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a b s t r a c t 

Bacteriophage proteins are viruses that can significantly impact on the functioning of bacteria and can 

be used in phage based therapy. The functioning of Bacteriophage in the host bacteria depends on its 

location in those host cells. It is very important to know the subcellular location of the phage proteins 

in a host cell in order to understand their working mechanism. In this paper, we propose iPHLoc-ES, a 

prediction method for subcellular localization of bacteriophage proteins. We aim to solve two problems: 

discriminating between host located and non-host located phage proteins and discriminating between the 

locations of host located protein in a host cell (membrane or cytoplasm). To do this, we extract sets of 

evolutionary and structural features of phage protein and employ Support Vector Machine (SVM) as our 

classifier. We also use recursive feature elimination (RFE) to reduce the number of features for effective 

prediction. On standard dataset using standard evaluation criteria, our method significantly outperforms 

the state-of-the-art predictor. iPHLoc-ES is readily available to use as a standalone tool from: https:// 

github.com/swakkhar/iPHLoc-ES/ and as a web application from: http://brl.uiu.ac.bd/iPHLoc-ES/ . 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 1 

The term ‘bacteriophage’ means ‘bacteria eaters’ in Latin. Bac- 2 

teriophage or informally called phage proteins are viruses that 3 

can kill the bacteria by infection and replication. History of phage 4 

goes back 100 years back in 1910s when phages were used to 5 

cure dysentery ( Keen, 2012; Lederberg, 1996 ). With the emer- 6 

gence of antibiotics, phage therapy somehow lost its popularity 7 

( Keen, 2012 ). However, in recent years due to continuous abuse 8 

of anti-bacterial drug by inappropriate prescription practices and 9 

poor drug access control ( Liljeqvist et al., 2012 ) and evolving ca- 10 

pability of the microbes, the commercial viability of new antibi- 11 

otics is in decline ( Hughes, 2011 ). The overuse of antibiotics have 12 

also been detrimental to the communities of beneficial bacteria 13 

( Buffie et al., 2012 ). In contrast, the phages are very precise in 14 

nature and the scientists are again looking back to these bacte- 15 

riophages to treat the intractable bacterial infections ( Deresinski, 16 

2009; Sorokulova et al., 2014 ). 17 
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An injected bacteriophage transcribed by host cell polymerase 18 

typically has two life cycles: lytic and lysogenic. In lysogenic or 19 

temperate phase, the phage continues replication along with the 20 

host cell. However, lysis instigated typically by enzymes breaks 21 

open the host cell membrane and destroys it ( Sass and Bier- 22 

baum, 2007 ). Phage proteins are either extra-cellular or not lo- 23 

cated in host cells or located in host cells. Extra cellular phages 24 

often take help of receptor for adsorption whose location are piv- 25 

otal among other factors ( Rakhuba et al., 2010 ). Subcellular local- 26 

ization of phage proteins are mostly distributed in host membrane 27 

or in host cytoplasm. Knowledge of the location of bacteriophage 28 

proteins are fundamental to the understanding of the mechanism 29 

of the virion and development of anti-bacterial therapy. Electron 30 

microscopy is generally used to find the locations of phage pro- 31 

teins in host cell ( Altman et al., 1985; Casjens and Hendrix, 1988 ). 32 

However, the experimental methods are still time consuming and 33 

expensive. 34 

Many computational methods have been developed to study 35 

and analyze phage proteins ( Cheng et al., 2017a; 2017c; Chou and 36 

Shen, 2006; Ding et al., 2014; 2016a; 2016b; Khan et al., 2017; Se- 37 

guritan et al., 2012; Shen and Chou, 20 07a; 20 07b; 20 09; 2010a; 38 

2010b; Wu et al., 2012; Xiao et al., 2011a; 2011b; Zhou et al., 39 

2011 ). PHAST was introduced in Zhou et al. (2011) to identify and 40 
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annotate prophage sequences within bacterial genomes. Among 41 

other phage finding tools are PHASTER ( Arndt et al., 2016 ), 42 

Phage_finder ( Fouts, 2006 ). Another successful phage prediction 43 

tool was PhiSpy ( Akhter et al., 2012 ) that used similarity and com- 44 

position based strategies. 45 

Several classification algorithms are used to predict phage or 46 

phage locations including Artificial Neural Network (ANN) ( Galiez 47 

et al., 2015; Seguritan et al., 2012 ), Support Vector Machine (SVM) 48 

( Ding et al., 2016b ), Random Forest (RF) ( McNair et al., 2012 ) and 49 

Naive Bayesian Classifier (NBC) ( Feng et al., 2013 ). Subcellular lo- 50 

calization of proteins ( Emanuelsson et al., 20 0 0 ) and bacterio- 51 

phages ( Chou and Shen, 2007; Ding et al., 2014 ) are of interest 52 

for a long time in the research field. In a very recent work, a pre- 53 

diction methodology was proposed to identify phage locations in 54 

protein in Ding et al. (2016a ) using feature selection method. They 55 

have used Support Vector Machine (SVM) classifier to solve two 56 

subcellular localization problems on a verified benchmark dataset. 57 

In this paper we tackle two types of localization problems. The 58 

first problem we denote as PH vs non-PH discrimination problem, 59 

where the aim is to classify whether a given phage protein is a 60 

host located phage (PH) or a extra-cellular phage (non-PH). The 61 

second problem is denoted by PHM vs PHC classification where 62 

the aim is to classify between two types of host located phages, 63 

whether they are located in cell membrane (PHM) or in cell cy- 64 

toplasm (PHC). We propose iPHLoc-ES for prediction of subcellular 65 

locations of phage proteins. iPHLoc-ES is also able to discriminate 66 

between host located phages and extra-cellular phages. Our pre- 67 

dictor is based on extracting a set of evolutionary and structural 68 

features and using a Support Vector Machine (SVM) classifier along 69 

with recursive feature elimination (RFE) as feature selection tech- 70 

nique. On the standard benchmark dataset of phage proteins our 71 

method significantly outperforms the state-of-the-art predictor. We 72 

have also made iPHLoc-ES available as a stand-alone tool that is 73 

freely available to use ( https://github.com/swakkhar/iPHLoc-ES/ ). 74 

We have also made it available as a web application from: http: 75 

//brl.uiu.ac.bd/iPHLoc-ES/ . 76 

In this paper, we follow the guidelines in compliance with 77 

Chou’s 5-step rule ( Chou, 2011 ) to establish a useful statistical 78 

predictor for a biological system. The rest of the paper is orga- 79 

nized accordingly: (a) description of the benchmark dataset and 80 

construction of train and test sets for the predictor; (b) mathe- 81 

matical formulation of the biological sequence samples that can 82 

reflect their intrinsic correlation with the target to be predicted; 83 

(c) a powerful model for feature selection and classification algo- 84 

rithm; (d) proper experimentation with cross-validation tests; (e) a 85 

user-friendly web-server for the predictor that is accessible to the 86 

public. 87 

2. Materials and methods 88 

In this section, we describe the materials and methods required 89 

to develop iPHLoc-ES. We call our system i dentification of bacte- 90 

rio PH age protein Loc ations using E volutionary and S tructural Fea- 91 

tures (iPHLoc-ES). A system flow-chart of our prediction model is 92 

given in Fig. 1 . 93 

Phage protein sequences from the benchmark dataset are first 94 

fed to PSI-BLAST ( Altschul et al., 1997 ) and SPIDER2 ( Heffernan 95 

et al., 2015; Yang et al., 2017 ). PSI-BLAST produces a position spe- 96 

cific scoring matrix (PSSM) file and SPIDER2 predicts structural in- 97 

formation and generates a SPD file that is used by the feature gen- 98 

eration module to generate a set of features. Features are gener- 99 

ated belonging to three different groups: composition based evolu- 100 

tionary features, PSSM based evolutionary features and SPD based 101 

structural features. After the feature generation a feature selection 102 

method selects only a small subset of features to train the dataset. 103 

With the help of this selected small set of features the original 104 

Fig. 1. System flowchart of iPHLoc-ES. 

Table 1 

Summary of bacteriophage protein dataset for pH vs non- 

PH prediction. 

Phage Type Number of Samples 

Host-Located Proteins (PH) 144 

Extra-Cellular Proteins (non-PH) 134 

dataset is transformed and trained using a classification model. 105 

We used Support Vector Machine (SVM) ( Cortes and Vapnik, 1995 ) 106 

in this paper due to superiority over other methods ( Ding et al., 107 

2016b ). The trained model is saved for prediction phase. Whenever 108 

a new sequence is given, it goes through the same process and 109 

given the instance with selected features, the trained model pre- 110 

dicts its label. For both of the problems (PH vs non-PH and PHM 111 

vs PHC), we follow the same procedure. 112 

2.1. Benchmark dataset 113 

The description of the datasets used in this paper for pH 114 

vs non-PH problem is given in Table 1 . There are total 278 in- 115 

stances out of which 144 are positive instances or host-located 116 

proteins and 134 are extra-cellular proteins or negative samples. 117 

This dataset is similar to the one used in Ding et al. (2016a ). 118 

All the protein sequences are collected from UniProt Database 119 

( Consortium, 2014 ). All these subcellular locations are experimen- 120 

tally validated. Subphages that are part of other phage proteins or 121 

the phages with non-standard amino-acids were discarded to gen- 122 

erate the dataset. This dataset excludes the redundant sequences 123 

with similarity threshold set to 30%. 124 

From the host located protein dataset, a second dataset was de- 125 

rived for PHC vs PHM problem. The description is given in Table 2 . 126 

In total, 68 phages are location in cell membrane and 76 phages 127 

are located in cell cytoplasm. 128 
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Table 2 

Summary of host located bacteriophage protein 

dataset for PHC vs PHM prediction. 

Location Type Number of Samples 

Cell Membrane (PHM) 68 

Cell Cytoplasm (PHC) 76 

2.2. Feature generation 129 

Various types of feature extraction techniques are used in the 130 

literature for subcellular localization of protein and particularly 131 

phage proteins. Among them are PSSM-based features ( Sharma 132 

et al., 2015; Wang et al., 2017 ), g-gap dipeptide composition 133 

( Ding et al., 2016a ), gene ontology based features ( Wang et al., 134 

2016 ), pseudo amino acid composition ( Chen et al., 2016 ), physico- 135 

chemical based features ( Dehzangi et al., 2015 ) etc. 136 

With the explosive growth of biological sequences in the post- 137 

genomic era, one of the most important but also most difficult 138 

problems in bioinformatics and system biology is how to express a 139 

biological sequence with a discrete model or a vector, yet still keep 140 

considerable sequence-order information or key pattern character- 141 

istic. This is because all the existing machine-learning algorithms 142 

can only handle vector but not sequence samples, as elucidated 143 

in a recent review ( Chou, 2015 ). However, a vector defined in a 144 

discrete model may completely lose all the sequence-pattern in- 145 

formation. To avoid completely losing the sequence-pattern infor- 146 

mation for proteins, the pseudo amino acid composition was pro- 147 

posed ( Chou, 20 01; 20 04 ). Ever since then, the approach of PseAAC 148 

has penetrated into nearly all the computational proteomics ( Chou, 149 

2017; Khan et al., 2017; Meher et al., 2017; Nanni et al., 2012; 150 

Rahimi et al., 2017 ). Because it has been widely and increas- 151 

ingly used, recently three powerful open access soft-wares, called 152 

‘PseAAC-Builder’, ‘propy’, and ‘PseAAC-General’, were established: 153 

the former two are for generating various modes of Chou’s spe- 154 

cial PseAAC; while the 3rd one for those of Chou’s general PseAAC 155 

( Chou, 2009 ), including not only all the special modes of feature 156 

vectors for proteins but also the higher level feature vectors such 157 

as “Functional Domain” mode, “Gene Ontology” mode, and “Se- 158 

quential Evolution” or “PSSM” mode. Encouraged by the successes 159 

of using PseAAC to deal with protein/peptide sequences, similar 160 

web-servers ( Chen et al., 2014 ) were developed for generating vari- 161 

ous feature vectors for DNA/RNA sequences as well. Particularly, an 162 

extremely powerful web-server called Pse-in-One ( Liu et al., 2017 ) 163 

and its very recently updated version Pse-in-One 2.0 ( Liu et al., 164 

2017 ) have been established that can be used to generate any de- 165 

sired feature vectors for protein/peptide and DNA/RNA sequences 166 

according to the need of users’ studies. 167 

In this study, we have used three types of features. They are 168 

amino-acid sequence based features, PSSM based features and 169 

structure based features. First, the PSSM files generated for the 170 

phage sequences by PSI-BLAST are used to create a consensus 171 

sequence that contains evolutionary information ( Sharma et al., 172 

2015 ). Then, other set of features are extracted from the PSSM file 173 

and the SPD file generated by SPIDER. This section presents a brief 174 

overview of the features. A summary of all the features used in 175 

this paper is given in Table 3 . 176 

2.2.1. Sequence based features 177 

A consensus sequence generated by the multiple sequence 178 

alignment by PSI-BLAST is used to generate this features. The first 179 

group is called the amino-acid composition which is the count or 180 

frequency in the given consensus sequenced normalized by the 181 

length of the protein. Formally, 182 

AAC (i ) = 

1 

L 

L ∑ 

j=1 

c i j , 1 ≤ i ≤ 20 (1) 

Here, L is the length of the protein and 183 

c i j = 

{
1 , if s j = a i 
0 , else 

where s j is an amino acid in the protein sequence and a i is one of 184 

the 20 different amino-acid symbols ( Dehzangi et al., 2014b ). An- 185 

other group of features called Dubchuck features ( Dubchak et al., 186 

1999 ) are also generated using this sequence based information 187 

depending on the physico-chemical properties of the amino acids 188 

residues, such as polarity, solvability, hydro-phobicity etc. 189 

2.2.2. PSSM based features 190 

PSSM files were generated using three iterations of the PSI- 191 

BLAST Algorithm ( Altschul et al., 1997 ) using the non-redundant 192 

database (nr) provided by NCBI. The threshold cut-off value of E 193 

was set to 0.001. PSSM file returns the log-odds of the substitu- 194 

tion probabilities of a given protein at each position for all possible 195 

amino-acid symbols after the alignment ( Chou and Shen, 2007 ). 196 

This is a L × 20 matrix which we refer in this paper as PSSM ma- 197 

trix . We first normalize the pssm matrix using the same technique 198 

as proposed in Sharma et al. (2015) . After normalization, we gen- 199 

erated five groups of features from the normalized PSSM matrix. 200 

We will denote the normalized matrix throughout this section as 201 

N which is a two dimensional matrix of dimension L × 20. They are 202 

enumerated as bellow: 203 

1. PSSM Bigram: Bigram features from PSSM matrix are well used 204 

in the literature of subcellular localization Sharma et al. (2013) ; 205 

2015 ) and defined as below: 206 

PSSM-bigram (k, l) = 

1 

L 

L −1 ∑ 

i =1 

N i,k N i +1 ,l (1 ≤ k ≤ 20 , 1 ≤ l ≤ 20) 

(2) 

2. PSSM 1-lead Bigram: PSSM 1-lead bigram is defined in a simi- 207 

lar way to PSSM bigram: 208 

PSSM-1-lead-bigram (k, l) = 

1 

L 

L −2 ∑ 

i =1 

N i,k N i +2 ,l 

(1 ≤ k ≤ 20 , 1 ≤ l ≤ 20) (3) 

3. PSSM Composition: PSSM composition is created by taking the 209 

normalized sum of the column wise values in the PSSM matrix 210 

Sharma et al. (2015) . It is defined as: 211 

P SSM − Composition (k, l) = 

1 

L 

L −1 ∑ 

i =1 

N i, j (1 ≤ j ≤ 20) (4) 

4. PSSM Auto-Covariance: Auto-Covariance of PSSM is a feature 212 

Dehzangi et al. (2014a ); Sharma et al. (2015) depending of a 213 

distance factor, DF as parameter. In this study we used, DF = 214 

10. The feature is formally defined as: 215 

PSSM-Auto-Covariance (k, j) = 

1 

L 

L −k ∑ 

i =1 

N i, j N i + k, j 

(1 ≤ j ≤ 20 , 1 ≤ k ≤ DF ) (5) 

5. PSSM Segmented Distribution: 216 

Previously, the segmented distribution of the PSSM ma- 217 

trix proposed in Dehzangi and Phon-Amnuaisuk (2011) was 218 

used as feature for subcellular localization of proteins in 219 

Dehzangi et al. (2015) . The idea is to find the distribution 220 
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Table 3 

Summary of evolutionary and structural features used. 

Feature group Number of features Reference 

Amino-acid composition 20 Sharma et al. (2015) 

Dubchuck features 105 

PSSM bigram 400 Sharma et al. (2015) 

PSSM 1-lead bigram 400 Dehzangi and Phon-Amnuaisuk (2011) 

PSSM composition 20 Sharma et al. (2015) 

PSSM auto- covariance 200 Sharma et al. (2015) 

PSSM segmented distribution 200 Dehzangi et al. (2015) 

Secondary structure occurence 3 This paper 

Secondary structure composition 3 

Accessible surface area composition 1 

Torsional angles composition 8 

Structural probabilities composition 3 

Torsional angles bigram 64 

Structural probabilities bigram 9 

Torsional angles auto-covariance 80 

Structural probabilities auto-covariance 30 

Total 1546 

of the values in the PSSM matrix column wise by calculat- 221 

ing the partial sums column wise starting from the first row 222 

and the last row and iterating until the partial running sum 223 

is F p % of the total sum. The details of the procedure for 224 

this feature generation can be found in Dehzangi et al. (2013) ; 225 

2015 ), Dehzangi and Sattar (2013) . In this paper, we used F p = 226 

5 , 10 , 25 . 227 

2.2.3. Structure based features 228 

We hypothesize that along with the sequential and evolutionary 229 

information, structural information also can affect the subcellular 230 

localization of phage proteins. Therefore, we extract a novel set of 231 

features generated using the SPD files produced by SPIDER2 soft- 232 

ware ( Heffernan et al., 2015; Yang et al., 2017 ). The SPD files gen- 233 

erated by SPIDER2 contains, secondary structural motif and their 234 

probabilities, accessible surface area and torsional angles for each 235 

amino-acid residue. All the feature groups generated from SPIDER2 236 

are enumerated here: 237 

1. Secondary structure occurence: This feature is the count 238 

or frequencies of the structural motifs present in amino-acid 239 

residue positions. There are three types of motifs: α-helix (H), 240 

β-sheet (E) and random coil (C). 241 

2. Secondary structure composition: This feature is the normal- 242 

ized secondary structure occurrence by the length of the phage 243 

protein length. This is similar to the amino-acid composition 244 

except that here we are taking the count of motif symbols in 245 

stead of amino-acid symbols. 246 

SS-Composition (i ) = 

1 

L 

L ∑ 

j=1 

c i j , 1 ≤ i ≤ 3 (6) 

here, L is the length of the protein and 247 

c i j = 

{
1 , if SS j = f i 
0 , else 

where SS j is the structural motif at position j of the protein se- 248 

quence and f i is one of the 3 different motif symbols. 249 

3. Accessible surface area composition: The accessible surface 250 

area composition is the normalized sum of accessible surface 251 

area defined by: 252 

ASA-Composition = 

1 

L 

L ∑ 

i =1 

ASA (i ) (7) 

4. Torsional angles composition: For four different types of tor- 253 

sional angles: φ, ψ , τ and θ we first convert each of them into 254 

radians from degree angles and then take sign and cosine of 255 

the angles at each residue position. Thus we get a matrix of di- 256 

mension L × 8. We denote this matrix by T is this section for 257 

torsional angles. Torsional angles composition is defined as: 258 

Torsional-Angles-Composition(k) = 

1 

L 

L ∑ 

i =1 

T i,k (1 ≤ k ≤ 8) (8) 

5. Structural probabilities composition: Structural probabilities 259 

for each position of the amino-acid residue are given in spd3 260 

file as a matrix of dimension L × 3. We denote it by P . Struc- 261 

tural probabilities composition is defined as: 262 

Structural-Probabilities-Composition(k) = 

1 

L 

L ∑ 

i =1 

P i,k (1 ≤ k ≤ 3) 

(9) 

6. Torsional angles bigram: Bigram for the torsional angles is 263 

similar to that of PSSM matrix and defined as: 264 

Torional-angles-bigram (k, l) = 

1 

L 

L −1 ∑ 

i =1 

T i,k T i +1 ,l 

(1 ≤ k ≤ 8 , 1 ≤ l ≤ 8) (10) 

7. Structural probablities bigram: Bigram of the structural prob- 265 

abilities is similar to that of PSSM matrix and defined as: 266 

Structural-Probabilities-bigram (k, l) = 

1 

L 

L −1 ∑ 

i =1 

P i,k P i +1 ,l 

(1 ≤ k ≤ 3 , 1 ≤ l ≤ 3) (11) 

8. Torsional angles auto- covariance: This feature is also derived 267 

from torsional angles and defined as: 268 

Torsional-Angles-Auto-Covariance (k, j) = 

1 

L 

L −k ∑ 

i =1 

T i, j T i + k, j 

(1 ≤ j ≤ 8 , 1 ≤ k ≤ DF ) (12) 

9. Structural probablities auto- covariance: This feature is also 269 

derived from structural probabilities and defined as: 270 

Structural-Probabilities-Auto-Covariance (k, j) 

= 

1 

L 

L −k ∑ 

i =1 

P i, j P i + k, j (1 ≤ j ≤ 3 , 1 ≤ k ≤ DF ) (13) 
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2.3. Recursive feature elimination 271 

For both of the problems, the total number of features gen- 272 

erated is higher than the number of instances. This possibly can 273 

lead to the curse of dimensionality ( Friedman, 1997; Keogh and 274 

Mueen, 2011 ). Therefore, we adopt a feature selection technique 275 

to reduce the number features and avoid potential curse of di- 276 

mensionality. Several techniques are reported in the literature 277 

for feature selection or dimensionality reduction for classifica- 278 

tion problems ( Saeys et al., 2007 ). Among them are genetic pro- 279 

gramming ( Nanni and Lumini, 2008 ), recursive feature elimination 280 

( Guyon et al., 2002 ), tree based method ( Deng and Runger, 2012 ), 281 

randomized sparse elimination ( Bach; Meinshausen and Bühlmann, 282 

2010 ), and incremental forward selection algorithm ( Ding et al., 283 

2016a ). To select the most effective feature reduction method, we 284 

choose several of most popular techniques and compared their per- 285 

formance for our problems. Among these methods using recursive 286 

feature elimination technique attained better results compared to 287 

the other methods. Therefore, we use this method as our main fea- 288 

ture selection scheme. 289 

Recursive feature elimination (RFE) was first proposed in 290 

Guyon et al. (2002) . The idea of the algorithm is depicted as 291 

pseudo-code in Algorithm 1 . It starts with a given dataset and iter- 

Algorithm 1: RecursiveFeatureElimination( dataset , classifier , 

k ). 

1 d ataset ′ ← d ataset; 

2 F eatureSet = { Al l f eatures } ; 
3 while | F eat ureSet | < k do 

4 classi f ier.train( dataset ′ ); 
5 F eat ureSet .computeRanks(); 

6 f r ← F eat ureset . selectLowestRank(); 

7 F eatureSet ← F eatureSet − { f r } ; 
8 dataset ′ = transform( dataset , F eat ureSet ); 

9 end 

10 return dataset ′ 

292 

atively classifies the dataset given a classifier and then rank the all 293 

the features following a given criteria. It then removes the feature 294 

with lowest rank from the feature set and transforms the dataset 295 

accordingly and continues the whole process again and again until 296 

the dataset is reduced to k features. 297 

Usually an external estimator used used to assign weights to 298 

the features. For example if a linear estimator is used then the 299 

weights are the coefficients of the linear model. 300 

2.4. Support vector machine 301 

In this study, we use Support Vector Machine (SVM) ( Cortes and 302 

Vapnik, 1995 ) as classification model for both of the problems: pH 303 

vs non-PH and PHC vs PHM. During the last few years, a wide 304 

range of classification techniques have been used to tackle these 305 

problems. Among them, SVM attained the best results ( Dehzangi 306 

et al., 2014a; Ding et al., 2016a; Sharma et al., 2015 ). Therefore, 307 

we use this classifier to build our model. SVM is non parametric 308 

classifier that aims at finding the marginal hyperplane with max- 309 

imum distance from different classes to achieve the lowest error 310 

and highest generality. A comparison of the performance of our 311 

model with different classifiers to solve the two problems are pre- 312 

sented in the results section of this paper. 313 

2.5. Performance evaluation 314 

A wide varieties of comparison matrices has been used in the 315 

literature of supervised learning to evaluate the performances of 316 

different prediction algorithms Powers . In this paper, we used sev- 317 

eral of them as defined in the following equation: 318 ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

Accuracy = 

T P+ T N 
T P+ T N+ F P+ F N 

Sensit i v it y = 

T P 
T P+ F N 

Speci f icity = 

T N 
T N+ F P 

MCC = 

(T P×T N) −(F P×F N) √ 

(T P + F P )(T P + F N )(T N + F P)(T N + F N ) 

(14) 

For each of the problem, the dataset is considered as a set con- 319 

taining positive and negative samples. 320 

S = S 
− ∪ S 

+ (15) 

In a typical binary classification problem, one of the classes is 321 

considered as negative and the other as positive. Now, TP is the 322 

number of positive examples correctly classified, TN is the num- 323 

ber of negative samples correctly predicted, FP is the number of 324 

positive examples incorrectly classified and FN is the number of 325 

negative examples incorrectly classified examples. 326 

In addition to these measures, we also used area under Receiver 327 

Operating Characteristic (auROC) and area under precision recall 328 

curve (auPR) to measure the performance of the algorithms. The 329 

set of metrics is valid only for the single-label systems. For the 330 

multi-label systems whose existence has become more frequent 331 

in system biology ( Cheng et al., 2017b; 2017c; 2017d ) and sys- 332 

tem medicine ( Cheng et al., 2016; Qiu et al., 2016 ), a completely 333 

different set of metrics as defined in Cheng et al. (2017b ) and 334 

Chou (2013) is needed. 335 

Several sampling methods ( Efron and Gong, 1983 ) are used in 336 

the literature to assess the performance of the classification algo- 337 

rithms for supervised learning. Among them jackknife and cross- 338 

validation are the most popular ones. In this paper, we employed 339 

both k -fold cross-validation with k = 10 and jack knife test to be 340 

able to directly compare our method with the previous studies 341 

found in the literature. It is very important to test the predictors 342 

using any of these acceptable sampling methods to tackle the bias- 343 

variance trade-off ( Friedman, 1997 ). 344 

3. Results and discussion 345 

In this section, we present the results of the experiments that 346 

were carried in this study. All the methods were implemented in 347 

Python. Each of the experiments were carried 5 times and only the 348 

average is reported as results. 349 

3.1. Feature selection method 350 

The first challenge to solve these two problems were the 351 

large number of features that we extracted that potentially can 352 

cause curse of dimensionality ( Friedman, 1997; Keogh and Mueen, 353 

2011 ). Several candidate feature reduction methods are available 354 

in literature. To see the effect of the different feature selec- 355 

tion methods, we applied them on the dataset for pH vs non- 356 

pH problem. Three different methods were tried: recursive fea- 357 

ture elimination (RFE) ( Guyon et al., 2002 ), tree based method 358 

( Deng and Runger, 2012 ) and randomized sparse elimination 359 

( Meinshausen and Bühlmann, 2010 ), Bach . For each of these meth- 360 

ods, we ran the algorithms using 10-fold cross validation on the 361 

dataset. Those results are shown in Table 4 . As it is shown in 362 

Table 4 , Recursive feature elimination show superior performance 363 

compared to other two feature selection methods in terms of all 364 

the measures. We also plot Receiver Operating Characteristic (ROC) 365 

curve to see the effectiveness of the feature selection methods. The 366 

plot of the ROC curve is given in Fig. 2 . The area under ROC curve 367 

value is maximum for the recursive feature elimination method 368 

which is 0.9623 with accuracy 89.92%. 369 
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Table 4 

Comparison of performance of different types of feature elimination techniques on pH vs non-pH 

classification. 

pH vs no-pH Classification 

Method Accuracy Sensitivity Specificity MCC auROC auPR 

RFE 89.92% 0.8805 0.9166 0.8044 0.9623 0.9195 

Tree Based Classifier 66.54% 0.7164 0.6180 0.3548 0.75354 0.6330 

Sparse Elimination 74.10% 0.7462 0.7361 0.4872 0.8010 0.7437 

Fig. 2. Receiver Operating Characteristic curves for different feature selection meth- 

ods. 

Fig. 3. Mean accuracy achieved for different number of selected features using dif- 

ferent kernels of SVM using recursive feature selection algorithm. 

For the same dataset, we performed another set of experiments 370 

to find the optimal number of features required for the classifica- 371 

tion problem of pH vs non-pH problem. We varied the number of 372 

features to be selected by the RFE algorithm and performed 10- 373 

fold cross fold validation on the data. We tried two different clas- 374 

sifiers in this setting: support vector machine with linear kernel 375 

and sigmoid kernel with the parameters, C = 10 0 0 and γ = 0 . 01 . 376 

Mean accuracy obtained in the experiments are shown in Fig. 3 . 377 

The number of features were exhaustively tried in the range [25, 378 

100]. The highest accuracy was found when the number of features 379 

set in Algorithm 1 was set to 85. 380 

Fig. 4. Ranking of all 1546 features shown in a color map showing the importance 

of the features, the darker the color is, less important the feature. 

Color map of the rankings of the features as ranked by the RFE 381 

algorithm is given in 4 . This map shows the distribution of selected 382 

features over all the features. Selected features include Dubchuck 383 

features, PSSM bigram, PSSM Auto-Covariance, PSSM 1-lead bigram 384 

and PSSM segmented distribution from the evolutionary group of 385 

features extracted for PSSM and the rest of the features were struc- 386 

tural features generated by SPIDER3. It reveals the importance of 387 

both type of features: evolutionary and structural. We used the 388 

same number and set of features also for the PHM vs PHC problem. 389 

The selected features are given as supporting information with the 390 

paper. 391 

3.2. Classifiers 392 

To see the effect of the different classification algorithms, we 393 

applied different types of supervised learning algorithms on the 394 

dataset of pH vs non-pH classification problem. We tried six clas- 395 

sifiers in our experiments. They were: Support Vector Machine 396 

with linear kernel, Support Vector Machine with rbf kernel, Sup- 397 

port Vector Machine with sigmoid kernel, Random Forest Classi- 398 

fier, Naive Bayes Classifier and Logistic Regression Classifier. We 399 

used 10-fold cross validation in the experiments and mean values 400 

of performance metrics are reported in Table 5 . 401 

From the values reported in Table 5 , it is clearly noticed that 402 

the best classification algorithm for the pH vs non-pH problem is 403 

SVM with linear kernel. In this experiments, we used the same 404 

features that were selected in the feature selection phase using 405 

RFE algorithm. Logistic Regression algorithm was the second best 406 

with 85.97% accuracy and auROC value of 0.9326. We have also 407 
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Table 5 

Comparison of performance of prediction of different types of classification algorithms. 

Classifier Accuracy Sensitivity Specificity MCC auROC auPR 

SVM (linear kernel) 89.92% 0.8805 0.9166 0.8044 0.9623 0.9195 

SVM (rbf kernel) 79.13% 0.8134 0.7708 0.5896 0.8641 0.7779 

SVM (sigmoid kernel) 57.91% 0.5671 0.5902 0.1571 0.6351 0.5925 

Random Forest 69.06% 0.7388 0.6458 0.4034 0.7764 0.6589 

Naive Bayes 59.35% 0.4626 0.7152 0.2054 0.6708 0.7249 

Logistic Regression 85.97% 0.8582 0.8611 0.7267 0.9326 0.8752 

Fig. 5. Receiver Operating Characteristic curves for different classification algo- 

rithms. 

Table 6 

Comparison of results achieved by iPHLoc-ES with other predictors. 

PH vs non-PH PHM vs PHC 

Method Name Accuracy auROC Accuracy auROC 

PHPred 84.2% 0.872 92.4% 0.970 

iPHLoc-ES (10-fold) 89.92% 0.962 100% 0.994 

iPHLoc-ES (Jack Knife) 88.48% 0.952 100% 0.992 

plot the Flase Positive Rate vs True Positive Rate or Receiver Op- 408 

erating Characteristic (ROC) curve for all these classifiers on the 409 

dataset. The plot is given in Fig. 5 . From this analysis we selected 410 

the SVM classifier for our predictor with linear kernel. 411 

3.3. Comparison with other methods 412 

In this section, we analyze the performance of our method with 413 

that of the other state-of-the-art prediction PHPred ( Ding et al., 414 

2016a ). For a fair comparison, we performed jack knife test on our 415 

datasets and reported mean accuracy and mean area under ROC 416 

curve in Table 6 . We have used the selected features and the clas- 417 

sification algorithm from the previous experiments and applied it 418 

on both of the problems and the respective datasets. In case of 419 

the pH vs non-PH problem, the jack knife test was able to pro- 420 

duce results with 88.48% accuracy and area under ROC curve of 421 

0.952 compared to the accuracy of PHPred of 84.2% and area un- 422 

der ROC curve of 0.872. Evaluating our results using 10-fold cross 423 

validation, we achieved similar and slightly better results for our 424 

prediction algorithm iPHLoc-ES. 425 

In the case of PHM vs PHC classification, our algorithm was able 426 

to predict all the subcellular localization of host located proteins 427 

correctly. The accuracy was perfect (100%) with area under ROC 428 

value 0.994 compared to the 92.4% accuracy and 0.970 area under 429 

ROC curve value of PHPred. Thus, for both of the problems and 430 

their datasets, iPHLoc-ESis able to significantly outperform PHPred, 431 

which is the current best known predictor for the problem. 432 

3.4. Discussion 433 

In this study, We have developed a method named iPHLoc-ES 434 

that significantly outperformed the previously proposed methods 435 

for prediction of subcellular localization of bacteriophage proteins. 436 

The performance of iPHLoc-ES was superior than PHPred as the 437 

most accurate predictor that was recently developed in terms of all 438 

the comparison metrics used in this paper. The accuracy of the first 439 

problem of discrimination of host located phage proteins from the 440 

extra-cellular phage proteins (PH vs non-PH) was improved from 441 

84% accuracy to 88.48% accuracy using jack knife test. The im- 442 

provement in the other problems ware even higher. We achieved 443 

the classification accuracy of 100% compared to that of 92.4% for 4 4 4 

PHPred. Similar improvements are noticed in Table 6 for other 445 

metrics as well. 446 

The receiver operating characteristic graph which is a plot of 447 

false positive rate against true positive rate is very important when 448 

considered balanced data. In terms of imbalanced data, often area 449 

under Precision-Recall Curve and balanced accuracies are often 450 

considered for performance consideration. In our case, the datasets 451 

were quite balanced as shown in Tables 1 and 2 . Hence the mea- 452 

sure of area under ROC curve is sufficient to compare the perfor- 453 

mance of the algorithms or methods. At the same time iPHLoc-ES 454 

achieve very high sensitivity and specificity as well. For the second 455 

problem we achieve to 100% prediction performance. Note that we 456 

admit that the number of samples present in the dataset is very 457 

small which may cause very high performance and hard to gener- 458 

alize. However, this is due to the lack of experimentally validated 459 

phage locations available. Moreover, a number of phages were dis- 460 

carded for several reasons including sequence similarity and oth- 461 

ers. We aim at employing iPHLoc-ES for larger benchmarks as soon 462 

it is made available. 463 

One of the main success of iPHLoc-ES is due to the efficient 464 

feature selection. It is important to note that most of the features 465 

were previously used in the literature for protein subcellular local- 466 

ization except the structural features. It was very important to re- Q3 
467 

duce the number of features and remove the curse of dimensional- 468 

ity and hence select only effective and discriminatory features for 469 

classification. It is also important to note that logistic regression 470 

classifier and SVM with linear kernel were among the best per- 471 

forming classification algorithms. 472 

3.5. Web server implementation 473 

To make our method available as a web application we imple- 474 

mented an web application and made it publicly available from: 475 

http://brl.uiu.ac.bd/iPHLoc-ES/ . The web application was developed 476 

using PHP and python language. It is very simple to use. This pre- 477 

dictor can be used to find two types of prediction results: pH vs 478 

non-PH and PHM vs PHC. This can be selected using the option 479 

button. For the prediction one need to provide two files to the 480 
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Fig. 6. Screen shot of the web application implemented for the iPHLoc-ES predictor. 

predictor: a pssm file generated from PSI-BLAST and a SPD file gen- 481 

erated from SPIDER2 software. After that one might expect an in- 482 

stantaneous prediction of the location of the given protein based 483 

on the option. A typical screen shot of the system in given in Fig. 6 . 484 

4. Conclusion 485 

In this paper, we have proposed a prediction method for sub- 486 

cellular localization of bacteriophage proteins. Two problems were 487 

addressed in this regard on an experimentally validated dataset. 488 

The features generated from the phage protein sequences were 489 

based on evolutionary and structural information and were proven 490 

to be successful in predicting locations of phage proteins in the 491 

host cell. We also used Recursive feature selection to reduce the 492 

number of features and that drastically improved the performance 493 

of the classifier. Furthermore, we implemented our model (iPHLoc- 494 

ES) as a publicly available web server. However, one limitation to 495 

the proposed work is that the dataset is small. All these sample 496 

phage proteins are taken from latest protein database. However, 497 

since the field of phage therapy is getting popular day by day, 498 

we believe the number of experimentally validated phage locations 499 

will be increased and hence prediction models will be enhanced. 500 
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