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Abstract11

With the vast water resources of West Africa coming under threat due to the impacts of

climate variability and human influence, the need to understand its terrestrial water storage

(TWS) changes becomes very important. Due to the lack of consistent in-situ hydrological

data to assist in the monitoring of changes in TWS, this study takes advantage of the Grav-

ity Recovery and Climate Experiment (GRACE) monthly gravity fields to provide estimates

of vertically integrated changes in TWS over the period 2002-2014, in addition to satellite

altimetry data for the period 1993-2014. In order to understand TWS variability over West

Africa, Principal Component Analysis (PCA), a second order statistical technique, and Multi-

ple Linear Regression Analysis (MLRA) are employed. Results show that dominant patterns

of GRACE-derived TWS changes are observed mostly in the West Sahel, Guinea Coast, and

Middle Belt regions of West Africa. This is probably caused by high precipitation rates at sea-

sonal and inter-annual time scales induced by ocean circulations, altitude and physiographic

features. While the linear trend for the spatially averaged GRACE-derived TWS changes over

West Africa for the study period shows an increase of 6.85 ± 1.67 mm/yr, the PCA result in-

dicates a significant increase of 20.2± 5.78 mm/yr in Guinea, a region with large inter-annual

variability in seasonal rainfall, heavy river discharge, and huge groundwater potentials. The

increase in GRACE-derived TWS during this period in Guinea, though inconsistent with the

lack of a significant positive linear trend in TRMM based precipitation, is attributed to a

large water surplus from prolonged wet seasons and lower evapotranspiration rates, leading to

an increase in storage and inundated areas over the Guinea region. This increase in storage,

which is also the aftermath of cumulative increase in the volume of water not involved in



surface runoff, forms the huge freshwater availability in this region. However, the relatively

low maximum water levels of Kainji reservoir in recent times (i.e., 2004/2005, 2007/2008,

and 2011/2012) as observed in the satellite altimetry-derived water levels might predispose

the Kainji dam to changes that probably may have a negative impact on the socio-economic

potentials of the region. GRACE-derived TWS is not well correlated with TRMM-based pre-

cipitation in some countries of West Africa and apparently indicates a lag of two months over

much of the region. On the other hand, the regression fit between GLDAS-derived TWS and

GRACE-derived TWS shows R2 of 0.85, indicating that trends and variability have been well

modelled.

Keywords: GRACE, PCA, TRMM, GLDAS, Satellite Altimetry, Multiple Linear12

Regression Analysis13

1. Introduction14

With an estimated population of 300 million people whose livelihood depends on rain-fed15

agriculture (see, e.g., USAID, 2013; Roudier et al., 2011; Amani et al., 2007), West Africa16

is one of the regions in the world with highly variable and extreme climatic conditions (i.e.,17

droughts and floods), which impacts directly on the hydrological cycle and the human popula-18

tion. Despite its vast water resources, which includes lakes, rivers, wetlands, and groundwater19

systems, West Africa has a history of vulnerability to the impacts of climate change, which20

threatens these water resources and agriculture (e.g., Coe and Foley, 2001; Roudier et al.,21

2011; Okpara et al., 2013; Oyebande and Odunuga, 2010; Ojo et al., 2004).22

More often than not, the region is subjected to food insecurity, famine, health issues, and23

social instability due to water related problems induced by the frequency and persistence of24

extreme hydrological/hydro-climatological conditions (e.g., droughts and floods) (see, e.g., Ok-25

para et al., 2013; Descroix et al., 2009; Boone et al., 2009; Vierich and Stoop, 1990). Therefore,26

understanding the spatio-temporal variability of changes in terrestrial water storage (TWS)27

(i.e., the total of surface waters, soil moisture, canopy storage, and groundwater) in this region28

can support sustainable decisions and effective management of water resources. In addition,29

it can also provide information on the hydrological footprints, which probably can help reveal30

the impacts of climate variability on the region’s TWS.31

Furthermore, in West Africa, changes in any component of the TWS do have socio-economic32

and environmental implications (e.g., Grippa et al., 2011). For example, as described in Moore33
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and Williams (2014) in a recent study in Africa, the surface waters are needed to maintain34

fisheries, which are a principal contributor to the food basket of the region. Consequently,35

changes to any component of these surface waters (i.e., lakes and rivers) or groundwater36

resources might jeopardise the livelihood and the economic viability of the region. Apparently,37

for a region such as West Africa that depends heavily on rain-fed agriculture; reduced rainfall38

and freshwater availability may lead to crop failure, and low agricultural productivity (Xie39

et al., 2012; Vierich and Stoop, 1990). This ultimately will affect agricultural development40

and the economy of the region. Besides the reduced freshwater availability occasioned by41

changes in rainfall patterns of the region (Forootan et al., 2014), the increasing irrigation42

development (Xie et al., 2012), ecosystem functioning and other various forms of anthropogenic43

influence puts water resources at risk (e.g., Coe and Foley, 2001), hence the need to examine44

the changes in TWS and its variability over West Africa, which in the long term can support45

effective allocation, governance, and management.46

Changes in TWS, be they groundwater, soil moisture, canopy storage, surface waters (i.e.,47

lakes, wetlands, and rivers) remain one of the most critical components of the hydrological48

cycle. However, estimating these changes in TWS over West Africa remains a major challenge49

due to few in-situ monitoring stations, lack of large scale hydrological data, and unreliable50

field measurements amongst others. While Grippa et al. (2011) specifically noted that the51

monitoring of water budget components in West Africa are hampered by scarcity of in-situ52

measurements, Anayah and Kaluarachchi (2009) reported that the monitoring of groundwa-53

ter in the upper east region of northern Ghana started in 2005 and continued until the end54

of 2008 (i.e., from 5 monitoring wells). Local measurements from dedicated networks such55

as the AMMA-CATCH1 hydro-meteorological observing system have been used in validation56

studies (e.g., Gosset et al., 2013) and to characterize rainfall regime for the Gourma region57

located in Mali (e.g., Frappart et al., 2009). However, hydrological studies over large spatially58

heterogenous areas remain difficult as the AMMA-CATCH networks are highly insufficient59

and only available in few countries (i.e., Niger, Mali, and Benin). Besides the scarcity and60

the incomplete records of in-situ data in the sub-regions due to limited and degraded weather61

hydrological infrastructures precipitated by poor government funding, Nicholson et al. (2000)62

1African Monsoon Multidisciplinary Analysis-Couplage Atmosphere Tropicale Cycle Hydrologique (Lebel

et al., 2009)
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reported that the acquisition of rainfall data despite its availability was largely hindered by po-63

litical and economic instability, in addition to government policies. Due to these sparse in-situ64

meteorological and hydrological monitoring networks in West Africa, degraded hydrological65

infrastructures, data inaccessibility, and the gaps in routine measurements of relevant hydro-66

logical variables (e.g., river discharge, groundwater), our understanding of the spatio-temporal67

patterns of TWS changes is limited, hence the need for a large scale holistic assessment of68

water storage estimation.69

Due to the lack of in-situ hydrological data to assist in the accurate monitoring of TWS70

changes, indices such as effective drought index (EDI), standard precipitation index (SPI),71

and palmer drought severity index (PDSI) have been used as proxies for monitoring water72

availability and hydrological conditions (see, e.g., Laux, 2009; Heim, 2002; McKee et al., 1993,73

1995). However, these indices do not account for the changes in the state of other water74

storage components (e.g., groundwater) (Long et al., 2013), which is an important resource for75

livelihood. While it has been reported that these indices are associated with uncertainties (see,76

e.g., Ahmed et al., 2014), the use of hydrological models has shown relatively good performance77

(Pedinotti et al., 2012) on the one hand, and inconsistent results on the other hand (Xie et al.,78

2012). However, land water storage output from models underestimate changes in water79

storage, and might be restricted due to limited data for evaluation and calibration purposes80

(Boone et al., 2009; Schuol and Abbaspour, 2006). In order to circumvent this problem,81

previous studies have combined remote sensing data and outputs from models to improve the82

estimation of changes in TWS (e.g., Wagner et al., 2009; Leblanc et al., 2007).83

Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mis-84

sion under the auspices of National Aeronautic and Space Administration (NASA) in the85

United States and its German counterpart the Deutsches Zentrum für Luft-und Raumfahrt86

(DLR) has been collecting and archiving time variable monthly gravity fields (Tapley et al.,87

2004). These monthly gravity fields are provided as sets of spherical harmonic coefficients,88

which can be inverted to global and regional estimates of vertically integrated TWS at a spa-89

tial resolution of few hundred kilometres or more (Swenson and Wahr, 2007, 2002; Wahr et al.,90

1998).91

GRACE data has been used in the estimation of changes in TWS over West Africa in recent92

times. For instance, Grippa et al. (2011) in a validation study, compared estimated TWS93

variations from different GRACE products with outputs from 9 land surface models operating94
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within the framework of the African Monsoon Multidisciplinary Analysis Land Surface Inter-95

comparison Project (ALMIP). From the study, model outputs had a good agreement with96

GRACE-derived TWS changes. However, the analysis did not include the Western Sahel and97

some parts of Guinea coast, the region whose general rainfall pattern is highly influenced by98

ocean circulations and physiographic features. Ferreira et al. (2012, 2014) estimated mass99

changes and sink terms over the Volta basin in West Africa while Forootan et al. (2014)100

proposed a prediction approach of TWS over West Africa for a duration of two years using101

a combination of past GRACE data, precipitation, and SST over the oceans. Still in West102

Africa, while Nahmani et al. (2012) in a comparative study showed how the observed vertical103

deformation component from GPS data was fairly consistent with regional-scale estimates from104

GRACE satellite products and geophysical models, Hinderer et al. (2009), had previously105

compared in-situ data from GPS with satellite observations such as GRACE in a project106

labelled Gravity and Hydrology in Africa. Furthermore, at continental and basin-wide scales,107

GRACE data have been used to investigate trends, and seasonal cycles of the various TWS108

components (see, e.g., Ahmed et al., 2014; Awange et al., 2013, 2014a,b; Ramillien et al., 2014).109

For example, results of GRACE TWS solutions computed over Africa from 2003 to 2012 in110

Ramillien et al. (2014) indicate a water loss from the North Saharan aquifers.111

In order to improve our understanding of the land water storage over West Africa and to112

further extend the studies mentioned above, this study attempts to highlight the recent annual113

and seasonal variability of TWS changes for the period 2002-2014. Contrary to previous114

studies in the region, the approach here is to analyse the variability and the relationship115

between GRACE-derived TWS changes and rainfall patterns over West Africa using principal116

component analysis (PCA) (Jolliffe, 2002; Preisendorfer, 1988) and multiple linear regression117

analysis (MLRA). The study looks into the inter-annual and seasonal variability of TWS118

changes, lake height variations of water reservoirs, and precipitation patterns. To evaluate119

GRACE-derived TWS changes over West Africa, total water storage content (TWSC) from120

the Global Land Data Assimilation System (GLDAS) (Rodell et al., 2004) were also explored.121

Therefore, this study explores hydrological fluxes such as precipitation and satellite altime-122

try data, alongside with TWS changes from GRACE and GLDAS in order to understand the123

spatio-temporal dynamics of these hydrological variables and the available water resources that124

can support sustainable agriculture and ecosystem functioning. Specifically the study seeks125

to (i) identify trends and dominant patterns of TWS changes and its relation to precipitation126
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over West Africa and (ii) understand the annual seasonal cycles of TWS and precipitation127

changes over West Africa and the response time between them.128

The remainder of the study is segmented as follows; in section 2, a brief introduction to129

the study area is provided while in section 3, a discussion on the data and methodology is130

given. This is followed by analysis and discussion of the results in section 4. The conclusion131

of the study is provided in section 5.132

2. West Africa133

2.1. Location134

West Africa is located between latitudes 0◦N to 20◦N and longitudes 20◦W to 20◦E (Fig. 1)135

and comprises a group of 16 countries covering an area of approximately 7.5 Million km2. The136

two major geographical zones are the countries of the gulf of Guinea (i.e., the area between137

latitudes 4◦N and 8◦N), and the Sahelian countries (e.g., Amani et al., 2007). The southern138

boundary is the Atlantic ocean; on the north is the Sahara desert, while the eastern boundary139

is flanked by the Cameroon mountains.140

2.2. Climate141

The climate of West Africa is governed by the seasonal migration of the intertropical142

convergence zone (ITCZ) (e.g., McSweeney et al., 2010). The location, position, and intensity143

(strength) of both the circulation features and ITCZ are responsible for the extreme wet and144

dry conditions, and intra-annual rainfall distribution in the Sahel and likewise the gulf of145

Guinea (Nicholson and Webster, 2007; Lebel and Ali, 2009; Nicholson, 2013; Nicholson and146

Grist, 2001). While rainfall ranges from less than 200 mm/yr in the Sahelian countries to over147

2000 mm/yr in the gulf of Guinea, an increasing annual trend in temperature of 0.20◦C/yr148

has been observed (e.g., Okpara et al., 2013; Ojo et al., 2004). Rain seasons in the gulf of149

Guinea occur between April-June and July-September, with the wettest months being June150

and September or sometimes October (Nicholson et al., 2000). In the Sahel and fringe of151

the desert, the rain season takes place between June and September with maximum rainfall152

occurring in August. SSSS153

6



Figure 1: Study area showing the definitions of sub-regions of West Sahel (WS), Central Sahel (CS), Guinea

Coast (GC), and Middle Belt modified after Diatta and Fink (2014). .

3. Data and Methodology154

3.1. Data155

3.1.1. Gravity Recovery and Climate Experiment (GRACE)156

The GRACE satellite mission has been in space since March 2002, collecting monthly grav-157

ity fields used to estimate global changes in TWS (Tapley et al., 2004). GRACE time-variable158

gravity field products have been frequently used to study the Earth’s water storage changes159

at basin, continental, and global scales (Ferreira et al., 2012; Grippa et al., 2011; Ramillien160

et al., 2008). The standard GRACE products, which are usually referred to as sets of spher-161

ical harmonic coefficients, were used in estimating TWS changes. These spherical harmonic162

coefficients do suffer from signal attenuation and satellite measurement errors causing noise in163

the higher degree coefficients (Landerer and Swenson, 2012; Swenson and Wahr, 2002). Con-164

sequently, GRACE data undergo filtering in the form of spatial averaging and smoothing in165

order to reduce the effect of noise (see, e.g., Wouters et al., 2014; Swenson and Wahr, 2007).166

Prior to the smoothing of GRACE data, degree 2 coefficients were replaced with estimates from167
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satellite laser ranging (Cheng et al., 2013) while the degree 1 coefficients provided by Swenson168

et al. (2008) were used. This is a conventional practice since GRACE does not provide changes169

in degree 1 coefficients (i.e., C10, C11, and S11), and is also affected by large tide-like aliases170

in the degree 2 coefficients (i.e., C20). The GRACE Release-05 (RL05) spherical harmonic171

coefficients truncated at degree and order 60 from Center for Space Research (CSR), covering172

the period 2002-2014 is used in this study to compute changes in TWS. The three well known173

processing centers such as the CSR, GeoForschungsZentrum (GFZ) and the Jet Propulsion174

Laboratory (JPL) use different algorithms to compute gravity field harmonic coefficients from175

the raw GRACE observations. Over West Africa, Grippa et al. (2011) observed that seasonal176

water storage computed from the three GRACE products show significant differences, as op-177

posed to their temporal evolutions, which were rather consistent. We use the CSR data set178

because of its wide application in continent-wide studies.179

The fully normalised spherical harmonic coefficients were smoothed using the DDK2 de-180

correlation filter (Kusche et al., 2009) before converting it to equivalent water heights (EWH)181

following the approach of Wahr et al. (1998). While taking notice of Landerer and Swen-182

son (2012) computed TWS solution, which uses an isotropic Gaussian averaging filter, the183

choice of the DDK2 filter used here is because it embodies both decorrelation and smoothing184

and also accommodates better the an-isotropic GRACE error structure (Kusche, 2007). The185

computed TWS was synthesised on a 1◦ x 1◦ grid and then rescaled in order to restore the186

geophysical signal loss caused by the effect of spatial averaging using the de-correlation filter187

during the post-processing of the GRACE data (Long et al., 2015; Landerer and Swenson,188

2012). Considering the progress made so far and the advances in the use of GRACE data, i.e.,189

from validation to full utilization especially in hydrological studies, rescaling GRACE data190

in order to remedy signal loss caused by the filtering is critical. For instance, Landerer and191

Swenson (2012), emphasized that if the effect of the filter is not accounted for in the trans-192

formed GRACE observations, the signal attenuation will become an error in the residual in193

the regional water balance or will serve as a constraint in water budget closure. In appendix194

A, we show the impact of filtering on CSR and JPL GRACE products and their relationship195

with model-generated water storage. In particular, the effect of the DDK2 filter on computed196

GRACE-derived TWS before and after restoring the geophysical signal loss was measured by197

comparing it with the GLDAS-TWS. The rescaled monthly TWS grids had a few random198

gaps of up to 12 months in between that were filled through interpolation, which is a common199
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reconstruction method for hydrological time series (e.g., Santos et al., 2010). This is particu-200

larly important for principal component analysis, which requires continuous spatio-temporal201

data (Rangelova et al., 2007). Though we have also computed GRACE derived TWS using202

coefficients from those of JPL, however, the desired objectives of this study are realized by203

using a single product, given the observed consistency in the temporal patterns of CSR and204

JPL (see Appendix A). Also, Ferreira et al. (2012) showed similar consistency between the205

time series of GRACE-derived TWS changes using GFZ and CSR coefficients in the region.206

3.1.2. Tropical Rainfall Measuring Mission (TRMM)207

The TRMM 3B43 (Huffman et al., 2007; Kummerow et al., 2000) provides monthly pre-208

cipitation estimates of high temporal (month) and spatial (0.25◦ x 0.25◦) resolution, with209

global coverage between the geographic latitudes 50◦S and 50◦N. For this study, monthly TR-210

MMv7 3B43 precipitation rates from National Aerospace and Space Administration (NASA)211

Goddard Space Flight Center (GSFC) covering the period 1998-2013 was used to analyse the212

spatio-temporal variability of rainfall over West Africa. TRMM data has been validated (i.e.,213

comparing satellite rainfall observations with gauge datasets) for the region (e.g., Nicholson214

et al., 2003) and significantly improved (e.g., Duan and Bastiaanssen, 2013). Also, especially215

for West Africa, TRMM validation using in-situ data showed zero bias (i.e., the magnitude216

of TRMM was consistent with those of gauges), with a root mean square error (RMSE) of217

0.7/0.9 mm/day for the seasonal and August rainfall (e.g., Nicholson, 2013). Unlike East Africa218

where the Global Precipitation Climatology Center (GPCC) gauge dataset is inconsistent with219

TRMM, over West Africa, the GPCC gauge data shows good agreement with TRMM (see,220

Paeth et al., 2012; Nicholson et al., 2003). Further, the monthly TRMM precipitation were221

resampled into 1◦ x 1◦ in order to maintain a common spatial resolution with other datasets222

such as GRACE-TWS solutions.223

3.1.3. Global Land Data Assimilation System (GLDAS)224

GLDAS (Rodell et al., 2004) drives four land surface models (Mosaic, Community Land225

Model (CLM), Variable Infiltration Capacity (VIC), and Noah) to produce different fields of226

the land surface (e.g., Hassan and Jin, 2014). In this study, GLDAS-derived monthly total227

water storage content (TWSC) at 1◦ x 1◦ spatial resolution was used for a comparative analysis228

to evaluate GRACE data over the region. In addition, similar to Landerer and Swenson (2012)229

and Long et al. (2015), the derived TWSC from GLDAS was also used to rescale the GRACE-230
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derived TWS in order to restore the signal loss due to filtering. Also, we highlight briefly that231

the relationship between the original and DDK2-filtered GLDAS data was used to obtain the232

scale factor. The data covering the years 2002-2013 was obtained from the Goddard Earth233

Sciences Data and Information Services Center (GESDICS)2.234

3.1.4. Satellite Altimetry235

Lake height variations computed from TOPEX/POSEIDON (T/P), Jason-1 and Jason-236

2/OSTM altimetry provided by the United States Department of Agriculture (USDA) was used237

in the study as auxiliary information to analyse water reservoirs in the study area. Time series238

of lake levels can be downloaded from www.pecad.fas.usda.gov/cropexplorer/globalreservoir239

and the hydroweb Laboratoire dEtude en Geophysique et Oceanographie Spatiale (LEGOS)240

database. The data covering the period 1993 to 2013 was used in the study to analyse lake241

height variation. We rely on altimetry data for this study since the estimated errors of lake242

height variation with respect to the reference mean level for Lake Volta, Lake Chad, and Kainji243

dam are mostly in the sub-centimeter range. The USDA lake height variation time series used244

in this study were already smoothed with a median type filter to eliminate outliers and reduce245

high frequency noise.246

3.2. Methodology247

3.2.1. Principal Component Analysis (PCA)248

Principal component analysis (PCA) is an extraction technique that is used to reduce the249

dimension of large multivariate data, and at the same time account for the most dominant250

variations in the original data set (e.g., Jolliffe, 2002; Martinez and Martinez, 2005; Westra251

et al., 2010; Preisendorfer, 1988). Its mathematical simplicity and the ability to explain the252

optimised variance, using a small number of principal components, has probably made this253

method the most widely used statistical data analysis tool in climate science (Westra et al.,254

2010). In addition to its simplicity, the choice of PCA in this study is also due to its capability255

to isolate both inter-annual signals, and long-term periodic variations (e.g., Rangelova et al.,256

2007). Fundamentally, PCA reduces the dimensions of multivariate data by creating new257

variables that are linear functions of the original variables. Given k variables at a given time258

period i, the linear combinations for k principal components (PCs) are259

2http://grace.jpl.nasa.gov/data/gldas/
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

yi,1 = p11xi,1 + p12xi,2 + p13xi,3 + ... + p1kxi,k

yi,2 = p21xi,1 + p22xi,2 + p23xi,3 + ... + p2kxi,k

...

...

yi,k = pk1xi,1 + pk2xi,2 + pk3xi,3 + ... + pkkxi,k


i = 1, ..., n (1)

The data matrix xi,k contains rows representing the time i in months and k, the variables, i.e.,260

the observations, which in our case is TWS or rainfall. In the linear combinations above (Eq.261

1) the y values are orthogonal and also the new uncorrelated variables called the PCs such262

that yi1 explains the highest variability while yi2 up to yik explain the remaining variance.263

The coefficients of the linear combinations are called loadings (i.e., the eigenvectors) and they264

provide the weights of the original variables in the PCs. The eigenvalues (i.e., the amount of265

covariance in time explained by each eigenvector) and eigenvectors, which is also referred to as266

empirical orthogonal functions (EOFs) can be derived from the sample covariance matrix or267

correlation matrix of the centered data matrix xi,k. The EOF is the spatial distribution or the268

spatial patterns of rainfall or TWS while the EOF/PC pair is called the PCA mode. In our case,269

the covariance PCA method was used since it is more ideal for climate analysis, in addition to270

extracting PCs that emphasize areas with very high temporal variability (e.g., Nicholson, 2014;271

Jolliffe, 2002). While the eigenvectors (e.g., p11, p12, p13... pkk), which have been normalised272

are the loadings, each eigenvalue (i.e., λ1 ≥ λ2 ≥ λ3...λk) explains the fraction of the total273

variance explained by the loadings (e.g., Santos et al., 2010). Further details on the choice274

of dimensions to reduce (i.e., dominant modes), geometric and statistical properties of PCA275

can be found e.g., in Jolliffe (2002). The use of a component extraction method such as PCA276

to decompose GRACE data, and satellite precipitation data into sets of principal components277

(PCs) and EOFs might probably help address some questions such as what are the trends and278

dominant spatio-temporal patterns of TWS variations in the region. Most importantly, using279

PCA in this study will provide a good knowledge of the spatio-temporal distribution of TWS280

and rainfall, which is important for water resources planning and understanding the impacts281

of climate on the hydrological system of West Africa. Hence, PCA was used in this study to282

analyse spatio-temporal patterns of changes in TWS and precipitation over West Africa.283

11



3.2.2. Multiple Linear Regression Analysis(MLRA)284

The MLRA method is a statistical technique used to model the relationships between a285

dependent variable and one or more independent variables. It uses a least squares approach and286

has been widely applied in hydrology and climate science to explain the possible relationships287

between key variables (see, e.g., Diatta and Fink, 2014; Seidou et al., 2007). In order to288

understand the seasonal and inter-annual variations in the data series (i.e., TWS and rainfall)289

at a given grid point, the regression model of the form (e.g., Rieser et al., 2010):290

X(t) = β0 + β1t+ β2sin(2πt) + β3cos(2πt) + β4sin(4πt) + β5cos(4πt) + ε, (2)

has been fitted to the time series of the data. X(t) is TWS or rainfall at time t, β0 is a constant291

offset, β1 is the linear trend, β2 and β3 account for the annual signal while β4 and β5 represent292

the semi-annual signals. The model bias ε is taken as the deviation between model outputs293

and observations. Least squares fitting approach is used to estimate the regression coefficients,294

and the selected harmonic components (i.e., annual amplitude and semi-annual amplitude) are295

computed as:296

Annual Amplitude =
√

(β2)2 + (β3)2, (3)

SemiAnnual Amplitude =
√

(β4)2 + (β5)2, (4)

and the root-mean-square-error was computed as:297

RMSE =

√
1

n

∑
i=1

(xobs − xsim)2, (5)

where xobs and xsim are observations and simulated values from the regression model respec-298

tively for n months. In order to assess the model’s fitness in simulating TWS and rainfall, the299

coefficient of multiple determinations was computed for each grid point of the data. Besides300

the root mean square errors (RMSEs) and the coefficients of multiple determinations, the bias301

(i.e., difference between the true value being estimated and the expected value of an estima-302

tor) was also computed to further evaluate the performance of the MLRA over West Africa.303

Further, the use of MLRA will provide insight regarding the extent to which simulations of304

TWS and precipitation can be relied upon. This method was applied here to model the trend,305

annual and semi-annual components of TWS changes and precipitation over West Africa.306
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3.2.3. Variability Index and Trends307

To examine the variation in trends, and further analyse the seasonal variations in the region308

for the period investigated, the variability index was computed for precipitation and TWS,309

from which annual and semi-annual components have been removed using MLRA. In essence,310

this study analysed the monthly variability of trends and seasonal signals for the two products.311

The reason for this approach is to help classify the time series of changes in TWS and rainfall312

residuals, which consists of trends and seasonal components, into different climatic regimes313

such as wet, dry, normal, and extreme (L´Hôte et al., 2002). For precipitation, the variability314

index is computed as standardised precipitation departure while for TWS, it is computed as315

standardised TWS deviation:316

δTWS/P = (XTWS/P − µ)/σ, (6)

where δTWS/P is the variability index for the TWS or rainfall (P), XTWS/P is the data (i.e.,317

TWS or P) averaged over the region (i.e., over land), µ and σ are the mean and standard318

deviation for the data over the study period respectively, e.g., using all spatio-temporal data.319

Besides the computation of standardised deviation for TWS and precipitation, a trend was320

fitted into the monthly grids of rainfall for the period 2002-2013. In addition to this, rainfall321

was averaged over the region in order to understand the evolving annual amplitude of rainfall322

from the temporal patterns. In order to decrease the strong effect of the annual signal in the323

spatially averaged rainfall over the region, the monthly rainfall was smoothed using a moving324

average filter. Also, the least squares method was used to estimate the trends in (i) the time325

series of averaged TWS for the period between 2002-2014 and (ii) the temporal evolution of326

relevant PC modes derived from TWS decomposition using the PCA method.327

3.2.4. Correlation Analysis328

Several approaches appropriated for modelling the relationships between multivariate data329

measured at different times include autocorrelation, coherence analysis, dynamic factor analy-330

sis, cross-correlation, etc., (Boker et al., 2002). In this study, Pearsons correlation coefficient is331

used to examine the strength of agreement between two different hydrological variables (e.g.,332

rainfall and TWS) while cross-correlation is used to determine the time lag between the hy-333

drological signals (i.e., TRMM based precipitation and GRACE-derived TWS). Monthly grids334

of precipitation and GLDAS TWSC were correlated with that of GRACE-derived TWS at335

95% confidence level in order to study the relations between them. In the cross-correlation336
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approach, the position of the peak value indicates the time offset when the peak association337

occurred (i.e., when the two signals are the most similar) in the hydrological time series. In338

order to understand the response time (i.e., the time lag with maximum correlation) of TWS339

to rainfall in the region, the cross-correlation method was used. Besides the cross correlation340

approach, the seasonal cycles of rainfall and TWS were also used to understand the lag rela-341

tionship. A regression fit was also applied to understand the relationship and the variability342

between time series of GRACE-derived TWS and GLDAS TWSC for the common period (i.e.,343

2002-2014).344

4. Results and Discussions345

4.1. Dominant Patterns of Total Water Storage (TWS) over West Africa346

The PCA method has been used to identify the dominant spatio-temporal patterns of347

changes in TWS over West Africa within the period of 2002 to 2014. For statistical inference,348

the TWS grid is decomposed into sets of principal components (PCs, i.e., the temporal pat-349

terns), and their corresponding empirical orthogonal functions (EOFs, i.e., the spatial patterns)350

using the PCA covariance method. While the EOFs (also referred to as the eigenvectors) are351

standardised using the standard deviation of their corresponding PCs, the standard deviation352

of the respective PCs were used to normalise the PCs in order to make them unit-less. From353

our scree plot analysis (not shown), i.e., a plot showing the statistically significant PC modes354

(see, e.g., Martinez and Martinez, 2005), the first four PCA modes, which gave a cumulative355

variance of 96.4%, were adopted as meaningful signals representing over 95% of the total TWS356

variability over West Africa. The results of the principal component analysis indicate that the357

highest EOF loadings are observed in some parts of West Sahel and Middle Belt in the first358

orthogonal mode (Fig. 2).359

This first PCA mode, which explains 81.3% of the variance, represents the annual variability360

of TWS changes in the region. The first PCA mode of the GRACE-derived TWS changes361

shows the strongest annual variability over Guinea and Sierra Leone and to a lesser extent362

over the Middle Belt region in Nigeria. Especially over Guinea, Sierra Leone, Guinea Bissau,363

and Liberia, the magnitude of rainfall make the regions exceptionally wet, with an average364

monthly rainfall ranging from 150 mm to 350 mm (see Section 4.2). Furthermore, EOF1 and365

its corresponding PC (Fig. 2) show an increasing trend in TWS changes over West Africa for366

the study period. This trend, which points towards an overall wetness in the region is discussed367
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Figure 2: PCA decomposition of TWS changes over West Africa. The EOFs are loadings showing spatial

patterns of variations in TWS over West Africa while the corresponding PCs are temporal variations which are

normalised using their standard deviation to be unitless.

further in Section 4.5. The second EOF and its corresponding PC, which explains 9.8% of the368

total TWS variability, represents multi-annual variation in TWS changes over some countries369

in West Africa for the study period (Fig. 2). As can be seen in the corresponding EOF (i.e.,370

EOF 2 in Fig. 2), the multi-annual variation is relatively strong over Ghana, Togo, Benin and371

southern Burkina Faso, the riparian countries that constitute the Volta basin. Also, over the372

Guinea Coast and West Sahel, a considerable multi-annual variation can be seen in the second373

EOF. Multi-annual variations with strong amplitudes ranging from 45 mm to 62.5 mm are374

observed in the Volta basin between 2010 and 2012 compared to the negative TWS change of375

-60 mm observed in late 2006. These multi-annual variations for example between 2010 and376
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2012, if related to the size of the Volta basin of approximately 407,093 km2, will translate377

to ∼ 18.3 km3 and ∼ 25.4 km3 of water volume respectively, a rather significant amount of378

water when compared to Lake Volta’s storage capacity of 148 km3. These somewhat strong379

multi-annual changes in the TWS between 2010 and 2012 as indicated in PC2 of Fig. 2 can be380

attributed to increased rainfall within the period (i.e., between 2010 and 2012). This period381

also coincides with the period where most African lakes experienced severe flooding due to382

strong seasonal variations in rainfall (Moore and Williams, 2014). Also, ponding of water383

behind the dam might also play a critical role in the observed TWS variation in the period384

(this is discussed further in Section 4.5). Further, we note a phase shift (i.e., an opposite385

phase) in EOF2 (i.e., Fig. 2), which is due to differences in rainfall patterns in the region.386

For instance, Cameroon experiences an equatorial climate pattern and receives about 400 mm387

monthly rainfall during the wet season and peaks in October/November while over much of the388

Volta basin, rainfall peaks occur in July/August. The stronger loadings (i.e., when compared389

to the one over the Volta basin) observed in this mode in southern Cameroon is attributed390

to a much stronger variability in the seasonal rainfall patterns, which are also driven by West391

African Monsoon winds.392

Since the second PCA mode explains about 10% of the total TWS variability, we further393

analyse the trends in the multi-annual variations of its temporal evolutions (PC2, Fig. 2) in394

relation to the corresponding EOF loadings over the Volta basin (i.e., Ghana, Togo, Benin395

and southern Burkina Faso). Our attention is particularly drawn to the Volta basin because396

of the huge socio-economic potential of Lake Volta and the 20 million people who depend on397

the water resources of the basin. To this end, we used least squares method to analyse the398

multiple trends observed. Instead of fitting a direct simple line to PC2 in Fig. 2, its temporal399

evolution was splitted and least squares method was applied to each section. That way the400

strong multi-annual variation will not affect the trend estimation. A linear fit (i.e., using least401

squares) to the second PC (Fig. 2), which represents the trend in multi-annual changes in402

TWS for the period investigated indicate an overall increase of 13.5 ± 4.25 mm/yr between403

2003 and mid 2005 while a decrease of 6.0 ± 2.0 mm/yr was observed between mid-2005 and404

2009. The period between 2010 to 2012 was quite exceptional as it experienced an increase in405

TWS change of about 33.5± 8.75 mm/yr (see, e.g., PC2 of Fig. 2). Though this period of the406

observed trend is short, however, it stimulates a rather strong hydrological interest regarding407

the possible cause of such a dramatic increase in TWS during the period (i.e., 2010-2012).408

16



This increase in TWS could be due to the magnitude in June, July and August precipitation409

of that year (i.e., 2010), which made it extremely wet. After this period, a decreasing trend of410

about 11.5 ± 3 mm/yr is observed from 2012 up to 2014 as shown by the amplitudes of PC2.411

This observed negative trend in PC2 (i.e., 2012 to 2014) indicates a decline in TWS change due412

to declining rainfall totals over the Volta basin and its riparian countries. Overall, as shown413

in the next section, the rainfall trend estimate shows a decline over the Volta basin and is414

consistent with Ahmed et al. (2014) who also reported a decline in rainfall within this period.415

In a previous study, Owusu et al. (2008) had specifically attributed the decline in rainfall totals416

over the Volta basin to the impact of El Niño Southern Oscillation Index (ENSO) event.417

The third PCA mode represents about 4% of the total TWS variability and shows again a418

multi-annual variation. This variation is approximately centred over Lake Volta and extends419

over the complete Volta basin. The strong EOF loading observed in this mode is directly420

over the lake and indicates multi-annual variations over the lake area. The lake (i.e., Lake421

Volta, which nicely fits with EOF3 of Fig. 2) had low water levels between 2003 and 2007422

(Lake Volta is discussed further in Section 4.8), and had increased since the early rain onset423

in 2007 (see PC3 in Fig. 2). The fourth PCA mode, which accounts for 1.3% total TWS424

variability represents mostly a semi-annual signal due to the strong rainfall patterns at the425

Guinea Coast where rainfall is bimodal (i.e., two periods of wet seasons), largely influenced by426

intensity, and regulated by the impact of sea surface temperature (SST) (e.g., Nguyen et al.,427

2011; Nicholson and Webster, 2007). For instance, concerning the bimodal nature of rainfall428

in this area (i.e., eastern Liberia up to western and southern Nigeria), low SST anomalies lead429

to reduced precipitation such that rainfall decreases from about 60 cm in eastern Liberia and430

Nigeria to about 20 cm in Côte d’Ivoire and western Ghana (Odekunle and Eludoyin, 2008).431

These low SST anomalies occur between July and August and generate a temporal dry period432

or Little Dry Season (see more details in Adejuwon, 2006; Odekunle and Eludoyin, 2008) in433

the mid summer by supporting a condition of static stability, which hinders the development434

of convection, leading to low precipitation. The warm SST anomalies, on the other hand,435

occur in other months of the year, bringing higher precipitation before and after the temporal436

dry period, hence the bimodal rainfall in this region. Concerning rainfall intensity (i.e., strong437

magnitude of rainfall) over these areas, while Paeth et al. (2012) reported an abundant rainfall438

of 467 mm in August 2007 at Gaya station in Nigeria (i.e., 11.53◦N, 3.27◦E), Nguyen et al.439

(2011) observed that rainfall intensity between May and June in the areas near the coast varied440
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largely between 5.1 mm/day and 11 mm/day. This kind of intensity, number of extreme rainy441

days, cumulative annual rainfall, and the strong bimodal character of rainfall in this coastal442

region (i.e., eastern Liberia, Côte d’Ivoire, Ghana, western and southern Nigeria) are the main443

triggers of the observed hydrological signal in the fourth orthogonal mode of Fig. 2.444

4.2. Precipitation Patterns Over West Africa for the Period 2002 to 2013445

The discussion in this section focuses on the TRMM rainfall distribution over West Africa446

for a 12-year climatological window (i.e., 2002-2013). While mean monthly rainfall distribution447

within the time period investigated varied from less than 50 mm to more than 300 mm in West448

Sahel, the Central Sahel received less than 100 mm (Fig. 3a). Also, mean monthly rainfall449

distribution ranged from less than 80 mm to more than 300 mm at the Guinea Coast while450

rainfall in the Middle Belt region ranged from less than 100 mm to more than 200 mm (Fig. 3a).451

Besides the movement of the ITCZ, and the influence of atmospheric circulation features such452

as African Easterly Jets (AEJ), West African Westerly Jets (WAWJ), and Tropical Easterly453

Jet (TEJ) (see, e.g., Nicholson and Webster, 2007; Nicholson and Grist, 2001), the influence454

of altitude and physiographic features plays a major role in the annual and monthly rainfall455

distribution in the region (see, e.g., FAO, 1983). For instance, the highland areas such as456

Sierra Leone, Guinea, and Cameroon receive more rainfall than the surrounding lowlands in457

the Central Sahel (Fig. 3a).458

In addition, trends in spatial precipitation patterns over the region indicate an increase459

between 1.5 mm/year and above 6 mm/year and a decrease of more than 4 mm/year in the sub-460

region (see Fig. 3b). This value, which is statistically insignificant at α = 5% significance level,461

agrees with the findings of Marshall et al. (2012) who also observed an insignificant decreasing462

trend in precipitation over the region. Also, visual analyses from the temporal variations of the463

smoothed rainfall over West Africa show an increased magnitude of the annual signal between464

2005 and 2009 (Fig. 3c). While Paeth et al. (2012) reported on flood events, which prevailed465

over some parts of the sub-region in 2007, this period also coincides with the period of upsurge466

in Lake Volta water levels (i.e., from 2006-2010), where an increase of more than 6 m was467

recorded. More discussion on this item will be provided in Section 4.8. Also, reports from the468

World Meteorological Organization in 2012 indicated that above normal rainfall resulted in469

flood events in south eastern Mauritania, Mali, Senegal, northern Burkina Faso, Lake Chad470

basin in Niger, Nigeria and Cameroon (WMO, 2013).471
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Despite this apparent rainfall intensity that culminates in serious flood events, the observed472

increase in linear trend of the spatially averaged rainfall over West Africa for the entire period473

(not shown) is statistically insignificant. This is consistent with Panthou et al. (2012), who474

noted that, despite the intermittent torrential rains, and floods in the region, dry conditions475

still persist, since rainfall average in recent times is still lower than in the wet periods of the476

1950’s and 1970’s. However, concerning the relative wetness and flood incidence that have477

been reported in the region, the strong variability in the intensity of the annual cycle of West478

African Monsoon rainfall might be responsible for the occasional floods and relative wetness479

seen in the region. For instance, while findings in Paeth et al. (2012) suggest that the above480

normal rainfall in August 2007 induced by ENSO event was responsible for the flood event in481

some parts of the river basins across the region, other studies have reported strong rain seasons482

near the Guinea coast around the June-September period (see, e.g., Diatta and Fink, 2014;483

Nguyen et al., 2011). The seasonal variation of rainfall is discussed in subsequent sections.484

Figure 3: Rainfall distribution and trends over West Africa, (a) Mean monthly rainfall distribution for the

period 2002-2013, (b) Trends in rainfall, and (c) Temporal variations of rainfall (2002-2013).
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4.3. Spatio-temporal Variability of Rainfall485

From the PCA results, the cumulative variability explained by the first four most dominant486

modes is approximately 72.2%. Since the size of the spatial domain determines the performance487

of PCA (Westra et al., 2010), the variance explained by the first four most dominant modes488

can be improved if the analysis is limited to the sub-regions within the study area (i.e., if489

the oceans are masked). However, since the West African Monsoon (WAM) system conveys490

moisture from the surrounding ocean, understanding the spatio-temporal patterns of rainfall491

along the oceans as well will improve our knowledge of land-ocean dynamics in the region.492

In our analysis, the highest loadings from the first EOFs, representing 49.5% of the total493

variability, are concentrated around West Sahel, Central Sahel, and some parts of the Guinea494

Coast (Fig. 4). This orthogonal mode describes the sub-regions with considerably strong495

annual rainfall variability. The second PCA mode, which explains 12.2% of the total variability,496

represents semi-annual rainfall patterns mostly over the ocean but also extending to the Guinea497

coastal region. The third and fourth orthogonal modes and their corresponding PCs, which498

explain 6.2% and 4.3% of the total variability, respectively, represent a combination of multi-499

annual and seasonal variability of rainfall in the region. These variations (i.e., PC1, PC2, and500

PC3 of Fig. 4) are largely due to annual rainfall cycles, circulation features, and influence of501

ocean warming and climate teleconnections in the Sahel and Guinea coast region (see, e.g.,502

Diatta and Fink, 2014; Paeth et al., 2012; Lebel and Ali, 2009).503

These rainfall structures and patterns over West Africa suggest the dominance of annual504

and semi-annual variability in West African Monsoon rainfall, and a progressive shift in the505

semi-annual cycles of rainfall from the Guinea Coast to the Central Sahel (see, e.g., Barbe et al.,506

2002; Lebel and Ali, 2009; Diatta and Fink, 2014). This annual variability can be linked to507

changes in August and September rainfall (Nicholson, 2014). Also, the sea surface temperature508

(SST) of the eastern Atlantic and the role of the Atlantic Cold Tongue (ACT), which regulates509

the intensity and timing of coastal rainfall in spring, have been largely associated with the510

dominance of inter-annual and seasonal variability of rainfall in these sub-regions (Nguyen511

et al., 2011). In addition to the impact of SST on seasonal and inter-annual rainfall, other512

climate indices such as the Atlantic Multi-decadal Oscillation (AMO), Atlantic Meridional513

Mode (AMM), and Madden Julian Oscillation (MJO) have been identified to have positive514

correlation with rainfall patterns in the region (see, Diatta and Fink, 2014; Nicholson, 2013).515

However, the PCA method could not represent any of such patterns in either of the EOF516
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Figure 4: PCA decomposition of TRMM precipitation over West Africa. The EOFs are loadings showing spatial

patterns of variations in precipitation over West Africa while the corresponding PCs are temporal variations

which are normalised using their standard deviation to be unitless.

loadings or the corresponding principal components. This weakness in the PCA method, which517

arises due to the orthogonality of its temporal and spatial components, will be addressed518

in future studies by investigating other higher order statistical methods such as Varimax519

rotation and independent component analysis (ICA), which maximises regional phenomena520

(e.g., Westra et al., 2010; Common, 1994).521

Further, there were no significant linear trends in the principal components as determined522

by a least squares fit (not shown). Considering the observed increase in the annual TWS523

temporal patterns (PC1, Fig. 3), it is normal to assume a linear relationship between rain-524

fall and change in storage over time. However, over Guinea and parts of West Sahel, such525

relationships might not be completely linear as annual variation in discharge for example can526

only be partly explained by the annual variation in precipitation (Verschoren, 2012). This527
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non-linear relationship can be attributed to variations in the type and morphology of rivers,528

geology, physiography, vegetation, soil type, ponding of water behind dams and reservoirs,529

and the catchment extent amongst others. We provide more discussion on this in Section530

4.5. However, the lack of a significant positive trend in rainfall as observed in the temporal531

evolutions of PC1 in Fig. 4 suggests a fairly stable climatic regime for the whole study area532

(see also, Fig. 3b) regardless of occasional changes in intensity and increased inter-annual and533

seasonal variability in rainfall. This position is consistent with Giannini et al. (2013) who534

reported that increased daily rainfall intensity is a contributing factor to the perceived rainfall535

recovery in the region. However, a decline in rainfall mostly over parts of the West/Central536

Sahel and Lake Volta basin is observed (Fig. 3a and b). There is a tendency towards aridity537

in those regions, particularly over the Volta basin where Owusu et al. (2008) had previously538

reported that the declining rainfall totals, triggered by the warm phase of ENSO, are the main539

cause of the decline in Lake Volta water levels in the Volta basin. In view of this result, the540

region’s susceptibility to drought conditions might increase as reported in Asefi-Najafabady541

and Saatchi (2013).542

4.4. Analysis of Trend and Seasonal Variations of Precipitation and TWS543

The seasonal cycle of precipitation and changes in TWS were estimated by spatially aver-544

aging monthly values over the study period. While the averaged values for the rainfall seasonal545

windows shows maximum rainfall in the July-August-September period, the change in TWS546

shows maximum seasonal variations in the October-November-December period (Figs. 5a and547

5b). On the other hand, the mean monthly rainfall shows a peak in August, while the mean548

monthly change in TWS for the study period shows a peak in October (Fig. 5c). Apparently,549

this shows that TWS lags behind rainfall in the region by approximately two months. To550

further ascertain the time response of TWS to rainfall, the temporal evolutions of the domi-551

nant TWS and rainfall orthogonal modes (i.e., PC1 Fig. 2 and PC1 Fig. 4) clearly indicate a552

two month lag between TWS and rainfall when their annual peaks are compared (i.e., while553

rainfall peaks in August, TWS peaks in October). On the whole, the analysis of our rain-554

fall grouping (i.e., the different seasonal periods) is consistent with the classification of major555

West African annual rainfall settings outlined in recent studies (see, e.g., Druyan and Fulakeza,556

2015; Thorncroft et al., 2011). That is, for instance, our Jan-Feb-March period describes the557

oceanic phase when the rainbelt is large with maximum precipitation values just north of the558
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equator; April-May-June refers to the coastal phase with peak rainfall values around coastal559

regions within the gulf of Guinea, i.e., Guinea Coast; while the July-August-September period560

describes the Sahelian phase where maximum rainfall is established around latitude 10N (see561

Figs. 5a and 5b).

Figure 5: Seasonal cycles of GRACE derived TWS changes and precipitation; (a) TRMM averaged values for

the seasonal periods, (b) GRACE-TWS averaged values for the seasonal periods, and (c) mean monthly rainfall

and TWS change over West Africa.

562

From the TWS variability index, the years 2002 to 2006, and early 2007 are indicative563

of dry years, while the year 2010 and beyond was quite wet (Fig. 6a). The rainfall shows564

dry conditions in 2004 to 2006, wet conditions in 2010, extreme conditions in 2011, and near565

normal conditions in 2009 and 2013 (Fig. 6b). One relevant observation made from the rainfall566

variability index is that the dry periods of 2004 to 2006 correspond to the dry periods observed567

in the TWS index of variability. This implies that rainfall is a major contributor to the568

hydrological flux in the region, and that change in precipitation patterns as observed in the569

region is likely to be the most significant driving factor for the surface mass variations, hence570

the dominant patterns observed in TWS changes. The PCA results (especially the dominant571
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patterns) for both GRACE-TWS and rainfall confirms this hypothesis (see Sections 4.1 and572

4.3). Further, our analysis of TWS variability index in terms of trends and seasonal variability573

shows that the region experienced water deficit between 2002 and mid-2007 (Fig. 6b). This574

perspective is very similar to results of Asefi-Najafabady and Saatchi (2013), who reported575

that West Africa experienced strong negative water storage anomalies between 2005 and 2007.576

Though our analysis of rainfall variability commenced in 2002, we infer based on previous577

studies (e.g., Nicholson, 2013; Panthou et al., 2012) that the observed water deficit between578

2002 and 2007 is an extension of the drought period in the 90s, which continued unabated579

despite the perceived rainfall recovery. While the impact of the 1991 and 1997 El Niño events,580

which caused low rainfall in the region, are noted (e.g., Nicholson and Webster, 2007; Owusu581

et al., 2008), Nicholson (2013), specifically pointed out that the relative recovery in rainfall582

over West Africa was not all encompassing, and that the mean annual rainfall within the period583

(i.e., 1990 to 2007) is significantly not different from the mean of the acknowledged drought584

period.585

However, from our analysis of changes in TWS averaged over West Africa (i.e., after re-586

moving the harmonic components), there seems to be a relative increase in water availability587

in recent times (i.e., the period between 2012 and 2014). Since Fig. 6a shows wet conditions588

between 2012 and 2014, we fitted a linear trend to the GRACE-derived TWS for the same589

period in order to understand TWS trend in recent times, which is useful for planning and590

management. While the least squares fit for the period between 2012 and 2014 for the av-591

eraged GRACE TWS changes after removing annual and semi-annual components shows a592

significant increase of 7.47 ± 3.98 mm/yr in the linear trend (Fig. 6c), the averaged TWS593

anomalies over West Africa (i.e., over land) for the study period show a linear increase of594

6.85 ± 1.67 mm/yr (Fig. 7), which is statistically significant at 95% significance level. This595

increase in TWS trends over the region, could be attributed to a large water surplus from596

prolonged wet seasons and lower evaporation rates in coastal West Africa (i.e., Guinea Coast597

and some parts of West Sahel), which remarkably increases the water storage and inundated598

areas along the coastal catchments that sustain the dry season river flow (Ojo et al., 2004).599

In view of this recent trend in TWS change, it is expected that crop development, moisture600

conservation, and soil fertility for some parts of the region might be significantly improved. In601

Section 4.5, we provide further details to highlight the non-linear behaviour observed in the602

temporal evolutions of the annual signals of our PCA results for TWS and rainfall as indicated603
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in PC1 of Fig. 2 and 4, respectively.604

Figure 6: Variability Index after removing annual and semi annual components. (a) GRACE-TWS variability

index, (b) TRMM rainfall variability index, and (c) Least squares fit of TWS anomalies for the period 2012-2014

(i.e., not standardised).

4.5. The hydrology of the Fouta Djallon Highlands605

The Fouta Djallon Higlands (FDH) comprises chains of mountainous landscapes mostly606

in Guinea and extend into countries such as Sierra Leone, Guinea-Bissau, Senegal, Mali,607

Côte d’Ivoire and Liberia (Verschoren, 2012). The highlands, which are small watersheds and608

sources to major West African rivers (e.g., River Niger, Senegal, Gambia, and Mano) have been609

labeled the water towers of West Africa. These rivers provide drinking water, irrigation and610

hydroelectric power to millions of people who make their homes in the catchment. Our interest611

in FDH is due to the strong dominant spatio-temporal behaviour observed in our PCA results612

for TWS and precipitation. While the annual variability of TWS especially in Guinea (PC1613

Fig. 2) shows a steady increase in water storage change, annual variability of precipitation614
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shows no obvious significant increase in the same area (PC1 Fig. 4). The temporal evolution615

of PC1 in Fig. 2 indicates a significant rise of 20.2±5.78 mm/yr in Guinea while no significant616

increase was observed in rainfall. The hydrology of these watersheds (i.e., FDH) is largely617

controlled by components of the hydrological cycle such as precipitation, runoff, and recharge.618

The water balance model can be written as619

P = E +Q+ δS, (7)

where P , E, Q, and δS are precipitation, evapotranspiration, runoff, and change in storage620

respectively. The storage variable, that is the runoff deficit variable, RD, can be defined as621

RD = P −Q, (8)

where the runoff deficit RD is the amount of water, which is stored in watershed, evaporated,622

or water lost through the process of transpiration (i.e., the yearly water availability). For the623

FDH, vegetation has not been modified and both temperature and evaporation are relatively624

low in these areas especially during rainy season (Verschoren, 2012). Hence, it is reasonable to625

assume that no change has occurred in transpiration within the period. Increase in RD implies626

increase in the volume of water not involved in surface runoff. This quantity, which is assumed627

to have increased over time, represents the aquifer storage. With precipitation spreading628

over 8-12 months of every year, lack of significant change in evapotranspiration, and huge629

groundwater potentials, in addition to very high aquifer productivity as shown in MacDonald630

et al. (2012), the aquifer storage is likely to increase despite the lack of positive trend in rainfall631

within the studied time period . The apparent increase in temporal patterns of annual TWS632

signal (PC1 Fig. 2), which coincides with the somewhat limited alimentation due to lack of633

significant positive trend in rainfall, is consistent with the findings of Verschoren (2012) who634

observed over the FDH a non-linear relationship where a higher increase in discharge was635

inconsistent with observed precipitation. Comparatively, the amplitudes of annual rainfall636

observed in PC1 of Fig. 4 indicate that the years 2003 and 2006-2008 have relatively stronger637

annual peaks. Recently, McSweeney et al. (2010) reported that the variations in the latitudinal638

movements and intensity of the ITCZ from year to year can cause large inter-annual variability639

in the wet season rainfall leading to 1000 mm of monthly rainfall at the east coast of Guinea.640

This kind of variability, besides increasing the inundated areas in the catchment, will largely641

increase the amount of water stored in the watersheds, given that evaporation is generally low642
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during the wet seasons in Guinea. Further, besides the high precipitation amounts of more643

than 3000 mm annually, Guinea is a region with heavy discharge, huge base flow and abundant644

water resources. For instance, the quantity of water entering Mali from Guinea is estimated645

at 40 km3/yr, greater than the quantity entering Nigeria from Niger, which is estimated at646

36 km3/yr (FAO, 1997). In south-west Guinea where the EOF loadings are relatively strong,647

the average annual peak rainfall in the wet season ranges from ∼ 687.5 mm/yr between 2006648

and 2008 to ∼ 550 mm/yr between 2010 and 2013 when jointly derived from the PC/EOF649

(PC1/EOF1, Fig. 4). With sub-regions such as Boke, Boffa, and Forecariah (i.e., local areas650

in Guinea where these rainfall amounts are observed), which lie along the coast in Guinea and651

covers a total surface area of ∼ 40500 km2, these rainfall amounts will give average annual652

water volume (i.e., in the wet season) estimated at 27.8 km3/yr and 22.3 km3/yr for the653

2006-2008 and 2010-2013 peak periods respectively. This estimated amount of water volume654

excludes that of the northern and extreme western regions of Guinea where our PC/EOF655

method estimates average annual peak rainfall of 375 mm/yr and 300 mm/yr for the two656

periods, respectively. Since about 40 km3/yr of water leaves the country (i.e., Guinea), RD657

increases over time despite lack of positive trend in rainfall, hence the increase in TWS trend658

observed over Guinea in PC1/EOF1 of Fig. 4. Also, note that our rainfall estimate here is659

for the peak rainfall only, which is more like the average rainfall in August with respect to660

the mean of 2002-2013. Considering a minimum of eight months of significant precipitation661

in south-west of Guinea, the water balance will apparently indicate a surplus regardless of662

stability or lack of positive trend in rainfall.663

Moreover, in a related study, a similar relationship of increased TWS not being consistent664

with precipitation trends was recently reported by Ahmed et al. (2014) in a continent-wide665

study. The study observed an increase of 15.35±0.79 mm/yr and 16.68±1.09 mm/yr in Oka-666

vango and Zambezi basins, respectively with no obvious significant increase in precipitation.667

The increase in TWS was attributed to the increased size of inundated areas of the basins and668

the cyclical nature of recurrent floods amongst other factors. Further, human activities such669

as building of dams and reservoirs will impound surface water in man-made lakes from the670

dams upstreams, inducing infiltration and consequently leading to increase in recharge from671

the lakes to groundwater. This example was reported for the Lake Volta basin in the region672

where an increase of 14.41± 1.02 mm/yr was observed for the period between 2003 and 2012,673

despite lack of a significant trend in rainfall for more than a period of 10 years (see, Ahmed674
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et al., 2014). The observed TWS over the basin (i.e., Lake Volta basin) was attributed to675

ponding of water behind the dam, which is also evident in the apparent increase of 7 m in676

Lake Volta water levels as shown in Section 4.8 (Fig. 12a). Also, over the Niger basin (which677

includes Guinea, Nigeria, Mali, and countries with dominant patterns in TWS as observed in678

the PCA result, i.e., PC1 Fig.2), Ahmed et al. (2014) also observed an increase of 6.31 ± 0.36679

mm/yr in TWS for the period 2003 to 2012, which is somewhat consistent with the trend of680

6.85 ± 1.67 mm/yr in observed TWS in our study. While a detailed study will be required to681

understand the role of land use in the hydrology of the FDH, Favreau et al. (2009), had shown682

a rising water table of about 4 m between 1963 and 2007 in southwest Niger despite about683

3% deficit in rainfall from 1970 to 2007. This paradoxical relationship, which is similar to the684

behaviour of our hydrological time series (i.e., rainfall and TWS) as observed in Guinea and685

the surrounding areas, was attributed to a change in landuse pattern.686

Furthermore, since West Africa and the continent at large were worst hit by droughts in687

the 1980’s (especially the Sahel), we also speculate that the recovery in the 1990’s, which688

was not all-encompassing could account for the inconsistent trends between TRMM based689

precipitation and TWS, given that the huge aquifers of the Guinea region is still filling up.690

GRACE measures vertically integrated water storage from catchment stores (i.e., aquifer, soil691

moisture, etc.), any form of increase from these catchment stores will be apparent and captured692

by GRACE, unlike rainfall were transition periods from dry to wet might not be very obvious693

due to the impact of the previous extreme and frequent dry periods as in the case of the Sahel694

region. Generally, the water resources of West Africa are complex as seepages and evaporation695

are said to have triggered large reductions in runoff in the inner delta of Mali (FAO, 1997)696

in addition to the impact of land use change, human influence, and climate variability (see,697

e.g., Ahmed et al., 2014; Favreau et al., 2009; FAO, 1997). Anthropogenic effect on changes in698

TWS over West Africa can be modelled from Water Gap Hydrological Model (WGHM) and699

this can be explored in future studies.700

4.6. Relationship between GRACE-TWS, GLDAS-TWS, and TRMM701

The cross-correlation result shows that TRMM rainfall leads GRACE-TWS changes in702

most parts of the region with a maximum phase lag of two to three months (Fig. 8c, see also703

Fig. 6c). This is consistent with the results in Section 4.4. Also in this study, the Pearson704

correlation coefficient was employed to examine the relationship between GRACE/TRMM and705
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Figure 7: Trend in TWS anomalies over West Africa for the period 2002-2014 (i.e., without removing the

harmonic components). The trend is also clearly visible in PC1 of (Fig. 2)

GRACE/GLDAS total water storage contents (TWSC) at 95% significance level. Prior to this706

analysis, the gridded TRMM rainfall product was resampled to a 1◦ x 1◦ regular grid as the707

GRACE-derived TWS.708

The result from TRMM rainfall product and GRACE-TWS comparison shows a high709

correlation in some parts of West Sahel and Middle Belt regions (e.g., Guinea) while weak710

correlation is observed in most sub-regions of West Africa (e.g., Niger, Burkina Faso, etc.)711

(Fig. 8b). The observed correlation in these regions is due to the presence of a strong annual712

signal as can bee seen in the corresponding EOF1 of TWS (Fig. 2) and TRMM (Fig. 4). While713

the high correlation in West Sahel apparently defines the impact of rainfall on changes in TWS714

of the sub-region, the weak correlations could be the unexplained impact of water storage in715

the region’s tropical forest. GLDAS-TWSC on the other hand, has a good correlation with716

GRACE-TWS for most parts of the region except for some locations in the upper Central717

Sahel and some parts of the Volta basin (Fig. 8a). The poor correlation of GLDAS-TWSC718

in those areas might be due to anthropogenic influence and probably intensified land surface719

processes, which the model could not account for (e.g., James et al., 2007). For example, water720

withdrawals and increased surface runoff due to change in land cover could possibly contribute721

to weak correlations in these areas.722

Moreover, as mentioned earlier in this study, lack of in-situ data for calibration and param-723

eterisation of the GLDAS model outputs could largely be responsible for the poor correlation724

between GLDAS-TWSC and GRACE-TWS in these locations. Since GRACE TWS observa-725
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tions have been previously compared with GLDAS over the Volta basin and Southern Mali726

(see, e.g., Henry et al., 2011; Ferreira et al., 2014), the poor correlation of GLDAS in some727

areas could not have emanated from GRACE TWS. This assumption follows the numerical728

results of Henry et al. (2011), where observed monthly groundwater-storage variability in the729

region correlated strongly with monthly GRACE TWS changes whereas the timing of GLDAS-730

derived soil moisture was not well predicted. concerning the weak correlation between TRMM731

precipitation and GRACE-derived TWS, some anthropogenic contributions that impact on732

land surface conditions might play a major role. For instance, the loss of 21,342 hectares of

Figure 8: Correlation analysis and time lag with maximum correlation using TRMM precipitation and GRACE-

TWS. (a) Correlation between GRACE-TWS, and GLDAS TWSC (b) Correlation between GRACE-TWS, and

Rainfall and (c) Time lag with maximum correlation for GRACE-TWS and TRMM precipitation in months.

733

mangrove vegetation in the lower Niger Delta of the Middle Belt region between 1986 and 2003734

due to urbanisation, might introduce some imbalance in the hydrological routines of the region735

(James et al., 2007). Future studies with focus on the land surface processes such as increased736

potential evaporation loss during the dry season, the contributions of land surface conditions,737

and historical land use/land cover activities in some parts of West Africa might provide some738

insight and clarity as to the cause of the weak correlations between GRACE-TWS and TRMM739

rainfall products in these sub-regions.740

However, the high correlation between TWSC output from GLDAS and GRACE TWS in741

most parts of West Africa suggests that hydrological monitoring and climate research in these742

areas of West Africa can be reliable even with the use of hydrological models (i.e., outputs from743

GLDAS). Furthermore, the GRACE-derived TWS and the TWSC from GLDAS were averaged744

over land areas in the region. Their temporal variations both indicate annual cycles with similar745

high and low peaks that correspond to rain and dry seasons in the region (Fig. 9a). While746

GRACE-TWS and the TWSC from GLDAS show peaks that correspond to the same time747
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period, however, TWS output from GLDAS is underestimated for the region. Our conclusion748

here is similar to findings from a related study in southern Mali, where predicted soil moisture749

from GLDAS was poor (i.e., underestimated) (Henry et al., 2011). The poor prediction of soil750

water storage using GLDAS in the region corroborates our account of GLDAS underestimation751

of simulated TWS in the present study. However, the regression fit between the two variables,752

which shows a coefficient of determination (R2) of 0.85 indicates that most parts of the region753

have been well modelled in terms of trends and variability (Fig. 9b).754

Figure 9: (a) Temporal variations of GRACE-TWS and GLDAS TWSC and (b) Regression fit on GRACE

TWS and GLDAS TWSC.

4.7. Modelling TWS Anomalies and Rainfall over West Africa755

The MLR analysis was applied in order to further explore the relationship between TWS756

changes and precipitation patterns over West Africa. Comparatively, MLR allows the test757

of statistical significance on the spatio-temporal patterns as opposed to PCA that divulges758

the dominant spatio-temporal patterns (Rieser et al., 2010). Here, we compare the results of759

MLRA of TWS and rainfall, especially their annual amplitudes, semi-annual amplitudes, and760

trends. We point out briefly that since seasonality induces the largest signals in hydrological761

quantities, our intent here is also to examine the capability of MLRA in mimicking TWS and762
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rainfall using linear trend, annual, and semi-annual signals. While their annual amplitudes763

are quite similar, the semi-annual signals show some disparity especially in rainfall patterns764

along the Central Sahel (Figs. 10 and 11). This probably suggests that the incoming rainfall765

leaves the region through some intensified outgoing hydrological fluxes and processes such766

as evapotranspiration, and surface runoff from major rivers. For instance, Marshall et al.767

(2012) showed how evapotranspiration correlates strongly with precipitation in the region.768

On the other hand, trends of both rainfall and GRACE-derived TWS are different. While769

higher positive trends in TWS are concentrated around the Volta basin and the Lake Volta770

area (Fig. 10), precipitation trends over the same area show both low/high negative and771

positive patterns (Fig. 11). The strong hydrological signals from the Volta basin as a result772

of the presence of Lake Volta largely accounts for the observed positive trends in TWS. From773

the coefficient of determination (Figs. 10 and 11), the multi-linear regression (MLR) model774

approximates TWS and rainfall quite well by using trend, annual, and semi-annual signals only.775

Considering the performance of MLR for rainfall in this study, similar conclusions to those of776

Diatta and Fink (2014) can be reached. That study concluded that using MLRA, the West777

African Monsoon rainfall can be better predicted especially when combined with teleconnection778

indices. However, as indicated in their RMSEs and coefficients of determination, some parts779

of West and Central Sahel are poorly modelled in the two products (see Figs. 10 and 11).780

Furthermore, since the coefficient of determination for the TWS simulation in the West Sahel,781

Guinea Coast, Middle Belt and some parts of Central Sahel show a good fit, the change in782

TWS for these sub-regions can be predicted quite well.783

4.8. Lake Water Levels in West Africa784

In order to understand the seasonal fluctuations of surface waters (i.e., lakes), the annual785

and semi-annual components of fluctuating water levels from Lake Volta, Lake Chad, and786

Kainji dam for the period 1993 to 2013 were removed using the least squares approach. The787

results show that Lake Chad and Kainji dam were dominated by annual and semi-annual788

variations while Lake Volta has a considerably strong annual signal (see Fig. 12a). The Lake789

Chad water level reduced by about 90% during the intense drought of 1968 to 1974, and its790

surface area had since shrinked from 24000 km2 in the 1950’s to about 1800 km2 in the 1980’s791

(Okonkwo et al., 2014; Wald, 1990). Generally, the declining Lake Chad surface area has been792

attributed to agricultural activities (i.e., water use for irrigation) and the impact of climate793
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Figure 10: MLR analysis of GRACE-TWS.

variability (e.g., Coe and Foley, 2001; Gbuyiro et al., 2001).794

With strong annual variability, the minimum water level of Lake Chad is observed between795

May/June (see Fig. 12a). Wald (1990), observed that the Lake Chad water level decreases in796

November and later rose to its maximum in January as a result of inflow from Logone - Chari -797

El Beid rivers. With a clearly marked annual fluctuation, observed minimum water levels and798

less pronounced annual signals of Lake Chad between the period 2004 and 2007 are indicative799

of dry periods induced by low summer rainfall in that sub-region while an increasing trend800

is also observed in maximum water level in recent years (i.e., 2010-2013) (Fig. 12a), which is801

consistent with increased rainfall.802

For Lake Volta, its temporal variation (i.e., from 2006 to 2014) is similar to the third803
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Figure 11: MLR analysis of TRMM rainfall.

principal component from our GRACE-TWS PCA, which represents multi-annual variations804

over the lake area (see, e.g., Fig. 2). The lake’s residuals show a decrease in the periods805

1993-1995, 1996-1998, 2000-2002, 2005-2007, 2011-2013 and an increase in the period 2007-806

2011. While it might be assumed that the decreasing phase is the impact of relatively strong807

inter-annual variations of rainfall, the increasing phase in Lake Volta water level is attributed808

to the impact of a moderate La Niña event in 2007 triggering increased rainfall in the region809

(Paeth et al., 2012). It is worth mentioning, that besides the impacts of La Niña on the water810

level, the ponding of water behind the dam as mentioned in Section 4.5 could be a factor in811

the observed increase in water levels. Further, Owusu et al. (2008) attributed the lake level812

decline, which occurred between 2000 and 2002, and the relatively low maximum water levels813
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Figure 12: Analysis of lake water levels (a) Lake water levels before removing annual and semi-annual signals

and (b) Lake water levels after removing annual and semi annual signals. * LLH-Lake Level Heights.

between 2002 to late 2007, to a decline in rainfall totals influenced by the warm phase of ENSO.814

Although the Lake Volta water levels between 2011 and 2014 show a gradual decline, however,815

the observed maximum water levels as captured in Fig. 12a and b still show a much higher816

maximum water level compared to the preceding decades, pointing towards water availability.817

Lake Volta, which has a total surface area of 8500 km2 and stores approximately 150 km3, is818

equipped with a hydropower generation capacity of more than 900 MW (Owusu et al., 2008).819

In view of the observed low minimum water levels (e.g., 1998, 2002-2004 and 2007 of Fig. 12a),820

the hydropower capacity of Lake Volta might be limited, and as reported in (Owusu et al.,821

2008) will lead to energy crises and conflicts amongst riparian countries who depend on this822

lake for energy production.823

The Kainji dam is one of Nigeria’s largest dam with a surface area of 130 hectares and824

primarily used for hydro-power generation (Ita et al., 1985). The dam supplies most of the825

domestic and industrial power needs of Nigeria and fluctuates seasonally according to the826

variability of rainfall. According to Jimoh (2008), semi-annual floods, which are separated827

by a period of 4 to 5 months and low water level between the months of March and May,828

occur at Kainji dam every year. The first part of this flood session, which originates from829

the head waters, arrives at Kainji in November and reaches its maximum in February while830

the second, which emanates from local tributaries, reaches Kainji in August and peaks in831
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September and October. This signal (i.e., semi-annual flood patterns) is part of the dominant832

multi-annual signals observed in our PCA results of GRACE-TWS (i.e., the second orthogonal833

mode), which is mostly visible over Guinea Coast and some parts of West Sahel (see Fig. 2).834

In addition, the observed maximum peaks reported in Jimoh (2008) due to inflow from local835

tributaries, which occurs in February and November, are also consistent with our altimetry836

observations for Kainji dam (Fig. 12a). Despite lacking a notable trend, relatively strong837

seasonal amplitudes, which correspond to intra-annual rainfall variability and water use, are838

observed in the residuals (see Fig. 12b).839

While the lowest maximum water levels of Kainji reservoir observed in 1996 and 2005840

(Fig. 12a) correspond to the lowest residuals shown in Fig. 12b of the same period, the lowest841

minimum observed water level (i.e., 2008) is not clearly marked out from the corresponding842

residuals indicated in Fig. 12b as they are dominated with more random signals that might be843

due to miss-fit to annual and semi-annual signals. However, since the maximum water levels844

of 2007 and 2011/2012 are not as strong for example, as those of 2002-2004, 2009-2010, and845

2013 (Fig. 12a), the low minimum observed residuals of 2007 and 2011/2012 (Fig. 12b) might846

be the aftermath of those less pronounced maximum water levels (or relatively low maximum847

water levels) of 2007 and 2011/2012, while the low minimum residuals of 2008 (Fig. 12b)848

could be the result of the observed lowest minimum water level of 2008 in Fig. 12a. These849

observed minimum and low maximum water levels and the multi-annual fluctuations of the850

Kainji reservoir (Fig. 12a and b) are consistent with recent studies (Salami et al., 2011, 2015)851

that have reported a decrease in the reservoir inflow due to the development of infrastructures852

at the upstream of Kainji reservoir and changes in hydrological fluxes such as precipitation,853

evaporation, and temperature of the river Niger sub-basin where the dam is located.854

Lakes, reservoirs, etc., respond naturally to climate and environmental conditions and can855

be used as indicators of water availability and water loss (Deus et al., 2013). Therefore, the856

observed low minimum water level residuals (i.e., 2005, 2007/2008, and 2011/2012) from our857

analyses and the decrease in the reservoir inflow at Kainji as reported by Salami et al. (2015)858

might be indicators to a water deficit in the Middle Belt region. In retrospect to our observed859

increase in water availability from the spatially averaged changes in TWS over West Africa860

(see Section 4.4), our analysis of the Kainji reservoir has indicated a water deficit triggered by861

low reservoir inflow. With decreased precipitation due to climate variability, reduced reservoir862

inflow, and the low residuals in water levels as observed in recent times, the hydrology of863
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the Kainji reservoir might undergo large changes that probably may impact negatively on the864

socio-economic prospects of the Middle Belt region.865

5. Conclusions866

In order to understand the changes in TWS over West Africa, this study used PCA and867

MLR to identify and analyse the dominant spatio-temporal variability of TWS and precipita-868

tion. Results from our analyses show that:869

(i) High annual variability of GRACE-derived surface mass variations are observed in870

Guinea, Seirra Leone, Guinea Bissau, Liberia and Nigeria due to a considerable high rainfall871

amounts at seasonal and inter-annual time scales. The Lake Volta signal, which is largely872

dominated by multi-annual signals was identified from the PCA result.873

(ii) Increasing multi-annual changes in TWS over riparian countries that constitute the874

Volta basin is also observed. This increase is seen as a response to intensified rainfall events875

due to ocean warming, and possibly the influence of ENSO in the region around the basin.876

(iii) Precipitation over the region is dominated by annual and semi-annual signals influenced877

by circulation features, ocean warming, and climate tele-connections. Also, the region’s sus-878

ceptibility to drought conditions is also consistent with recent studies (e.g., Asefi-Najafabady879

and Saatchi, 2013; Panthou et al., 2012).880

(iv) Analysis of TWS variability indicates a water deficit between 2002 and mid-2007 in881

the region. However, there is relative increase in water availability in recent times 2012-2014.882

Overall, the trend in TWS at Guinea between the period 2002 and 2014 is inconsistent with883

the linear trend in rainfall. This has been attributed to cumulative increase in the volume884

of water not involved in surface runoff, in addition to the water surplus from prolonged wet885

seasons, and lower evapotranspiration rates over the Guinea coast region.886

(v) Despite the poor correlation of GLDAS TWSC in some parts of the region, the regres-887

sion fit between the two variables (i.e., GRACE and GLDAS), with a coefficient of determi-888

nation (R2) of 0.85, however, indicates that trends and variability have been well modelled in889

most parts of the region. Further, the multi-linear regression (MLR) model simulates TWS890

and rainfall quite well using trend, annual, and semi-annual signals only, though some parts891

of the Central Sahel are poorly modelled. Considering the performance of the MLR model892

in TWS simulations for most parts of the region, changes in TWS can therefore be predicted893

quite well.894
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(vi) Increased magnitude in recent annual signals of Kainji reservoir as seen in the higher895

maximum and lower minimum water levels would imply increased flood/dry events through-896

out the year. These fluctuations coupled with relatively low maximum water levels of 2005,897

2007/2008 and 2011/2012, which is also reflected in the observed residuals, might probably898

impact negatively on the socio-economic potentials of the Middle Belt region.899

Lake Volta and the Kainji reservoir are largely used for hydroelectric power generation.900

With relatively strong annual and seasonal variability observed in these surface waters, their901

hydropower capacity might be limited in years where water levels are low. Despite the observed902

gradual decline in Lake Volta water level between 2011 and 2014, the observed maximum water903

level, which remains higher than in the preceding decades, points towards water availability904

in the Lake.905
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Appendix A906

Generally as mentioned previously in Section 3.1.1, the CSR and JPL data sets are some-907

what consistent for the region. However, there are some uncertainties in terms of the magni-908

tudes estimated by the two products (Fig. 13 top). The time series of CSR data for the entire909

period before interpolation is also shown in Fig. 13 (bottom).

Figure 13: Time series of TWS from CSR, JPL, and GLDAS. The effect of the DDK2 filter on computed

GRACE-derived TWS before and after restoring the geophysical signal loss is compared with the GLDAS-TWS

(top panel). This comparison is done for the common time period were there are no data gaps in GRACE-

derived TWS (i.e., 2003-2010). The bottom panel is the time series of GRACE-derived TWS (i.e., without

restoring the signal loss caused by the DDK2 filter) before interpolation.

910
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