not have any connection with the others and named herein building regions.236

We used Matlab’s DelaunayTri function for the construction of the Delaunay triangulation and edges237

method to identify the unwanted constrained triangles.238

The proposed boundary tracing algorithm further takes the building regions and approximate their239

boundaries. It can be observed from Figure 3d (digital copy) that each side of an inner triangle of240

the connected region is associated with exactly two neighbouring triangles. However, one of the sides241
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of a triangle along the periphery of the region or inscribed hole is associated with only one trian-242

gle. It is computationally inefficient to search such triangles sequentially. Therefore, Matlab’s built-in243

method freeBoundary is used to get the edges of triangles along a region’s periphery and inside the244

holes/concavities. This method returns an unorganised connectivity list of triangle edges where each245

record has start and end vertices. The boundary tracing algorithm pops the top-most edge from the list246

and chooses its start vertex as a beginning point of the object boundary. An edge is iteratively selected247

from the list whose start vertex is the end vertex of the previous edge and adds it into a boundary seg-248

ment. The boundary approximation stops if the process meets an edge whose end vertex is the beginning249

point of the boundary. The proposed boundary tracing algorithm continues extracting boundaries of250

the building regions until the connectivity list has no further edges left.251

Unlike the algorithms in Chen et al. (2014) and Awrangjeb (2016), where outer and inner building252

boundaries are identified and processed separately, the proposed algorithm traces a primitive’s boundary253

irrespective of its alpha-shape and location. The proposed technique does not struggle like (Chen et al.254

2014) and (Weber, Hahmann, and Hagen 2011), where the value of α is carefully chosen in order to avoid255

producing exclusively convex hull. Our boundary tracing technique, on the other hand, relies only upon256

a single parameter, i.e., dmax to remove the unwanted edges. Furthering the robustness, our method257

does not degenerate a convex hull because all of the unwanted long edges are removed upfront before258

the boundary extraction process begins. Another advantage of the proposed method is that it is easy259

to implement and exploits the underlying hardware for parallel execution. The time complexity of the260

boundary tracing algorithm using big O notation is approximated as O(n) i.e., linear. Figure 3d presents261

a snapshot of the proposed boundary tracing technique and also shows the extracted building regions262

and their boundaries.263

3.2. Building rooftop segmentation264

Estimation of a point normal largely depends on appropriate selection of a local neighbourhood size265

and the method to search a point’s neighbours. Commonly, three neighbourhood selection methods266

are widely practised which are k-nearest neighbours (Knn), Delaunay triangulation, and fixed-distance267

neighbours. However, Knn has an advantage over others due to its adaptiveness towards the sparsity268

of an unstructured point cloud that makes it suitable for airborne LiDAR processing. This research,269

therefore, adopts Knn method to determine local neighbourhood for point cloud segmentation and270

saliency feature estimation. Matlab’s KDTreeSearcher and its relevant functions were used to find a271

point’s local neighbours in an optimised fashion.272
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3.2.1. Feature points selection273

PCA discussed in Section 2.1 is used for the Eigen value analysis to estimate normal for each LiDAR274

point. These normals are then used for the identification of sharp features so that points on/around these275

intersecting surfaces can be preserved to avoid degenerating the segmentation process. It is achieved by276

computing weight (curvature) wi of each point pi ∈ P that measures the likelihood of pi belonging to277

a sharp feature. wi is computed using equation 1 as defined by Pauly et al. (Pauly, Keiser, and Gross278

2003).279

wi =
λ1

λ1 + λ2 + λ3
(1)

The use of a global weight threshold to determine feature points will be irrational since the underlying280

point set of each building region can have entirely a different geometry. Therefore, we extended the281

original principle of Zhang et al. (2013) that automatically calculates a single threshold for the entire282

point set. We incorporated an adaptive threshold estimation mechanism that first computes a histogram283

capturing the distribution of the weights for each building region separately. Then, a threshold wt is284

defined as the horizontal ordinate where the plane fitting residual begins to have a slow decrease. We285

used points within 2dmax of each LiDAR point as its k local neighbours for plane fitting. As Zhang et al.286

(2013) defines the distribution of {wi}Ni=1 as fw and smooth it by the following function.287

minf̂w ‖f̂w − fw‖F + ‖Dfw‖1 (2)

where D is the second difference matrix, ‖ · ‖F and ‖ · ‖1 represent l2 norm and l1 norm, respectively.288

A threshold wt value for a building region is chosen after the first peak of the smoothed distribution, as289

indicated by the red dotted line in Figure 4a. So, the LiDAR points of a building region having weights290

below wt are classified as feature points (red) as shown in Figure 4b. Similarly, all the building regions291

are processed concurrently to determine a local region-specific wt for the selection of feature points. The292

results are shown in Figure 5a. The feature points of each building region are further used to estimate293

robust normals using the proposed PCA mollification method (see Section 2.1). The estimated normals294

in Figure 5b show that the point normals near connected vegetation and across sharp edges are quite295

accurate and robust.296
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Figure 4. (a) Adaptive selection of weight threshold wt, and (b) Feature points (red) of a building region. The
red dotted line represents the position of a selected threshold wt.

(a) (b)

Figure 5. Feature point estimation: (a) Ground points (blue), non-ground points (cyan), feature points (red) and
(b) Estimated point normals using proposed PCA mollification. Insets show magnified snapshots of two buildings
and their estimated point normals.

3.2.2. Segmentation297

A region-growing technique commonly uses several parameters to determine the coplanarity of the298

LiDAR points. However, the proposed segmentation method utilises only the critical parameters to299

achieve robustness and efficiency. Therefore, surface curvature and normal orientation (Chen et al.300

2014, Nurunnabi, Belton, and West 2012) of a point are chosen as a proximity criterion, whereas, to301

distinguish superstructures, a point-to-plane tolerance and plane fitting error thresholds (Awrangjeb302

and Fraser 2014a) are used as a coherence criterion. Curvature σ, which measures the rate of change303

of surface normal, is estimated using equation 1 that earlier referred as weight. Generally, real-world304
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datasets have inherent noise and even the points reflected from a smooth surface in a local vicinity have305

some height variations. Therefore, coherence criterion is found inevitable for better convergence of the306

plane surfaces.307

A region growing technique begins with a selection of a seed point which is sensitive to the segmenta-308

tion process. However, the proposed segmentation process defines a robust seed point selection criterion309

where a point is chosen from non-feature point set that has the least curvature value. It is believed310

that a region growing will be more successful for areas where spatial variation is the least. If point311

normals closely approximate the true normals, a usual case is that the angle θ between two normals312

across neighbouring surfaces will be larger than a minimum angle threshold. However, when the normals313

belong to the same surface, θ will be smaller than the threshold. Note that θ between two normals n̂i314

and n̂j can be estimated as:315

θi,j = cos−1|n̂i · n̂j | (3)

Following the principle that a smooth (non-feature) point in a sufficiently small local neighbourhood316

always lies on a planar surface, we, therefore, choose a relatively small neighbourhood k i.e., LiDAR317

points within 2dmax for the coplanarity check and the extraction of planar surfaces. Trees, in a point318

cloud, if assumed to be composed of several randomly oriented surfaces which are intersecting arbitrarily,319

then, they would have a high concentration of feature points as compared to the building roofs. This cue320

can be exploited in two meaningful ways— to reduce the amount of data and to eliminate the vegetation.321

Therefore, for the point cloud segmentation, only those building regions, where the concentration of322

feature points is less than 95%, are processed to extract planar surfaces. Besides, this condition helps323

in early removal of several small bushes and trees. Figure 5a shows that tree regions, which can be324

spotted from the image in Figure 3a, have a high concentration of feature points (red) in contrast to325

the buildings.326

Segmentation process begins with the selection of a seed point and is chosen from the set of non-327

feature points that has the least curvature value. Next, we take k local neighbourhood points Np of328

the seed point. Then, the points having angular difference between the normal of the seed and Np329

within a predefined threshold θt are used for plane fitting using PCA. If the plane fitting error and330

a difference between point’s height and fitted plane’s height are smaller than their respective fitting331

error εt and point-to-plane tolerance ξt thresholds, then these LiDAR points are added into a planar332

region. This region further grows as long as new neighbouring points meet the criteria; otherwise, a new333
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region is instantiated. The proposed segmentation process considers all the unallocated LiDAR points334

including feature and non-feature points to determine a local neighbourhood while expanding a region.335

This procedure of region growing adds most of the anisotropic points into a planar surface. At this336

stage, the extracted planar primitives can be seen in Figure 6a.337

(a) (b) (c)

Red circle - Early 
elimination of non-

building objects

Figure 6. Plane extraction from 3D point cloud using: (a) non-anisotropic points, (b) anisotropic points, and (c)
overlaying extracted planes on the test image for the demonstration.

Often, a building roof can have small facets such as dormers, chimneys and vents. The LiDAR returns338

from these objects might get classified as feature points. Therefore, the feature points that have not yet339

been classified into any planar surface are segmented following the proposed segmentation technique.340

Since tree canopies can better be approximated using a non-planar structure, therefore, points reflected341

from such regions generate a significant number of small planar surfaces. For instance, Figure 6b shows342

that vegetation breaks up into many smaller planar surfaces. These planar surfaces do not render any343

parts of the trees rather sets of points reflected from branches that are nearly coplanar. These planes344

are further shown in Figure 6c using the aerial image, where red-dotted ovals indicate trees which were345

eliminated due to a high concentration of feature points (>95%) even before the segmentation process346

started. Ideally, any two points on a truly flat plane should have the similar heights and normals. But,347

due to inherent noise and surface roughness, there are some random errors in their estimated LiDAR-348

determined heights and normal directions. Therefore, for better convergence of the segmentation process,349

the proposed region growing technique adopts the threshold values for θt = 10o from Chen et al. (2014)350

and εt = 0.1 m and ξt = 0.15 m from Awrangjeb and Fraser (2014a).351



August 10, 2017 8:32 main

15

3.3. Removing non-building planes and boundary approximation352

We formulated the problem of removing non-building planes in an unsupervised non-parametric fashion353

by identifying the underlying patterns of their LiDAR data points. The concentration of feature points354

rc has been observed as a good indicator to identify non-planar regions and is proposed to be a useful355

cue to distinguish vegetation from roof planes. The sizes of tree segments are typically minuscule which356

can be a useful feature to differentiate between vegetation and roofs (Elberink and Vosselman 2012) and357

thereof, used herein. Also, a low number of the segmented to unsegmented points ratio ru in a plane358

segment, which typically is high for vegetation but low for roof surfaces, is employed. This attribute359

serves as a reliable cue for the classification of vegetation segments. To avoid removal of small roof360

planes like chimneys and vents, the plane refinement procedure adopts a criterion from Awrangjeb et361

al. (Awrangjeb, Lu, and Fraser 2014). This test marks a misclassified plane as a roof plane if it resides362

within the boundary of an accepted plane.363

Typically, urban buildings have a complex arrangement of dormers which do not extend their footprints364

rather provide a great architectural detail. These dormers are generally built with several intersecting365

surfaces which are small in size and in proximity, for instance, hexagonal gazebo dormer. As a result,366

sparsely distributed LiDAR points reflecting from these planar surfaces are often classified as feature367

points that alone are insufficient for the discrimination of a roof plane in contrast to a tree plane. So,368

another test is performed to detect if any potential roof plane exists in segmented anisotropic points.369

This test ensures a plane that has not yet been classified exists in the local neighbourhood of a correct370

plane and has a straight line segment of at least 2 m in length along its boundary.371

The proposed boundary tracing technique is capable of deriving the boundary of a segment in R3
372

because of each transformed point in R2 has the same reference index as of the input LiDAR data.373

Therefore, 3D boundaries of the segmented point cloud can be determined as shown in Figure 7a. In374

this procedure, a plane segmented from a tree or any non-building region is usually small in size and has375

both a high concentration of feature points (rc) and low point usage (ru) while compared to a roof plane.376

Therefore, such a plane, known as a false plane, is removed regardless of the other parameters. Also, a377

plane that exists in a local neighbourhood of a false plane is considered as a false alarm, and thus, is378

removed. However, the presence of long straight lines along the boundary of a plane and its occurrence379

near an accepted plane tests are utilised to detect roof planes connected to vegetation and identify380

small roof facets like dormers and sheds. These line segments are extracted using Canny edge detector381

from a plane’s binary mask. Figure 7b shows a snapshot of false plane removal using image where roof382

planes (plotted with blue and black-dotted on cyan colour) and non-building segments (represented with383
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red, yellow, cyan and magenta colours) are sketched. The planar surfaces plotted with black-dotted on384

cyan colour boundaries correspond to the roof planes which are identified using the neighbourhood385

criterion and line segment along the boundary test. Figures 7c and 7d show all the roof planes with386

their boundaries obtained after the elimination of non-building structures in R3 and R2, respectively.387

(a) (c) (e)

(b) (d) (f)

Figure 7. Demonstration of removing non-building planes and building detection using LiDAR and imagery
respectively - (a - b) All extracted plane segments and their boundaries, (c-d) Detected building roof planes, and
(e-f) Detected buildings.

3.4. Building outline generation388

All the buildings in the test area can now be extracted as we have detected all the roof planes. For389

this purpose, we process all the building regions sequentially. We first collect LiDAR points of all the390

detected roof planes in a building region. Then, the proposed boundary tracing technique is used to391

determine any connected region(s)/building(s) and approximate their outlines following the procedure392

in Section 3.1. Figures 7e and 7f show the extracted buildings with their corresponding boundaries in393

R3 and R2, respectively.394
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4. Performance study395

To validate the performance of the proposed technique, we provide a comprehensive evaluation using396

four benchmark datasets, which have different LiDAR resolutions, topography, and surrounding condi-397

tions. The International Society for Photogrammetry and Remote Sensing (ISPRS) dataset, Vaihingen,398

Germany has three areas, whereas the other three datasets have one area each captured over different399

geographic locations in Australia.400

4.1. Datasets401

Figure 8 shows the datasets used herein for the evaluation where reference boundaries of the roof planes402

and buildings are sketched using blue and cyan colours respectively. The first dataset is Vaihingen (VH),403

from the ISPRS benchmark and has three test sites as shown in Figures 8a–c. Area 1 is situated in the404

centre of the city and characterised by dense construction consisting of historic buildings having complex405

shapes. Area 2 is characterised by a few high-rise residential buildings surrounded by trees. Finally, Area406

3 is purely residential, with detached houses and many surrounding trees. Each area has a point density407

of 3.5, 3.9 and 3.5 points/m2. The number of buildings (larger than 2.5 m2) in these areas is 37, 14, and408

56, and the corresponding number of planes is 288, 69 and 235, respectively.409

The other three Australian datasets, AV (introduced earlier), Hervey Bay (HB), and Hobart (HT)410

have point densities of 35, 12, and 1.6 points/m2, respectively. Topographically, the AV and HB areas411

are flat while HT is hilly containing mostly residential buildings with different level of vegetation. The412

AV and HT datasets have dense vegetation, where the surrounding trees severely occlude many of the413

buildings. These test areas, shown in Figures 8d–f, cover 66 × 52 m2, 108 × 104 m2, and 303 × 302 m2
414

respectively. The HB dataset contains 24 buildings (three are between 4 to 5 m2 and six are between415

5 to 10 m2), consisting of 166 roof planes. The HT dataset has 69 buildings (thirteen are less than 10416

m2, including four within 1 to 5 m2) containing 257 planes (24 less than 5 m2). The methods in (Gilani,417

Awrangjeb, and Lu 2016) and (Awrangjeb and Fraser 2014a) are among the other studies which used418

the employed benchmark datasets for performance analysis.419

4.2. Performance evaluation systems420

This section discusses the various performance results obtained through qualitative and quantitative421

evaluation procedures. Performance evaluation results of building and roof plane detection are pre-422

sented and analysed in separate sections. Due to a non-uniform evaluation system (Rutzinger, Rotten-423



August 10, 2017 8:32 main

18

(a) (b) (c)

(d) (e) (f)

Figure 8. ISPRS Vaihingen dataset (a) Area 1, (b) Area 2, and (c) Area 3; Australian dataset, (d) Aitkenvale
(AV), (e) Hervey Bay (HB), and (f) Hobart (HT).

steiner, and Pfeifer 2009), the objective evaluation in this study follows both the threshold-based system424

(Rutzinger, Rottensteiner, and Pfeifer 2009) adopted by the ISPRS and an automatic and threshold-425

free evaluation system (Awrangjeb and Fraser 2014b) for the German and the Australian datasets,426

respectively. Both the evaluation systems perform three categories of evaluations: object-based, pixel-427

based, and geometric, where each category uses several metrics. For example, the object-based metrics428

(completeness, correctness, quality, under- and over-segmentation errors, and reference cross-lap rates)429

evaluate the performance by counting the number of buildings, while the pixel-based metrics (complete-430

ness, correctness, quality, area-omission, and area-commission errors) measure the detection accuracy431

by counting the number of pixels. In addition, the geometric metric (root mean square error i.e., RMSE)432

indicates the accuracy of the extracted boundaries to the reference polygons. For all the datasets, the433

minimum areas for large and small buildings have been set to 50 m2 and 10 m2, respectively. The434

methods in (Gilani, Awrangjeb, and Lu 2016) and (Awrangjeb and Fraser 2014a) are among the other435

studies which adopted the employed evaluation systems for performance assessment.436
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4.3. Building detection437

Tables 1 and 2 show the per-object and per-area level quantified evaluation for the ISPRS and the Aus-438

tralian datasets. Figures 9 and 10 show the respective detection results and few detection examples from439

the benchmark test areas. For the ISPRS dataset, the detailed quantitative and qualitative measures440

for building detection can be found on the ISPRS portal (ISPRS 2016) under acronym Mon5.441

Test-case Per-object Segmentation Per-object ≥ 50 m2 Per-area RMSE

Cm Cr Ql M N B Cm,50 Cr,50 Ql,50 Cm Cr Ql

Area 1 91.9 97.1 89.5 0 8 0 100.0 100.0 100.0 89.0 90.2 81.1 0.93
Area 2 92.9 100.0 92.9 0 2 0 100.0 100.0 100.0 91.1 92.8 85.1 0.82
Area 3 83.9 91.7 78.0 0 8 0 97.4 100.0 97.4 89.7 87.9 79.9 0.75
Average 89.6 96.3 86.8 0 6 0 99.1 100.0 99.1 89.9 90.3 82.0 0.83

Table 1. Building detection evaluation results using ISPRS reference classification of Vaihingen, Germany. (Cm = complete-
ness, Cr = correctness, and Ql = quality in percentage; M = over-segmentation and N = under-segmentation, B = both over-
and under-segmentation in number of buildings; RMSE = planimetric accuracy in metres).

Test-case Per-object Segmentation Per-object ≥ 50 and 10 m2 Per-area RMSE

Cm Cr Ql Crd Crr Cm,50 Cr,50 Cm,10 Cr,10 Cm Cr Ql

AV 100.0 100.0 100.0 0 0 100.0 100.0 100.0 100.0 96.2 96.5 92.9 0.42
HB 100.0 100.0 100.0 0 0 100.0 100.0 100.0 100.0 95.2 92.2 88.1 0.54
HT 86.4 98.1 85.3 3 5 100.0 100.0 96.2 100.0 85.6 93.6 80.9 1.33

Average 95.5 99.4 95.1 1 1.6 100.0 100.0 98.7 100.0 92.3 94.1 87.3 0.8

Table 2. Building detection evaluation results using threshold-free reference classification of Australian datasets. (Cm =
completeness, Cr = correctness, and Ql = quality in percentage; Crd = detection cross-lap (under-segmentation) and Crr =
reference cross-lap (over-segmentation) rates; RMSE = planimetric accuracy in metres).

First, we will proceed with a qualitative evaluation. The buildings in Figures 9d-e and 10g,i show classic442

examples of small huts, which were accurately segmented and successfully detected (yellow polygons).443

At the same time, Figures 9f and 10d-f,i show few complex scenarios, where non-occluded building444

parts were accurately separated from the nearby vegetation, representing robustness of the proposed445

technique towards the noise and non-homogeneous surface points. The buildings in Figure 9g have a446

combination of several flat and hipped rooftops, which collectively form inner boundaries. The proposed447

technique traced both the inner and outer building boundaries even though their boundary points have448

no topological relationship. In addition, benefits of the robust normal estimator are found twofold;449

extract the planar surfaces and eliminate curved surfaces, e.g., trees and domes, as shown in Figure 9h450

where roof-mounted umbrella was accurately separated from the neighbouring planar surface.451

A visual inspection tells that our proposed method obtains good results on all the datasets. However,452

there are still some point cloud segmentation errors. The proposed algorithm missed few building at-453

tachments (green rectangle) and small buildings (cyan rectangle) as shown in Figure 9. This is because454

VH has sloped terrain and building regions on stilts have LiDAR points below 1 m (hrf ) which were455

ousted during the separation of ground and non-ground points. Whereas, small buildings were missed456



August 10, 2017 8:32 main

20

(a) (b) (c)

(d)

(e)

(f)

(h)

(d) (e) (f)

(h)

(i)

(g)

(g)

(i) (j) (k)

(j)

(k)

Under segmentation

Inner boundary

Occluded building

Under detection

Figure 9. Building detection on VH dataset: (a) Area 1, (b) Area 2, and (c) Area 3. Snapshots (d)-(h) show
examples of small, occluded and under detection cases.

from HT dataset as shown in Figure 10c and magnified Figures 10h-i. It was due to the low point density457

(≈ 1 point/m2) and severe occlusion offered by the neighbouring vegetation.458

To quantitatively evaluate the detection results, these detected buildings are further analysed. Con-459

sidering all the buildings in VH, Table 1 shows that the overall object-level completeness for Area 1 and460

Area 2 are 91.9% and 92.9% with the corresponding correctness of 97.1% and 100.0%. For the buildings461

larger than 50 m2, the proposed technique achieved 100% object-based completeness, correctness, and462

quality in Areas 1 and 2. Howbeit, Area 3 had a lower object-level accuracy because of missing point463

cloud data of a partially detected large building as shown in Figure 9i. Some under-segmentation cases464

occurred when nearby buildings were found close to one another. As shown in Figure 9j, a carport465

between two buildings and two carports in Figure 9k were merged with their neighbouring buildings.466
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Figure 10. Building detection on the Australian datasets: (a) AV, (b) HB, and (c) HT. Snapshots (d)-(i) show
small, occluded and under detection cases.

This unexpected merging was due to the low density of the input LiDAR data that can be avoided467

by analysing the height spikes among the neighbouring planes at the time of delineating the building468

periphery. As far as per-area accuracy is concerned, statistics in Table 1 show both the average com-469

pleteness and correctness were around 90%, indicating accurate detection of correct pixel points. Results470

in Table 1 further indicate that the proposed technique is absolutely free from over- and many-to-many471

segmentation errors.472

A similar detection trend was observed in the AV and HB datasets, as presented in Table 2. The statis-473

tics represent a high detection rate particularly the overall accuracy, quantified in terms of completeness,474

correctness, and quality, was 100.0%. Additionally, there were no under- and over-segmentation cases475

because the buildings were well separated from each other and both AV and HB datasets had high point476

densities in contrast to the VH dataset. Results in Table 2 shows that the proposed method extracted477

all the small buildings (see Figures 10d,g), which were as small as 10 m2 apart from the buildings larger478

than 50 m2. However, while considering all the buildings in HT dataset, object-based completeness was479

comparatively lower than the other two datasets. The reason was the missing buildings (marked cyan)480

caused by severe occlusion and transparent roof material (Figures 10c and h). LiDAR pulses gener-481

ally pass through transparent roof materials and return from the ground. Consequently, such building482
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points were removed as ground measurements and were not used in point cloud segmentation. The483

results further show that the buildings over 50 m2 were extracted with 100% object-based completeness484

and correctness while nearly equal completeness (96.2%) and correctness of 100.0% were achieved on485

the buildings over 10 m2. However, three very close buildings in HT as shown in Figure 10i were un-486

expectedly merged since the buildings were situated in a proximity having a distance less than 2dmax.487

Such complex cases increased the detection cross-lap rate (under-segmentation) in HT. Moreover, a488

missing transparent building caused reference cross-lap (over-segmentation) as can be seen in Figure489

10c. In terms of per-pixel accuracy, the performance of HT was lower (85.6%) than AV (96.2%) and HB490

(95.2%) but had almost similar correctness rate.491

The statistics in Tables 1 and 2 tell us that the achieved planimetric accuracies were close to one492

to two times the horizontal point spacing of the point cloud data. Overall, these experiments suggest493

that proposed method obtains a high detection performance and extracts buildings of variable sizes494

and occluded buildings from flat to hilly terrain under different surrounding complexities. Moreover,495

the statistics in both the Tables also show that the per- object and pixel accuracies are promoted with496

the increase of the point cloud density. A constantly higher (> 97%) correctness further tells that our497

technique is robust to scene complexity. In fact, the qualitative and quantitative results dictate that the498

proposed detection method can eliminate vegetation and extract buildings as well as their non-occluded499

parts from the complex scenes at a high object- and pixel-based accuracy.500

4.4. Building roof detection501

Tables 3 and 4 show the object- and pixel-based evaluation results for roof plane extraction for the502

ISPRS and Australian datasets, respectively. Figures 11 and 12 show the roof plane extraction results503

for the ISPRS and Australian dataset, respectively. These figures also present some samples for plane504

extraction results from the corresponding datasets.505

Test-case Per-object Segmentation Per-object ≥ 10 m2 Per-area RMSE

Cm Cr Ql M N B Cm,10 Cr,10 Ql,10 Cm Cr Ql

Area 1 74.3 98.7 73.6 15 32 10 89.8 100.0 89.8 80.7 98.7 79.8 0.76
Area 2 73.9 94.8 71.0 27 1 2 89.6 100.0 89.6 81.4 99.5 81.1 1.06
Area 3 80.9 99.3 80.4 7 36 4 91.1 99.1 90.4 83.8 97.6 82.1 0.79
Average 76.4 97.6 75.0 16.3 23 5.3 90.2 99.7 89.9 82.0 98.6 81.0 0.87

Table 3. Roof planes evaluation results using ISPRS reference classification of Vaihingen, Germany. (Cm = completeness, Cr

= correctness, and Ql = quality in percentage; M = over-segmentation, N = under-segmentation, and B = both over- and
under-segmentation in number of buildings; RMSE = planimetric accuracy in metres).

In the VH dataset, the proposed roof extraction algorithm performed better on Area 3, which is purely506

residential and has detached houses. Table 3 shows that the planes larger than 10 m2 were detected507
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Test-case Per-object Segmentation Per-object ≥ 10 m2 Per-area RMSE

Cm Cr Ql Crd Crr Cm,10 Cr,10 Ql,10 Cm Cr Ql

AV 96.0 100.0 96.0 4.1 0 100.0 100.0 100.0 89.1 89.2 81.0 0.3
HB 94.6 96.2 92.1 7.8 4.3 100.0 100.0 100.0 89.7 92.5 83.6 0.56
HT 82.49 92.17 77.10 11.20 3.0 93.39 92.17 86.53 72.22 93.86 68.97 1.21

Average 91.0 96.1 88.4 11.5 2.4 97.8 97.4 95.5 83.7 91.9 77.9 0.69

Table 4. Roof planes evaluation results using threshold-free reference classification of Australian datasets. (Cm = completeness,
Cr = correctness, and Ql = quality in percentage; Crd = detection cross-lap (under-segmentation) and Crr = reference cross-lap
(over-segmentation) rates; RMSE = planimetric accuracy in metres).

at per-object completeness and correctness of 90.2% and 99.7%. Few examples are shown in Figures508

11d-f (yellow ovals). However, there were many under-segmentation cases, where small roof planes were509

not extracted separately and they merged with the neighbouring large planes as shown in Figure 11g510

(purple oval). In addition, there were few over-segmentation cases when a roof plane was detected into511

two or more split facets as shown in Figures 11e,h,i (aqua ovals). Some roof structures were also missed512

because either they were situated below the height threshold or smaller than 1 m2 as sketched in Figures513

11g-i (red ovals). Consequently, per-object completeness was a bit low for all the areas. However, the514

proposed technique achieved per-area completeness and correctness of 82.0% and 98.6%, respectively.515
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Figure 11. Roof plane extraction on the ISPRS dataset (a) Area 1 (b) Area 2, and (c) Area 3. Areas marked by
letters in (a), (b) and (c) are magnified in (d-i).

With increasing point density in Australian datasets, improved roof detection results were obtained in516

the AV and HB as statistics show in Table 4. The proposed technique extracted the planes larger than517
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Figure 12. Roof plane extraction on the Australian datasets (a) AV (b) HB, and (c) HT. Areas marked by letters
in (a), (b) and (c) are magnified in (d-j).

10 m2 with 100% per-object completeness and correctness in AV and HB datasets and correspondingly518

achieved 96.0% and 94.6% per-object completeness when all the planes were considered (see yellow ovals519

in Figures 12d-e,g). Figures 12g-j show that many small planes (< 10 m2) were missed (red ovals) and520

merged into neighbouring planes and thus, increased the under-segmentation and over-segmentation521

rates. These segmentation errors were more in the HT dataset since it had a low point density (≈ 1522

point/m2) and severe occlusion. The statistics further show that the planimetric accuracy in roof plane523

extraction was within one to two times of the horizontal point spacing for all the datasets. Despite the524

registration error between detected roofs (from LiDAR data) and reference roofs (from orthoimage), the525

proposed method achieved nearly 90% per-area completeness in AV and HB datasets and around 72%526

completeness in HT dataset. A constantly higher correctness of above 90% demonstrates the robustness527

of our method in roof plane extraction under different complex scenes. It is also observed that the528

detection performance of the proposed method degrades gracefully with the decrease in point density529

and does not severely impact the planimetry accuracy of the extracted polygons.530

4.5. Comparative analysis and limitation531

The proposed automatic technique is data-driven and works with airborne LiDAR data alone. Therefore,532

for comparative study, the methods which are (1) automatic and data-driven; (2) use only LiDAR data;533
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and (3) unsupervised, are chosen from ISPRS portal (ISPRS 2016) and a research survey (Rottensteiner534

et al. 2014). The evaluation results of the HKP, VSK, and TUD on the VH dataset are available on535

ISPRS portal. However, Yang (Yang, Xu, and Dong 2013) and MA (Awrangjeb and Fraser 2014a) results536

are taken from their corresponding papers.537

Methods Cm Cr Cm,50 Cr,50 Cmp Crp RMSE

Area 1: 3.5 laser points/m2

HKP 83.8 100.0 100.0 100.0 92.0 97.4 0.9
Yang 81.1 96.8 100.0 96.6 87.9 91.2 0.9
MA 83.8 96.9 100.0 100.0 92.7 88.7 1.11
VSK 78.4 100.0 96.4 100.0 85.7 98.1 0.8

Proposed 91.9 97.1 100.0 100.0 89.0 90.2 0.9

Area 2: 3.9 laser points/m2

HKP 78.6 91.7 100.0 100.0 93.0 98.4 0.6
Yang 78.6 100.0 100.0 100.0 88.8 94.0 0.8
MA 85.7 84.6 100.0 100.0 91.5 91 0.83
VSK 85.7 100.0 100.0 100.0 85.4 98.4 0.9

Proposed 92.9 100.0 100.0 100.0 91.1 92.8 0.8

Area 3: 3.5 laser points/m2

HKP 76.8 97.8 97.4 100.0 89.2 97.7 0.7
Yang 73.2 97.6 97.6 92.1 85.2 89.5 0.8
MA 78.6 97.8 97.4 100.0 93.9 86.3 0.89
VSK 75.0 100.0 97.4 100.0 86.3 98.7 1.0

Proposed 83.9 91.7 97.4 100.0 89.7 87.9 0.7

Table 5. Comparing building detection results for the Vaihingen (VH) data set. Object-based Cm = completeness, Cr =
correctness (Cm,50 and Cr,50 are for buildings over 50 m2) and pixel-based Cmp = completeness and Crp = correctness are
in percentage. RMSE = planimetric accuracy in metres.

Methods Cm Cr Cm,10 Cr,10 M/N/B RMSE RMSZ

Area 1: 3.5 laser points/m2

MA 76.4 83.3 84.4 84.9 6/42/7 1.05 0.41

VSK 72.2 96.7 80.3 95.9 7/42/6 0.9 0.3

TUD 67.4 96.2 68.0 97.8 1/33/1 0.8 0.2

Proposed 74.3 98.7 89.8 100.0 15/32/10 0.8 0.3

Area 2: 3.9 laser points/m2

MA 73.9 91.9 93.8 92.6 7/3/1 0.74 0.37

VSK 73.9 100.0 91.7 100.0 3/5/1 0.7 0.3

TUD 68.1 98.1 85.4 100.0 5/3/0 0.6 0.3

Proposed 73.9 94.8 89.6 100.0 27/1/2 1.06 1.40

Area 3: 3.5 laser points/m2

MA 82.1 93.9 92.7 96.7 5/45/0 0.89 0.27

VSK 76.6 99.1 86.3 100.0 3/50/0 0.8 0.1

TUD 74.5 93.0 83.1 98.0 0/42/1 0.7 0.1

Proposed 80.9 99.3 91.1 99.1 7/36/4 0.8 0.2

Table 6. Comparing plane results for the Vaihingen (VH) data set. Object-based Cm = completeness, Cr = correctness
(Cm,10 and Cr,10 are for buildings over 10 m2). M = over-segmentation, N = under-segmentation, and B = both over- and
under-segmentation in number of buildings; RMSE = planimetric accuracy; RMSZ = height accuracy; in metres.

In all three VH benchmark areas, Table 5 shows that the proposed building detection technique offered538

significantly better per-object level completeness and similar correctness than the alternative methods.539

For the buildings larger than 50 m2, our technique achieved 100% accuracy in terms of completeness540

and correctness, whereas, VSK was unsuccessful in detecting a large building in Area 1 as shown by541

low Cm,50 value in Table 5. In terms of per-area accuracy, HKP and MA, however, obtained slightly542
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more per-area completeness in Areas 1 and 3 since our method missed few carports below the height543

threshold. In terms of planimetric accuracy of the extracted polygons, the proposed technique obtained544

better or slightly low performance than the counterparts in all three areas.545

The proposed roof plane extraction method, in all areas of the VH dataset, offered better per-object546

completeness and correctness than VSK and TUD as Table 6 shows. However, MA remained slightly547

better than the proposed technique when all the planes are considered in Areas 1 and 2. Concerning the548

planes larger than 10 m2, Table 6 shows that our technique achieved better correctness but performs549

slightly poorer than MA on Areas 2 and 3 in terms of completeness. Nevertheless, it performed better550

than VSK and TUD on Areas 1 and 3 when performance is quantified as completeness (Cm,10). The551

planimetric accuracy (RMSE) and height error (RMSZ) of the proposed technique are not much different552

from the counterparts, but RMSZ difference in Area 2 is larger. It is due to the reason that we do not553

clean the LiDAR data and treat each point as information.554

Table 6 shows that the proposed plane extraction technique encountered more segmentation errors555

than the other alternative methods, which is explained using Figures 13a,b taken from Area 1 of the VH556

dataset. The left roof of building in Figure 13a has two surfaces: roof’s base plane and superpose plane,557

i.e., a dormer. LiDAR points of the base primitive had a hole due to the points of the superimposed558

primitive. Therefore, inner and outer boundaries were approximated using LiDAR points of the base559

surface as sketched with red colour in Figure 13a while cyan colour boundary corresponds to the outline560

of the overhung dormer. The evaluation system at the ISPRS considers that the proposed technique561

detected the inner primitive twice and such cases badly affected the overall performance of the proposed562

plane extraction technique. Regarding over-segmentation, roof plane coloured red in Figure 13b was563

although identified accurately but two boundary segments were determined because the corresponding564

LiDAR points were separated more than twice of the point density. In addition, irregular surfaces like a565

dome and curvy structures were eliminated as the employed point cloud segmentation method prefers566

objects with planar surfaces. Therefore, a missing roof-mounted umbrella can be seen in Figure 13c.567

5. Conclusion and outlook568

Point cloud segmentation is meaningful for various applications, but this task is challenging due to569

inherent characteristics of the input data. This paper particularly focuses on the automatic detection570

of buildings and their roof planes, which define the general three steps: feature preservation, surface571

growing, and false plane elimination. The proposed technique is data-driven and introduces a feature572

preservation based segmentation algorithm that effectively uses robust saliency features for roof extrac-573
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(a) (b) (c)

Figure 13. Roof plane samples: (a) Multi-plane extraction (b) Over-segmentation, and (c) Missing roof mounted
umbrella.

tion, which is less sensitive to noise and avoids over- and under-segmentation. We have also proposed574

a boundary extraction technique that seamlessly extracts a primitive’s boundary and approximate the575

outline of any inner hole using LiDAR points. It has been demonstrated experimentally that the pro-576

posed technique achieves a high building detection rate and good roof plane extraction performance on577

several datasets of variable point densities, terrain and surrounding complexity. It is equally capable of578

detecting small buildings and extracting small roof planes. Moreover, in most cases, our method can579

separate buildings and non-occluded parts from the connected vegetation.580

The proposed technique extracts roof planes and buildings directly from LiDAR data and therefore,581

the planimetric accuracy of the detected polygons is limited by its point density. At present, it does582

not work with any irregular building primitives, such as domes and curved roof surfaces. Also, the583

extracted polygons approximated herein have ragged boundaries. The research to smooth the boundaries584

of building primitives and reconstruct building roof models using image data is under investigation.585

Furthermore, it would be interesting to incorporate geometric clues in order to detect irregular surfaces.586

Future work also aims to use LiDAR intensity and image gradient to extract the buildings constructed587

with transparent materials.588
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