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Abstract 

The identification of significant input variables to the output provides very useful information 

for mix design for soil-fly ash geopolymer in order to obtain the optimum compressive strength. 

The importance of input variables to the output of soil-fly ash geopolymer was quantified by 

Garson’s algorithm and connection weights approach in artificial neural networks (ANN) 

model, whereas model analysis and fitness method were used in genetic programming (GP) 

model. The former approaches in the ANN model used the connection weights among the 

input-hidden-output layers to evaluate the importance of the input variables. The latter methods 

in the GP model assessed the frequency of variables used in the model and the value of fitness 

for the evaluation. The assessment results identified the percentages of fly ash, water and soil 

as important input variables to the output. The percentage of hydroxide, the ratios of 

silicate/hydroxide and alkali activator/ash were ranked as less important input variables. The 

positive or negative relationships between these input variables and the output demonstrated a 

very significant influence on the strength development of soil-fly ash geopolymer, showing a 

positive or negative effect on the compressive strength.  
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Introduction 

Geopolymer is a recent popular environmental friendly construction material. It is commonly 

produced by activating fly ash, an industrial by-product from the combustion of coal-fired 

power plant, with alkali activators such as sodium silicate and sodium hydroxide in an alkaline 

environment at the low curing temperature (Davidovits 2008). Being a green material, 

geopolymer is found to emit carbon footprint 80 % less than the traditional Portland cement 

(Duxson et al. 2007). It has been used to construct structural elements of buildings such as 

beams, columns and piles (Power Pile 2013; Sarker 2008; Shrest 2013; Uretek 2014), besides 

also being viable as a ground treatment method when mixed with weaker clayey soils (Cristelo 

et al. 2013; Cristelo et al. 2012; Zhang et al. 2013). The strength development of geopolymer 

is mainly attributed to the formation of geopolymer gel (i.e. three-dimensional polymer chains) 

in the geopolymer structure through geopolymerization (Davidovits 2008; Komljenovi et al. 

2010; Tennakoon et al. 2014). Factors influencing the compressive strength of geopolymer 

were reported to be the ratio of alkali activator to ash, the ratio of silicate to hydroxide, types 

of alkali activator, percentage of fly ash etc. (Bakri et al. 2009; Hardjito and Rangan 2005; 

Kong and Sanjayan 2008; Leong et al. 2016; Xu and Deventer 2000). As the compressive 

strength of geopolymer could be affected by various factors, a prediction model could 

effectively predict the strength performance of geopolymer; for instances, the modeling 

methods in the artificial neural network (ANN) and genetic programming (GP).  

 

Recently, GP is used in many civil engineering applications (Cladera et al. 2014; Garg et al. 

2014a; Garg et al. 2014b; Sarıdemir 2014). The novelty of GP is its capability to generate the 

prediction equation and expression trees from the model, providing a very useful information 

for strength prediction. For ANN, it is known for being applicable to solve problems in a wide 

range of different fields such as biological, business, environmental, manufacturing etc. In civil 

engineering, it can be used to detect structural damage, to model material behavior, to monitor 

groundwater, to predict mix ratios etc (Kewalramani and Gupta 2006).  

 



 

It is known that the most common method to acquire the compressive strength of geopolymer 

is through laboratory tests on samples made from various mix ratios. The compressive strength 

is attainable from the selection of the appropriate mix ratio, where each parameter has the 

capability to influence the strength development of the geopolymer. Hence, a vast number of 

laboratory tests is required to understand the contribution of each parameter to strength 

development. This process is not only costly and time-consuming, but requires a large quantity 

of raw materials for sample preparation. Therefore, the use of predictive models such as 

artificial neural networks (ANN) and genetic programming (GP) could be effective tools in 

predicting the strength capability of each mix design. The predictive model is developed by 

employing the experimental dataset through minimizing the difference between the target and 

experimental output in order to obtain optimal solutions. The modification in the mix design 

could then aid in identifying the appropriate mix ratio for an idealized compressive strength, 

besides being more cost effective during production (Chopra et al. 2016; Flood and Kartam 

1994; Nikoo et al. 2015). 

 

Both types of modeling methods have been widely utilized to predict compressive strength of 

concrete and geopolymer by many researchers (Atici 2011; Castelli et al. 2013; Chopra et al. 

2016; Hong-Guang and Ji-Zong 2000; Kostic and Vasovic 2015; Leong et al. 2015; Mozumder 

and Laskar 2015; Nazari 2013; Nazari and Torgal 2013a; Nazari and Torgal 2013b; Sarıdemir 

2010; Sobhani et al. 2010; Topcu and Sarıdemir 2008; Yadollahi et al. 2015). The models have 

generated very close results between experimental data and predictive models. Hence, it 

indicates that both modeling methods are capable of being used for strength prediction. 

However, the importance of the input variables to the output of a typical geopolymer model 

has rarely been investigated.  

 

Factors influencing the compressive strength of soil-fly ash geopolymer were studied and 

evaluated based on the experimental results in Leong et al. (2017). Subsequently in this 

research, the experimental results were used as input data to the predictive ANN and GP 

models. These models were then used to predict the compressive strength of the soil-fly ash 

geopolymer. The main objective of this paper is to identify the importance of each input 

variable to the corresponding output through various assessment methods such as Garson’s 

algorithm, connection weights approach, fitness method and model analysis.  

 



 

Data Collection from the Experimental Works 

Materials 

Sarawak fly ash obtained from Sejingkat Power Station, Kuching, was used in this research. It 

was observed to be gray and classified as Class F type in accordance to ASTM-C618 (2005). 

The Sarawak fly ash was produced from the combustion of sub-bituminous coal.  

 

The residual soil was sourced from the outskirt of Kuching city, Malaysia. It is classified as 

reddish brown slightly sandy silt. The natural moisture content of the soil is 53 %. It consists 

of 11 % gravel, 13 % sand, 34 % silt and 42 % clay. The liquid limit, plastic limit and plasticity 

index of the residual soil are 66 %, 36 % and 30 % respectively. The optimum moisture content 

(OMC) and the maximum dry density (MDD) of the residual soil are 47 % and 1184 kg/m3.  

 

The chemical compositions of both fly ash and soil were obtained using WD-X-ray 

Fluorescence Spectrometer (WD-XRF) as shown in Table 1. Both types of materials are rich 

in SiO2, Al2O3 and Fe2O3. Figs. 1a and b shows the morphologies of fly ash and soil 

respectively, under scanning electron microscopy (SEM) (brand: ZEISS SUPRA 40 VP SEM). 

The former was observed to have smooth spheres whereas the latter consisted irregular shapes 

with porous-like structure. Fig. 2. shows the particle size distributions (PSD) of both fly ash 

and soil. It was conducted using a laser particle size analyzer (brand: CILAS 1190). The PSD 

plot shows that the fly ash particles are predominantly smaller than soil particles, comprising 

90 % of the overall particles.  

 

The combination of 8M KOH (or NaOH) and sodium silicate (17% Na2O and 35% SiO2 by 

weight) was selected as the alkali activators used in this research. 

 

Sample Preparation and Test 

The residual soil was placed into the oven for dehydration for 24 hours. The dry soil was 

initially premixed with fly ash in a mixer prior to the addition of alkali activators and water. 

The ratios of alkali activator/ash were varied in the range of 0.4 to 0.7 whereas the ratios of 

Na2SiO3/NaOH (or KOH) were 0.5 and 1. Different percentages of additional water (10%, 

20%, 30% and 40%) were added to the mixture. The ratio of fly ash/soil was kept constant 

throughout the study (i.e. 0.8). Although a higher ratio of fly ash/soil could lead to higher 

compressive strength, strength gain between these two ratios was not significant as observed 



 

in Leong et al. (2017). Moreover, increasing the fly ash content could increase the amount of 

alkali activators required for producing the geopolymer. Hence, fly ash/soil of 0.8 was selected 

in term of cost effectiveness and potentially good strength development. The mixing process 

was conducted until the mixture was mixed homogeneously. The mixture was poured into the 

modified cube mold (50 mm × 50mm × 120 mm). The compression machine was used to press 

the sample into cubes with dimensions of 50 mm × 50 mm × 50 mm at a press load of 10 kN. 

The samples were then demolded and cured in an oven at 100 C for 24 hours. After 24 hours, 

the samples were tested for compressive strength using compression test machine in 

accordance to ASTM-C109/C109M (2005). Three samples were tested for each mix ratio. The 

mix ratios and the corresponding compressive strengths of the samples are tabulated in Table 

2. A number of 64 datasets were collected from the experiments and these data were used in 

the predictive modeling, which shall be discussed further in the next section. Table 3 

summarizes the statistical values used in the predictive modeling. Fig. 3. illustrates the 

cumulative percentage and frequency distribution of input variables and target.     

 

Predictive modeling 

Artificial Neural Network 

Artificial neural network (ANN) is inspired by the biological neural network. The structure of 

neuron consists of soma (i.e. where the nucleus is to process the inputs), dendrite, synapse and 

axon. The tree-like fibre namely dendrite is a receptor to accept the signal or input. The long 

single fibre cell namely axon transfers the signal from a synapse to another receiving end of 

the synapse of the neutron. The fundamental structure and operation of the biological neural 

network motivate the development of the artificial neural network with some significant 

features relating to computing model for pattern recognition tasks (Yegnanarayana 2006).  

 

ANN is a mapping of input into the desired output. It consists of weighted inputs, transfer 

function and output. Learning is defined as a process where the weights are adjusted to obtain 

the desired input-to-output mapping. A simple feed-forward neural network is commonly used 

in ANN. The input at first layer is fed into the interconnecting layer namely hidden layers, 

follows by the transfer function, which does not affect the feed-forward behavior in neural 

network and finally the output layer.  

 



 

In this research, the ANN model was developed in MATLAB R2014b using the neural network 

toolbox. Seven input parameters, one hidden layer with ten hidden neurons and one output 

parameter were employed in the ANN model. The input parameters were the percentage of 

soil, percentage of fly ash, percentage of hydroxide, percentage of silicate, the percentage of 

water, the ratio of alkali activator/ash and the ratio of silicate/hydroxide. The compressive 

strength of soil-fly ash geopolymer was assigned as the output parameter. The interpretation 

diagram of the ANN model is illustrated in Fig. 4. Levenberg-Marquardt back-propagation was 

used as a training algorithm and log sigmoid function was selected. The gradient descent 

algorithm reduces the error by adjusting the connection weights along the gradients. The 

performance of the ANN model was examined by mean square error (MSE).  

 

Genetic Programming 

Genetic Programming (GP) is an evolutionary algorithm-based methodology inspired by 

biological evolution to solve the task of relating independent input parameter to an output 

parameter through linear or nonlinear equations. It is an evolving program, which is an 

extension of Genetic Algorithm (GA) (Affenzeller et al. 2009; Koza 1994). It shows analogy 

to GA, where a population of solution candidates are given a problem and it works based on 

the Darwinian principle (i.e. the survival of fitness). The basic genetic operators in GP are 

similar to GA such as crossover, mutation and reproduction, with the exception of tree 

representation (Sivanandam and Deepa 2008). Mutation and crossover are the main operators 

used. The individual computer programs in an initial population are randomly generated. The 

selection of individuals is based on its fitness for crossover. GP is expressed by syntax tree 

(expression tree or explicit tree) instead of traditional lines of code. It can be expressed in linear 

formulae. Terminals are defined as the variables (i.e. x, y etc.) and constants in the syntax tree 

whereas functions are defined as the internal nodes such as arithmetic operations (i.e. +, -, *, 

/), mathematical operations (i.e. sin, cos, exp. etc.), conditional operations (i.e. if, then, else) 

etc. The combination of both terminals and functions is termed as primitive set in GP.  

 

In this research, GeneXProTools 5.0 was implemented to construct the GP model. The input 

parameters and the output parameter for the GP model used were identical to the parameters 

used for the ANN model. For instances, percentage of soil (d0 denoted as S), percentage of fly 

ash (d1 denoted as FA), percentage of water (d2 denoted as W), percentage of silicate (d3 

denoted as Si), percentage of hydroxide (d4 denoted as H), ratio of silicate/hydroxide (d5 

denoted as Na) and ratio of alkali activator/ash (d6 denoted as A) were chosen as the input 



 

parameters whereas the compressive strength (d7 denoted as fs) of soil-fly ash geopolymer was 

employed as the output parameter. The dataset (a total number of 64) was divided into 70% for 

training, 15% for validating and 15% for testing in the GP model. Ten functions used in this 

GP model including +, −, ×, ÷, √, ∛, ln and exp. Multiplication was selected as the linking 

function whereas Root Relative Squared Error (RRSE) was used. A number of 30 

chromosomes, 4 genes and 10 head size were used in the GP model.   

 

It is worth mentioning that the predictive ANN and GP models discussed in this research were 

trained in a supervised manner based on reliable experimental dataset. Hence, models capable 

of providing high accuracy and good performance were generated through the modeling 

process. Although these models were generated based on the input dataset, it could also be 

applicable to other types of materials. In this research, the input parameters used in the models 

were the (i) percentage of fly ash, (ii) percentage of water, (iii) percentage of silicate, (iv) 

percentage of soil, (v) percentage of hydroxide, (vi) ratio of alkali activator to ash and (vii) 

ratio of silicate to hydroxide, whereas the output parameter was the compressive strength of 

the geopolymer. These input parameters were classified as experimental mix design. Neither 

soil properties nor types of mineralogies were used as input parameters. The results obtained 

from these models were quantified from the aspect of experimental mix design instead of soil 

mineralogies. Hence, the results presented in this research could be applicable to other types of 

soils or materials with different mineralogies. It is important to note that materials with 

different mineralogies could have significant effect on the strength development of 

geopolymer. The amorphous phase of SiO2 and the Al2O3 enhances the strength capability of 

geopolymer. However, SiO2 and Al2O3 in crystalline phase indicates that the formation of 

geopolymer gel due to the chemical reaction amongst the studied materials and alkali activators 

could be unlikely.  

         

Results and discussion 

ANN model 

Fig. 5. depicts the regression plot of the experimental data and the predicted data obtained in 

the ANN model. The coefficient of determination (R2=0.9535) indicates that the model has 

fitted the data very well. The difference between the predicted value and the experimental value 

is minimal. Details of the experimental data and the predicted results obtained by the ANN 

model are tabulated in Appendix A.  



 

 

For the ANN model, there are several methods to quantify the importance of the input variables. 

For examples, connection weights approach, Garson’s algorithm, partial derivatives, forward 

stepwise addition, backward stepwise elimination etc (Gevrey et al. 2003; Olden et al. 2004). 

In this research, Garson’s algorithm and connection weights approach were chosen due to their 

simplicity and were commonly used by other researchers (Mozumder and Laskar 2015; 

Olanrewaju et al. 2012; Olden and Jackson 2002). 

 

Garson’s algorithm           

In Garson’s algorithm, the connection weights are used to calculate the contribution of each 

variable (Garson 1991). Table 4 presents the connection weights between input-hidden-output 

layer. The connection weight of input-hidden neurons was multiplied by the connection weight 

of hidden-output. The multiplication product was designated as the contribution of input-

hidden-output. The relative importance of the input variables was calculated by evaluating the 

absolute values of the contribution. As the absolute values were used, the relationships between 

the input variables and the output variable were directionless since non-negative values were 

present. Sample calculations according to Garson’s algorithm can be referred to Olden and 

Jackson (2002). Fig. 6. shows the relative importance of the input variables according to 

Garson’s algorithm. The importance of the input variables was in the order as follows: 

percentage of water> ratio of alkali activator/ash> percentage of hydroxide> percentage of fly 

ash> ratio of Na2SiO3/NaOH (or KOH)> percentage of soil> percentage of silicate. The 

difference of each contribution is negligible, indicating all the input variables have strong 

relationships with the output, with the exception of the percentage of silicate.    

    

Connection weights approach 

Apart from Garson’s algorithm, connection weights approach was also used to assess the 

importance of each input variable to the output. Similar to Garson’s algorithm, connection 

weights approach justified the importance of each input variable to the output via multiplying 

the connection weights between input-hidden neurons and hidden-output neurons. However, 

this method did not evaluate the absolute value of each contribution. The importance of each 

input variable was ranked by the summation of each contribution of input-hidden-output. As 

presented in Fig. 7a., the percentage of fly ash, percentage of hydroxide and the ratio of silicate 

to hydroxide were ranked as the most important input variables influencing the output whereas 



 

the ratio of alkali activators to ash and the percentage of soil showed the weakest relationships 

to the output.  

 

As the result was ranked according to its summation product, which means the positive or 

negative value determined the assessment. It is worth to mention that the negative value implies 

negative effect to the output, thus indicating the importance of the inverse relationship of these 

input variables to the output. Hence, Fig. 7b. illustrates another ranking method according to 

the magnitude of the summation product regardless of its positive or negative sign. 

Nevertheless, both positive and negative relationships were shown in this figure. A value close 

to zero indicates the weakest relationship of input variable to the output. For instance, the 

percentage of silicate. The importance of the input variables according to this ranking method 

was in the order as follows: percentage of fly ash > percentage of soil > percentage of hydroxide 

> ratio of alkali activator/ash > ratio of silicate/hydroxide > the percentage of water > the 

percentage of silicate.            

    

Genetic Programming 

Apart from the ANN model, a GP model was also developed to study the performance of soil-

fly ash geopolymer. More importantly, it aims to study the importance of each input variable 

to the output by another modeling method. The results of the GP model were presented in term 

of expression tree as depicted in Fig. 8. Four sub-expression trees with multiplication as linking 

function were obtained. The expression tree can be interpreted through the Equation 1 as 

follows: 

𝑓𝑠 =
FA − S

((0.84S − FA) +
√𝑊
3

Na
)

  .  ((exp √0.89𝐹𝐴
3

 

+ ( √0.89 − 𝐻
3

 . (𝐴. 𝑊

− 0.45)))  .  √(𝐻. 𝑊. √𝑆𝑖
3
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−5.48
)
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  .  
𝐴
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1.51 − 𝑁𝑎
4.51 − 𝑊

 

-------------------------------------------------------------------------------------------------- Equation 1 

 

As shown in the prediction equation, all the input parameters were used, indicating the 

importance of all input parameters to the output. It may play a major or minor role in strength 

development. The values of R2 in training and validation phases were 0.9197 and 0.9301 



 

respectively. Table 5 summarizes the values of error such as RMSE, RAE and RRSE. R2 

greater than 0.9 and low values of error show that the GP model has been trained well. It can 

predict the compressive strength of geopolymer with high accuracy and reliability. Fig. 9. 

illustrates the plot of experimental data compared to the predicted results in the GP model. The 

results show that the GP model can predict the compressive strength close to the experimental 

results. It demonstrates that this GP model can be an efficient and reliable model for the 

prediction of the compressive strength of geopolymer with high accuracy. Appendix A 

presents the details of experimental data and the predicted results obtained in the GP model.      

 

In this research, two types of assessment method namely model analysis and fitness method 

were used to evaluate the importance of the input variables in the GP model. Detailed 

discussions are presented subsequently.  

Model analysis 

Fig. 10. presents the importance of the input variables to the output obtained from GP. This 

result is evaluated by quantifying the recurrence of each independent variable in the GP models 

from the best model structures (Sreekanth and Datta 2012). The results show that the 

percentage of fly ash and the percentage of water were the most important input variables to 

the output, indicating a high frequency of these input variables used in the GP model. The 

percentage of silicate, the percentage of hydroxide and the ratio of silicate to hydroxide show 

moderate significance to the output, whereas the percentage of soil and the ratio of alkali 

activator to ash show the least significance to the output.   

 

The importance of each input variable to the output was also quantified by assessing the 

correlation coefficient of each input variable in training and validation phases as tabulated in 

Table 6. The percentage of soil and the percentage of fly ash exhibited the strongest positive 

relationship between the input variables and the output, whereas the percentage of water shows 

the strongest negative relationship to the output. This result is consistent with the result as 

reported in the ANN model. For the remaining input variables, correlation coefficients yield 

close to zero, thus denoting the weak relationships between the input variables and the output. 

 

Fitness method 

In this section, the frequency of variables used in the GP models was further evaluated by 

analyzing its contribution to the fitness in training and validation phases. As mentioned earlier 

on, GP works based on the Darwinian principle, which means survival of the fittest. Evaluation 



 

of the input variables according to the fitness could effectively provide significant insight into 

the importance of each input variable to the output. Therefore, this method is proposed and 

described in details as follows: 

 

50 GP models with different frequency of input variables used were selected. The selection 

was determined based on the values of R2, which is greater than 0.9 to ensure the reliability 

and accuracy of the model. These 50 GP models might not fall in the range of the best models 

in term of R2 because the best 50 models with the highest R2 were observed to have a consistent 

frequency of input variables used. In this case, the contributions of different frequency of input 

variables used to the value of fitness might not be significant. Consequently, the assessment of 

the importance of the input variables to the output according to the value of fitness might not 

reliable. The selected 50 GP models are represented in Appendix B.  

The relative frequency of variable used for each input variable was evaluated by dividing the 

individual frequency of variable used from the overall frequency of variables used (see 

Appendix C: Step A). Hence, it shows the proportion of each input variable in respective GP 

model. The individual relative frequency of variable used obtained in Appendix C: Step A was 

then multiplied by the fitness as shown in Appendix B. This step evaluated the contributions 

of fitness according to the relative frequency of variable used in training phase (see Appendix 

C: Step B) and validation phase (see Appendix C: Step C), respectively. The results showed 

that the difference between the contributions of fitness in training and validation phase is 

minimal. The summation of the contribution of fitness for each input variable was calculated 

in order to quantify the relative importance of the input variable to the output (see Appendix 

C: Step D).  

 

The assessment method was ranked in descending order as illustrated in Fig. 11. Both training 

(see Fig. 11a) and validation phases (see Fig. 11b) show similar results, representing 

consistency of the importance of the input variables to the output regardless of the 

computational phases. The significant input variables were ranked as the percentage of water 

and the percentage of fly ash, followed by the ratio of silicate to hydroxide, the percentage of 

silicate and the percentage of hydroxide. The ratio of alkali activator to ash and the percentage 

of soil were identified as the least significant input variable to the output.      

 



 

Significance of input variables to the output 

The assessment results of the importance of the input variables to the output in both ANN and 

GP models is summarized in Table 7. Different ranks of the importance of the input variables 

were observed. Hence. the reliability of each evaluation approach is assessed hereinafter.  

 

Garson’s algorithm and connection weights approach in the ANN model 

Dissimilarities between the ranks of the significance of input variables were found on both 

Garson’s algorithm and connection weights approach. It can be attributed to the respective 

assessment method as the former used absolute values to calculate the variable contributions 

as mentioned earlier on. Hence, the positive and negative influences to the output were 

negligible. For the latter assessment method, it used original values instead of absolute values. 

Both positive and negative relationships were shown. From the point of geopolymer study, it 

is important to show the true direction of relationships between the input variable and the 

output. For instances, the positive relationship between the percentage of fly ash and 

compressive strength indicates that the increase of fly ash content could lead to higher 

compressive strength. As a negative relationship was present between the percentage of water 

and compressive strength, the addition of water to the mixture could reduce, in order to prevent 

the decline of strength capability. It showed that connection weights approach demonstrated 

better assessment method to interpret the importance of the input variables than Garson’s 

algorithm due to its accuracy and precision. Moreover, it showed the individual interacting 

relationship between the input variable and the output, which forms an important study and 

contribution to the strength development of geopolymer.                

 

Model analysis and fitness method in the GP model 

Comparing the assessment methods according to the model analysis and fitness method, it is 

found that the former could not compute the actual rank for all the input variables. It is because 

model analysis method evaluated the importance of the input variables by quantifying the 

recurrence of each input variable from the best model structures. These structures were 

identical to one another with a slight variation of R2 but similar functions and constant used in 

each gene. Similar frequencies of the variable used among these models could not significantly 

contribute to the assessment. Therefore, this method could not rank all the input variables 

accordingly.  

 



 

Unlike model analysis, fitness method used the contributions of fitness evaluated from the 

frequency of variable used to assess the importance of each input variable. It showed a very 

prominent result as the input variables which could not be ranked using model analysis, were 

ranked accordingly using fitness method. Moreover, the rank of these input variables was in 

the range as ranked using model analysis. It demonstrates that the fitness method could 

accurately assess the importance of the input variables to the output. Furthermore, fitness 

method quantified the GP models with different frequency of variable used instead of selecting 

the best models with similar structures. It considered a wider range of data than the model 

analysis. The superior assessment results have shown that fitness method is suitable and more 

reliable to evaluate the importance of the input variables to the output in the GP model.            

Therefore, connection weights approach and fitness method were selected as the most suitable 

assessment methods for the ANN and GP models. However, both assessment methods show 

dissimilar ranks for the importance of the input variables to the output. It could be attributed to 

their respective evaluation method, i.e. the former used the connecting weights among the 

input-hidden-output layers for the assessment, whereas the latter evaluated the contributions of 

fitness according to the frequency of input variable used. Hence, statistical analysis evaluation 

method might help to analyze the results obtained from both assessment methods, as well as 

being used to interpret the significance of each input variable to the output.  

 

Statistical analysis 

Table 8 shows the statistical analysis of the importance of the input variables to the output. 

The correlation coefficient represents the magnitude and direction of the relationship between 

each input variable and the output. The analysis shows that the percentage of soil and the 

percentage of fly ash have the strongest positive relationships with the output. Contrariwise, 

the percentage of water shows a negative relationship to the output. The percentage of silicate 

demonstrated the weakest relationship as the correlation coefficient was close to zero. p-value 

indicates the significance of input variables to the output by the significance level of 0.05.  

 

In this research, the null hypothesis was defined as the insignificant relationship between the 

input variable and the output. The null hypothesis is true when the p-value is greater than 0.05; 

however, it is rejected when the p-value is less than 0.05, indicating the input variable is 

important to the output.  The results show that the input variables such as the percentage of 

soil, the percentage of fly ash and the percentage of water were statistically significant to the 

output. However, the remaining input variables such as the percentage of silicate, the 



 

percentage of hydroxide, the ratio of silicate to hydroxide and the ratio of alkali activators to 

ash showed insignificant relationships to the output. It implies that the significant input 

variables were relatively more important than those insignificant input variables. Effects of 

each input variable on the compressive strength of geopolymer are discussed subsequently. 

 

As shown in Fig. 12a, increasing the percentage of fly ash has a positive effect on the 

compressive strength of geopolymer. It is known that fly ash is the main source of 

aluminosilicate that produces geopolymer, whereas the alkali activators play a role in activating 

the fly ash particles. Increasing the fly ash content thus enhances the geopolymerization 

process, which is crucial in strength development. A rigid geopolymer structure is formed when 

fly ash completely reacts with the alkali activators. Hence, the formation of geopolymer gel 

binds the soil particles together, resulting in higher strength capabilities (Heah et al. 2012; Liew 

et al. 2011; Sukmak et al. 2013a; Sukmak et al. 2013b). Any further increase in the percentage 

of fly ash but with insufficient increase in alkali activators in the geopolymer system, however, 

could reduce the strength development of geopolymer. This phenomenon could be attributed 

to the excessive unreacted fly ash particles present in the geopolymer sample.  

 

As depicted in Fig. 12b, the percentage of soil used shows similar development of geopolymer 

compressive strength as observed in the percentage of fly ash used (see Fig. 12a). The 

compressive strength of geopolymer increases when the percentage of soil increases. As 

reported in Leong et al. (2017), some of the cations from the alkali activators such as Na+ and 

K+ could be attracted to the negatively charged surfaces of the soil particles. Increasing the 

percentage of soil could result in high concentration of absorbed cations near the surfaces of 

the soil particles. Hence, anions such as OH- and SiO3
2- from alkali activators are available 

surrounding the fly ash particles. These are the essential ions required to dissolve the fly ash 

particles for the geopolymerization process to occur. As the fly ash particles are smaller than 

the soil particles, both types of particles can be closely packed together via the “filler effect”. 

Thus, the formation of geopolymer gel binds the soil particles together, improving the strength 

capabilities. However, the presence of a high percentage of soils may lead to a negative effect 

on the geopolymer compressive strength. The negatively charged surfaces of the soil particles 

may interact with water (Mitchell and Soga 2005), creating an interface layers detrimental to 

forming the necessary bonds amongst particles. Furthermore, the presence of organic matters 

in the soil may absorb some of the alkali activators, which play an essential role in the 

geopolymerization process, thus reducing the strength development.       



 

 

The effect of water on compressive strength of geopolymer is illustrated in Fig. 12c. It 

demonstrates that water has a negative correlation with the strength development of 

geopolymer. It is known that alkali activators play an important role in strength development 

of geopolymer, however, the addition of water could intensively reduce its alkalinity and 

concentration (Aliabdo et al. ; Leong et al. 2016; Patankar et al. 2013; Zuhua et al. 2009).  

 

Fig. 12d and Fig. 12e show the effects of both hydroxide and silicate on the development of 

the compressive strength of geopolymer. The data points are scattered with no particular trend, 

indicating very low correlation with the strength development of geopolymer, thus presenting 

very contrasting effects from Fig. 12a-c which evidently show obvious correlations (either 

positive or negative direction) with strength development. These results show good agreement 

with the assessment results reported in the previous section of this paper. Both silicate and 

hydroxide show relative insignificant importance to the output in comparison to the more 

significant input parameters such as fly ash, soil and water. Theoretically, increasing the 

percentage of silicate and the percentage of hydroxide improves the geopolymerization process 

and strength capabilities of geopolymer. However, the addition of water reduces the alkalinity 

and concentration of the alkali activators. Besides, some of the alkali activators may interact 

with soil particles or absorbed by the organic matters present. Alkali activators enhance the 

activation of fly ash and stimulates the geopolymerization process. However, with an increase 

in alkali activators in the mixture but having reduced fly ash content could result in strength 

retardation.  

  

The effects of both ratios of silicate to hydroxide and alkali activators to ash on compressive 

strength of geopolymer are illustrated in Fig. 12f and Fig. 12g, respectively. It shows that both 

lines of the plot in Fig. 12f are similar, indicating that reducing the amount of silicate but 

increasing the amount of hydroxide in the geopolymer system does not significantly improve 

the compressive strength. It implies that an adequate amount of hydroxide and silicate should 

be used. Increasing the ratio of alkali activator/ash increases the compressive strength of 

geopolymer as shown in Fig. 12g.  It could be due to the greater dissolution of fly ash and 

better geopolymerization process, forming a rigid and coherent geopolymer structure. 

However, the geopolymer structure tends to become weaker and porous as the ratio of alkali 

activator/ash increases (Leong et al. 2016).   

 



 

Conclusions 

The prediction models in both ANN and GP have been successfully developed. The values of 

R2 greater than 0.9 reveals that the results obtained from the generated models fitted the 

experimental data very well, indicating the reliability of the prediction models. The prediction 

equation obtained from the GP model provides useful information for the prediction of 

compressive strength derived from the various mix design, besides shortening the time required 

to estimate the strength value effectively. Other than this, the importance of the input variables 

to the output in both ANN and GP models have been evaluated through various assessment 

methods.  As the input variables could influence the output significantly, the relationships 

between the input variables and the output results could be important for the mix design of soil-

fly ash geopolymer. Variables with high significant value contribute to the positive effect of 

the output and vice versa. Insignificant variables might reduce the accuracy and performance 

of the model. Therefore, the evaluation of the importance of the input variables to the output 

results from this research could provide useful insights into the development of compressive 

strength of soil-fly ash geopolymer. The conclusions derived from this research are as follows:  

 

1. Garson’s algorithm and connection weights approach were selected to quantify the 

importance of the input variables to the output in the ANN model. Connection weights 

approach demonstrated better assessment capability then Garson’s algorithm as it showed 

the true relationships (i.e. positive or negative effect) between the input variables and the 

output. Garson’s algorithm used absolute values to evaluate the assessment, hence showing 

a directionless result.  

 

2.  For the GP model, fitness method and model analysis were used to assess the importance 

of the input variables. The former exhibited superior assessment ability to evaluate the 

importance of the input variables than the latter. It is because fitness method used the 

contribution of fitness according to the frequency of input variable used in the model to 

assess the significance of each input variable. However, for model analysis, it quantified the 

recurrence of each input variable from the best model structures. These models presented 

identical structures to one another, hence, it could not rank all the input variables 

accordingly.    

 



 

3. The percentage of soil, the percentage of fly ash and the percentage of water were identified 

as the significant input variables to the output. The positive or negative relationship provides 

a very important insight into the strength development of soil-fly ash geopolymer. These 

variables could influence the formation of geopolymer gel in the structure and alkalinity of 

the alkali activators that could subsequently lead to strength differences.  

 

4. Factors affecting the compressive strength of geopolymer have been evaluated in details. 

Increasing the amounts of fly ash and soil improve the geopolymer strength. It could be due 

to better geopolymerization within the sample, forming a rigid and coherent structure. 

However, water has a negative effect on the development of the compressive strength of 

geopolymer. The amounts of silicate and hydroxide used show low correlations to the 

strength development. High ratios of silicate to hydroxide and alkali activator to ash do not 

necessarily lead to higher compressive strength. An adequate ratio should be used to obtain 

the optimum compressive strength.         
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Appendices 

Appendix A Details of experimental data and predicted results in the ANN and GP 

models  

No Soil Fly 

ash 

Water Silicate Hydroxide Silicate/ 

hydroxide 

Alkali 

activator/ 

ash 

Compressive 

strength-

experimental 

data 

Compressive 

strength- 

prediction in 

the ANN 

model 

Compressive 

strength- 

prediction in 

the GP 

model 

1 45.0 36.0 4.5 4.8 9.6 0.5 0.4 4.35 3.78 1.99 

2 43.1 34.5 8.6 4.6 9.2 0.5 0.4 13.9 14.1 17.6 

3 41.3 33.1 12.4 4.4 8.8 0.5 0.4 12.0 12.3 11.1 

4 39.7 31.7 15.9 4.2 8.5 0.5 0.4 4.24 4.41 3.67 

5 43.5 34.8 4.3 5.8 11.6 0.5 0.5 14.0 15.1 19.7 

6 41.7 33.3 8.3 5.6 11.1 0.5 0.5 17.3 17.5 16.4 

7 40.0 32.0 12.0 5.3 10.7 0.5 0.5 6.72 6.42 5.58 

8 38.5 30.8 15.4 5.1 10.3 0.5 0.5 2.42 2.14 2.61 

9 42.0 33.6 4.2 6.7 13.4 0.5 0.6 24.5 28.5 22.9 

10 40.3 32.3 8.1 6.5 12.9 0.5 0.6 8.64 11.1 11.4 

11 38.8 31.0 11.6 6.2 12.4 0.5 0.6 2.88 3.58 4.36 

12 37.3 29.9 14.9 6.0 11.9 0.5 0.6 1.60 1.83 1.45 

13 40.7 32.5 4.1 11.4 11.4 0.5 0.7 15.1 16.8 14.1 

14 39.1 31.3 7.8 10.9 10.9 0.5 0.7 2.96 4.78 5.29 

15 37.6 30.1 11.3 10.5 10.5 0.5 0.7 1.20 1.40 1.72 

16 36.2 29.0 14.5 10.1 10.1 0.5 0.7 0.880 1.04 0.290 

17 45.0 36.0 4.5 7.2 7.2 1 0.4 5.42 5.60 4.33 

18 43.1 34.5 8.6 6.9 6.9 1 0.4 11.7 12.1 15.6 

19 41.3 33.1 12.4 6.6 6.6 1 0.4 10.4 11.9 10.7 

20 39.7 31.7 15.9 6.3 6.3 1 0.4 5.24 5.11 6.26 

21 43.5 34.8 4.3 8.7 8.7 1 0.5 22.7 21.9 20.4 

22 41.7 33.3 8.3 8.3 8.3 1 0.5 14.5 13.9 14.7 

23 40.0 32.0 12.0 8.0 8.0 1 0.5 9.70 7.98 7.53 

24 38.5 30.8 15.4 7.7 7.7 1 0.5 1.79 2.96 2.20 

25 42.0 33.6 4.2 10.1 10.1 1 0.6 23.1 24.5 21.8 

26 40.3 32.3 8.1 9.7 9.7 1 0.6 12.9 16.7 13.4 

27 38.8 31.0 11.6 9.3 9.3 1 0.6 2.44 2.88 3.72 

28 37.3 29.9 14.9 9.0 9.0 1 0.6 2.06 1.59 1.43 

29 40.7 32.5 4.1 11.4 11.4 1 0.7 19.5 22.2 22.1 

30 39.1 31.3 7.8 10.9 10.9 1 0.7 5.90 6.94 8.50 

31 37.6 30.1 11.3 10.5 10.5 1 0.7 2.21 2.94 2.77 

32 36.2 29.0 14.5 10.1 10.1 1 0.7 1.63 1.29 0.480 

33 45.0 36.0 4.5 4.8 9.6 0.5 0.4 2.09 3.78 1.99 

34 43.1 34.5 8.6 4.6 9.2 0.5 0.4 15.6 14.1 17.6 

35 41.3 33.1 12.4 4.4 8.8 0.5 0.4 12.1 12.3 11.1 

36 39.7 31.7 15.9 4.2 8.5 0.5 0.4 3.17 4.41 3.67 

37 43.5 34.8 4.3 5.8 11.6 0.5 0.5 22.7 15.1 19.7 

38 41.7 33.3 8.3 5.6 11.1 0.5 0.5 19.7 17.5 16.4 



 

39 40.0 32.0 12.0 5.3 10.7 0.5 0.5 5.09 6.42 5.58 

40 38.5 30.8 15.4 5.1 10.3 0.5 0.5 1.87 2.14 1.45 

41 42.0 33.6 4.2 6.7 13.4 0.5 0.6 32.1 28.5 22.9 

42 40.3 32.3 8.1 6.5 12.9 0.5 0.6 13.2 11.1 11.4 

43 38.8 31.0 11.6 6.2 12.4 0.5 0.6 3.36 3.58 4.36 

44 37.3 29.9 14.9 6.0 11.9 0.5 0.6 2.00 1.83 2.20 

45 40.7 32.5 4.1 11.4 11.4 0.5 0.7 14.0 16.8 14.1 

46 39.1 31.3 7.8 10.9 10.9 0.5 0.7 5.33 4.78 5.29 

47 37.6 30.1 11.3 10.5 10.5 0.5 0.7 1.59 1.40 1.72 

48 36.2 29.0 14.5 10.1 10.1 0.5 0.7 1.73 1.04 0.290 

49 45.0 36.0 4.5 7.2 7.2 1 0.4 4.88 5.60 4.33 

50 43.1 34.5 8.6 6.9 6.9 1 0.4 12.6 12.1 15.6 

51 41.3 33.1 12.4 6.6 6.6 1 0.4 15.5 11.9 10.7 

52 39.7 31.7 15.9 6.3 6.3 1 0.4 4.62 5.11 6.26 

53 43.5 34.8 4.3 8.7 8.7 1 0.5 22.6 21.9 20.4 

54 41.7 33.3 8.3 8.3 8.3 1 0.5 12.9 13.9 14.7 

55 40.0 32.0 12.0 8.0 8.0 1 0.5 7.46 7.98 7.53 

56 38.5 30.8 15.4 7.7 7.7 1 0.5 1.98 2.96 2.20 

57 42.0 33.6 4.2 10.1 10.1 1 0.6 26.3 24.5 21.8 

58 40.3 32.3 8.1 9.7 9.7 1 0.6 17.4 16.7 13.4 

59 38.8 31.0 11.6 9.3 9.3 1 0.6 3.29 2.88 3.72 

60 37.3 29.9 14.9 9.0 9.0 1 0.6 1.31 1.59 1.43 

61 40.7 32.5 4.1 11.4 11.4 1 0.7 24.7 22.2 22.1 

62 39.1 31.3 7.8 10.9 10.9 1 0.7 7.29 6.94 8.50 

63 37.6 30.1 11.3 10.5 10.5 1 0.7 3.75 2.94 2.77 

64 36.2 29.0 14.5 10.1 10.1 1 0.7 0.980 1.29 0.480 



 

Appendix B Details of the GP model: Frequency of variables used and fitness in training and 

validation phases 

No Frequency of variables used in the model, fr  Fitness- 

Training 

(Ft) 

Fitness- 

validation  

(Fv) 

R2- 

training 

R2- 

validation 

Soil 

(S) 

Fly 

ash 

(FA) 

Water 

(W) 

Silicate 

(Si) 

Hydroxide 

(H) 

Silicate/ 

Hydroxide 

(Na) 

Alkali 

activator/ 

Ash (A) 

    

1 2 5 4 3 3 3 2 778.9 776.3 0.919 0.935 

2 2 5 4 3 3 3 3 778.5 771.3 0.919 0.931 

3 2 5 4 3 3 4 2 777.9 777.6 0.919 0.931 

4 2 5 4 3 3 3 2 777.7 777.9 0.919 0.931 

5 2 4 4 3 3 3 2 776.8 771.7 0.918 0.931 

6 2 6 4 3 3 3 2 776.8 771.7 0.918 0.931 

7 2 4 6 3 3 4 2 776.8 771.7 0.918 0.931 

8 2 4 4 3 3 4 2 776.8 771.3 0.918 0.931 

9 2 4 4 3 3 6 2 776.8 770.7 0.918 0.930 

10 2 4 4 3 3 4 2 776.8 770.7 0.918 0.930 

11 2 4 6 3 3 4 2 776.8 770.4 0.918 0.930 

12 2 4 4 3 3 4 2 776.8 770.3 0.918 0.930 

13 2 4 4 3 3 6 2 776.8 770.6 0.918 0.930 

14 2 4 4 3 3 4 2 776.8 770.2 0.918 0.930 

15 3 4 4 3 3 4 2 776.6 770.3 0.917 0.929 

16 1 4 4 3 3 4 2 776.6 770.3 0.917 0.929 

17 1 4 4 3 3 6 2 776.6 771.4 0.917 0.930 

18 1 4 4 5 3 4 2 776.6 771.4 0.917 0.930 

19 1 4 4 3 3 4 2 776.6 771.4 0.917 0.930 

20 3 4 4 3 3 4 2 776.6 771.4 0.917 0.930 

21 1 4 4 3 3 4 2 776.6 771.4 0.917 0.930 

22 1 4 4 5 3 4 2 776.5 771.4 0.917 0.930 

23 1 4 4 3 3 4 2 776.5 771.4 0.917 0.930 

24 1 4 4 3 3 4 4 776.5 771.3 0.917 0.930 

25 1 4 4 3 3 4 2 776.5 771.2 0.917 0.930 

26 3 4 4 3 3 4 2 776.5 771.4 0.917 0.930 

27 1 4 4 3 3 4 2 776.5 771.3 0.917 0.930 

28 1 4 4 3 3 3 2 776.5 771.8 0.917 0.930 

29 1 4 6 3 3 3 2 776.5 771.2 0.917 0.930 

30 1 4 4 3 3 3 2 776.5 771.2 0.917 0.930 

31 1 4 6 3 3 3 2 776.4 771.1 0.917 0.930 

32 1 4 4 3 3 3 2 776.4 771.6 0.917 0.930 

33 1 4 6 3 3 3 2 776.4 771.4 0.917 0.930 

34 1 4 4 3 3 3 2 776.4 771.5 0.917 0.930 

35 1 4 4 3 3 3 4 776.4 771.9 0.917 0.930 

36 1 4 4 3 3 3 2 776.4 771.9 0.917 0.930 

37 1 4 6 3 3 3 2 776.4 771.5 0.917 0.930 

38 1 4 4 3 3 3 2 776.4 771.3 0.917 0.930 

39 1 4 4 3 5 3 2 776.4 771.3 0.917 0.930 

40 1 4 4 3 3 3 2 776.4 771.1 0.917 0.930 



 

41 1 4 4 3 3 5 2 776.3 772.1 0.917 0.931 

42 1 4 4 3 3 3 2 776.3 771.9 0.917 0.931 

43 1 4 6 3 3 3 2 776.1 770.5 0.917 0.930 

44 1 4 6 3 3 3 2 776.1 770.2 0.917 0.930 

45 1 4 6 3 3 3 2 775.9 771.0 0.917 0.930 

46 1 4 6 3 3 5 2 775.9 768.9 0.917 0.929 

47 1 4 6 3 3 6 2 775.7 769.4 0.917 0.929 

48 1 4 4 3 3 4 4 775.5 763.3 0.917 0.928 

49 1 4 5 3 3 4 4 775.4 767.0 0.917 0.928 

50 1 4 4 3 3 6 2 774.6 759.2 0.917 0.928 

 



 

Appendix C Sample calculations for evaluating the importance of the input variable to the 

output according to the contribution of fitness  

A. Relative frequency of variables used, r 
No Soil  

(S) 

Fly ash  

(FA) 

Water  

(W)  

Silicate  

(Si) 

Hydroxide  

(H) 

Silicate/hydroxide  

(Na) 

Alkali activator/ash  

(A) 
1 0.0909 0.227 0.182 0.136 0.136 0.136 0.0909 

2 0.0870 0.217 0.174 0.130 0.130 0.130 0.130 

3 0.0870 0.217 0.174 0.130 0.130 0.174 0.0870 

*The individual frequency of variable used is divided by the total of frequency of variables used 

 e.g. rS = frS/(frS + frFA + frW + frSi + frH + frNa + frA)  = 2/(2+5+4+3+3+3+2) = 0.0909 

 

B. Contribution of fitness according to the relative frequency of variables used in training 

phase, Ct 
No Soil  

(S) 

Fly ash 

(FA) 

Water 

(W)  

Silicate  

(Si) 

Hydroxide  

(H) 

Silicate/hydroxide 

(Na) 

Alkali activator/ash (A) 

1 70.8 177.0 141.6 106.2 106.2 106.2 70.8 

2 67.7 169.2 135.4 101.5 101.5 101.5 101.5 

3 67.6 169.1 135.3 101.5 101.5 135.3 67.6 

Sum (∑) 2447.1 7264.3 7840.8 5428.8 5364.3 6648.9 3833.2 

*The individual relative frequency of variable used is multiplied by the fitness in training phase 

 e.g. CtS = rS × Ft = 0.0909 × 778.9 = 70.8 

 

C. Contribution of fitness according to the relative frequency of variables used in the GP 

model in validation phase, Cv 
No Soil  

(S) 

Fly ash  

(FA) 

Water  

(W)  

Silicate  

(Si) 

Hydroxide  

(H) 

Silicate/hydroxide  

(Na) 

Alkali activator/ash  

(A) 
1 70.6 176.4 141.2 105.9 105.9 105.9 70.6 

2 67.1 167.7 134.1 100.6 100.6 100.6 100.6 

3 67.6 169.0 135.2 101.4 101.4 135.2 67.6 

Sum (∑) 2430.1 7213.4 7784.9 5390.4 5326.3 6599.9 3805.2 

*The individual relative frequency of variable used is multiplied by the fitness in validation phase 

 e.g. CvS = rS × Ft = 0.0909 × 776.3 = 70.6  

 

D. Relative importance of the input variable to the output, RI  

Phase Soil  

(S) 

Fly ash  

(FA) 

Water  

(W)  

Silicate  

(Si) 

Hydroxide  

(H) 

Silicate/hydroxide  

(Na) 

Alkali activator/ash  

(A) 
Training 6.30 18.7 20.2 13.9 13.8 17.1 9.87 

Rank 7 2 1 4 5 3 6 

Validation 6.30 18.7 20.2 13.9 13.8 17.1 9.87 

Rank 7 2 1 4 5 3 6 

*Summation of contribution of fitness for individual input variable is divided by the summation of contribution 

of fitness for all input variable in respective training or validation phase, then multiplies by 100. The relative 

importance is ranked in descending order.    

 e.g. RIS = [∑CtS/∑(CtS + CtFA + … + CtA)] × 100 = [2447.1/(2447.1 + 7264.3 + … + 3833.2) ] × 100 = 6.3  

 

 



Table 1 Chemical composition of fly ash and residual soil 

Elements (%) Sarawak fly ash Residual soil 

SiO2 43.8 32.7 

Al2O3 18.1 25.3 

Fe2O3 7.7 21.3 

CaO 3.9 0.04 

MgO 0.5 0.22 

MnO 22.8 - 

K2O 2.0 0.03 

Na2O 0.3 0.07 

SO3 0.1 0.01 

TiO2 0.6 - 

P2O5 0.1 - 

LOI 0.5 17.2 
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Table 2 Mixture ratios and compressive strength of each dataset collected from the experiments 

No. Alkali activator/ 

ash 

NaOH  

(or KOH) 

Na2SiO3/ 

NaOH  

(or KOH) 

Water 

(%) 

Compressive 

Strength  

(MPa) 

1 0.4 KOH 0.5 10 4.35 

2 0.4 KOH 0.5 20 13.9 

3 0.4 KOH 0.5 30 12 

4 0.4 KOH 0.5 40 4.24 

5 0.5 KOH 0.5 10 14 

6 0.5 KOH 0.5 20 17.3 

7 0.5 KOH 0.5 30 6.72 

8 0.5 KOH 0.5 40 2.42 

9 0.6 KOH 0.5 10 24.5 

10 0.6 KOH 0.5 20 8.64 

11 0.6 KOH 0.5 30 2.88 

12 0.6 KOH 0.5 40 1.6 

13 0.7 KOH 0.5 10 15.1 

14 0.7 KOH 0.5 20 2.96 

15 0.7 KOH 0.5 30 1.2 

16 0.7 KOH 0.5 40 0.88 

17 0.4 KOH 1 10 5.42 

18 0.4 KOH 1 20 11.7 

19 0.4 KOH 1 30 10.4 

20 0.4 KOH 1 40 5.24 

21 0.5 KOH 1 10 22.7 

22 0.5 KOH 1 20 14.5 

23 0.5 KOH 1 30 9.7 

24 0.5 KOH 1 40 1.79 

25 0.6 KOH 1 10 23.1 

26 0.6 KOH 1 20 12.9 

27 0.6 KOH 1 30 2.44 

28 0.6 KOH 1 40 2.06 
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29 0.7 KOH 1 10 19.5 

30 0.7 KOH 1 20 5.9 

31 0.7 KOH 1 30 2.21 

32 0.7 KOH 1 40 1.63 

33 0.4 NaOH  0.5 10 2.09 

34 0.4 NaOH  0.5 20 15.6 

35 0.4 NaOH  0.5 30 12.1 

36 0.4 NaOH  0.5 40 3.17 

37 0.5 NaOH  0.5 10 22.7 

38 0.5 NaOH  0.5 20 19.7 

39 0.5 NaOH  0.5 30 5.09 

40 0.5 NaOH  0.5 40 1.87 

41 0.6 NaOH  0.5 10 32.1 

42 0.6 NaOH  0.5 20 13.2 

43 0.6 NaOH  0.5 30 3.36 

44 0.6 NaOH  0.5 40 2 

45 0.7 NaOH  0.5 10 14 

46 0.7 NaOH  0.5 20 5.33 

47 0.7 NaOH  0.5 30 1.59 

48 0.7 NaOH  0.5 40 1.73 

49 0.4 NaOH  1 10 4.88 

50 0.4 NaOH  1 20 12.6 

51 0.4 NaOH  1 30 15.5 

52 0.4 NaOH  1 40 4.62 

53 0.5 NaOH  1 10 22.6 

54 0.5 NaOH  1 20 12.9 

55 0.5 NaOH  1 30 7.46 

56 0.5 NaOH  1 40 1.98 

57 0.6 NaOH  1 10 26.3 

58 0.6 NaOH  1 20 17.4 

59 0.6 NaOH  1 30 3.29 

60 0.6 NaOH  1 40 1.31 



61 0.7 NaOH  1 10 24.7 

62 0.7 NaOH  1 20 7.29 

63 0.7 NaOH  1 30 3.75 

64 0.7 NaOH  1 40 0.98 

 



Table 3 Statistical values of input variables and output used in the predictive modelling 

Statistical 

parameter 

Soil 

(wt%) 

Fly 

ash 

(wt%) 

Water 

(wt%) 

Silicate 

(wt%) 

Hydroxide 

(wt%) 

Silicate/ 

hydroxide 

(weight ratio) 

Alkali 

activator/ash 

(weight ratio) 

Compressive 

strength 

(MPa) 

Minimum  36.2 29.0 4.07 4.23 6.35 0.5 0.4 0.876 

Maximum 45.0 36.0 15.9 11.4 13.4 1.0 0.7 32.0 

Range  8.81 7.05 11.8 7.15 7.10 0.5 0.3 31.2 

Average  40.3 32.2 9.87 7.78 9.82 0.8 0.6 9.48 

Standard 

deviation  

2.29 1.83 4.08 2.27 1.81 0.3 0.1 8.00 

Sample 

variance  

5.19 3.32 16.9 5.05 3.32 0.1 0.0 64.7 

Median  40.00 32.0 11.3 7.69 10.1 1.0 0.6 5.90 

Skewness  0.251 0.251 -0.0718 0.0498 -0.185 -0.1 -0.1 0.844 

Kurtosis  -0.479 -0.479 -1.32 -1.35 -0.615 -2.0 -1.3 -0.283 
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Table 4 Connection weights amongst input-hidden-output layer 

Hidden layer H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 

Input layer 

Soil 4.266 -0.0883 -0.0764 0.808 1.51 -2.41 -0.908 3.09 1.75 2.31 

Fly ash 0.0634 0.170 4.38 -1.06 2.02 -2.35 -0.277 5.26 1.06 2.21 

Water -0.884 -1.829 -1.04 6.39 0.611 1.01 -0.0219 -2.69 3.64 -2.11 

Silicate 0.460 -0.00160 -0.655 -1.93 -1.94 3.07 3.29 -0.499 0.903 -1.54 

Hydroxide -1.27 1.50 1.42 -3.60 -2.41 -0.334 -1.70 -2.486 -1.82 0.934 

Silicate/hydroxide -0.954 0.0807 0.818 2.47 -2.11 3.79 5.02 2.36 1.32 0.688 

Alkali activator/ash -0.237 2.17 -0.387 -2.14 0.649 3.35 0.962 -5.07 -4.17 -0.930 

  

Output layer 

Compressive strength -2.69 2.56 2.47 -0.285 -1.05 -0.815 -0.435 1.09 1.17 -1.62 
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Table 5 The values of R2 and errors in training and validation phases of the GP model 

Phase R2 MAE RMSE RAE RRSE 

Training 0.920 1.513 2.01 0.243 0.284 

Validating 0.935 1.754 2.73 0.218 0.288 
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Table 6 Correlation coefficient of the GP model in training and validating phases 

Input variable 
Correlation coefficient, r 

 
Training phase Validation phase 

Soil 
0.717 0.464 

Fly ash 
0.717 0.461 

Water 
-0.713 -0.688 

Silicate 
-7.78 × 10-2 0.159 

Hydroxide 
0.180 0.219 

Silicate/hydroxide 
-2.08 × 10-2 0.201 

Alkali activator/ash 
-0.149 3.21 
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Table 7 Summary of importance of the input variable to the output in the ANN and GP 

models 

Model ANN GP 

R2 obtained in the 

model 

0.9535 0.9301 

Input variable Garson’s 

algorithm 

Connection weights 

approach  

Model 

analysis 

Fitness 

method 

Soil 6 2 (negative relationship) 6-7 7 

Fly ash 4 1 (positive relationship) 1 2 

Water 1 6 (negative relationship) 2 1 

Silicate 7 7 (negative relationship) 3-5 4 

Hydroxide 3 3 (positive relationship) 3-5 5 

Silicate/hydroxide 5 5 (positive relationship) 3-5 3 

Alkali activator/ash 2 4 (negative relationship) 6-7 6 
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Table 8 Statistical values of the input variables  

Input variable 

 

 

Covariance 

 

 

Correlation 

Coefficient, 

r 

Standard 

error of t, 

Sr 

Test 

statistic, 

t 

p-value 

 

 

Significance of 

input variable to 

the output 

Soil 

 

 

10.9 

 

 

0.591 

 

 

0.102 

 

 

5.77 

 

 

2.68×10-7 

 

 

Significant 

(positive 

relationship) 

Fly ash 

 

8.71 

 

 

0.591 

 

 

0.102 

 

 

5.77 

 

 

2.68×10-7 

 

 

Significant 

(positive 

relationship) 

Water -22.6 -0.701 0.0906 -7.74 1.13×10-7 Significant 

(negative 

relationship) 

Silicate 

 

0.295 

 

0.0165 

 

0.127 

 

0.130 

 

0.897 

 

Not Significant 

Hydroxide 

 

2.67 

 

0.190 

 

0.125 

 

1.52 

 

0.133 

 

Not Significant 

Silicate/ 

hydroxide 

0.119 

 

0.0604 

 

0.127 

 

0.477 

 

0.635 

 

Not Significant 

Alkali 

activator/ash 

-0.0730 

 

-0.0827 

 

0.127 

 

-0.654 

 

0.516 

 

Not Significant 

Notes: The input variable shows the significant effect on the output when p<0.05; it is insignificant when p>0.05 

(null hypothesis).  
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