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Abstract: This paper addresses the topic of real-time decision making for autonomous city
vehicles, i.e. the autonomous vehicles’ ability to make appropriate driving decisions in city road
traffic situations. After decomposing the problem into two consecutive decision making stages,
and giving a short overview about previous work, the paper explains how Multiple Criteria
Decision Making (MCDM) can be used in the process of selecting the most appropriate driving
maneuver.
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1. INTRODUCTION

One of the most crucial aspects which, in the near future,
will make autonomous driving in city traffic possible, is the
autonomous vehicles’ ability to make safe and appropriate
driving decisions in any city traffic situation. Without
reliable real-time decision making, human drivers cannot
be safely replaced by computer-based vehicle control and
decision making systems.

This paper addresses the question on enabling driverless
city vehicles to identify the most appropriate driving
maneuver to be performed under the given road traffic
circumstances, since so far developed solutions are not
sufficient for safe autonomous driving in the complex real-
world city traffic conditions.

The remainder of this paper is structured as follows. Sub-
section 1.1 gives an overview of the state of research, and
subsection 1.2 presents our so far work on the development
of the autonomous vehicle’s control and decision making
system. Section 2 explains how Multiple Criteria Decision
Making (MCDM) can be applied for autonomous driving,
including a discussion about benefits and drawbacks, and
experimental tests. Section 3 concludes this presentation.

1.1 State of Research

The so far published material about autonomous city vehi-
cles did not reveal any evidence that the problem of real-
time decision making for such vehicles has already been
addressed using decision theory methods, and focusing
on a generic solution for the real-world (non-simplified)
city traffic conditions. A large variety of solutions, for
example using automata theory, decision trees, heuris-
tic approaches, or priority queues have been published,
however, these solutions were developed for very specific
applications in simplified conditions, and, according to

their developers, would not work in real-world city traffic
conditions.

The major recent event demonstrating the state of the art
driverless city vehicle technology was the DARPA Urban
Challenge 2007 (DARPA (2006)), a driverless vehicle race
in a simulated urban environment. However, although all
vehicles competed in the same traffic environment, and
had therefore identical decision making requirements, a
direct comparison between their approaches is difficult
due to varying terminology used in presenting similar
ideas. For instance, the vehicle “Boss“ had a ”behavioral
system“ consisting of ”subcomponents“ (Urmson et al.
(2008)), while the vehicle ”Junior“ had ”navigation mod-
ules“ executing ”behaviors“ or ”actions“ (Montemerlo
et al. (2008)). Nevertheless, the following is an attempt
to give an overview based on a unified terminology, as
interpreted by the authors of this paper.

The winning vehicle “Boss” was able to perform three
main driving maneuvers: lane following, intersection han-
dling and driving in a parking area. Its decision making
capabilities consisted of choosing and executing one of
these three driving maneuvers depending on the vehicle’s
location (Urmson et al., 2008).
The vehicle “Junior” achieved the 2nd place with a deci-
sion making approach based on a finite automaton with
13 states (Montemerlo et al., 2008). Since each automaton
state maneuvered the vehicle in a specific traffic situation
(e.g. stop sign, cross intersection, U-turn), each state can
be seen as part of a driving maneuver.
Similar to “Junior“, “Odin’s” (3rd place) decision making
approach was based on a finite automaton, however hierar-
chically structured. Driving maneuvers for parking areas,
road following, and intersections were chosen based on
a so-called “winner-takes-all arbitration method” (Bacha
et al., 2008).



The vehicle “Little Ben’s” decision making approach con-
sisted of choosing between the driving maneuvers lane
following, U-turns, intersections and parking areas, de-
pending on the vehicle’s location (Bohren et al., 2008),
similar to the winning vehicle “Boss”.
The vehicle “Knight Rider” used a combination of rea-
soning and finite automata for decision making. The last
choice between executable driving maneuver alternatives
was made based on fixed priorities (Patz et al., 2008).
The vehicle “Skynet” performed four driving maneuvers:
driving on roads, crossing intersections, driving in parking
zones and handling road blockages. Its decision making
approach was based on heuristic decision rules defined in
the form of a decision tree (Miller et al., 2008).
The vehicle “AnnieWAY’s” decision making was based on
a hierarchical finite automaton, each state representing a
driving maneuver for a specific situation (e.g. intersection
handling) (Kammel et al., 2008).
The vehicle “Caroline” was able to perform five driving
maneuvers: follow way points, stay in lane, avoid obstacles,
stay on road, stay in (parking) zone. Its decision making
approach was based on heuristics implemented as weighted
votes (Rauskolb et al., 2008).

Although these vehicles impressively demonstrated that
it was possible to successfully complete DARPA Urban
Challenge test track, it is important to note that this race
took place in a simplified environment, and not in real-
world traffic. The developed decision making solutions for
the DARPA Urban Challenge were focused on fulfilling
the race requirements with the overall goal to win the
race, and not on enabling driverless vehicles to safely cope
with real-world city traffic. For example, the developers
of “Knight Rider“ allowed their vehicle to perform illegal
U-turns in order to save time (Patz et al. (2008)), while
team ”Talos“ released safety constraints by decreasing
safety distances around obstacles, ignoring traffic lanes,
”neglecting“ the part of the vehicle behind its rear axle,
or skipping checkpoints (Leonard et al. (2008)).
The developers of the winning vehicle “Boss“ noticed that
their traffic representation was not sufficient to make in-
telligent driving decisions compared to human drivers, and
that their development approach was ”ad hoc“ (Urmson
et al., 2008), driven by testing. As they state, the devel-
oped concepts ”are able to reliably complete these tests but

are not robust to a varied world“ (Urmson et al., 2008).

Driverless city vehicles for civilian, non-military applica-
tions are not likely to gain public acceptance unless they
prove to be safer than conventional human-driven vehicles.
Therefore, the decision making subsystem plays a crucial
role toward reaching this goal.

1.2 Previous Work

In previous work, we have addressed and developed solu-
tions for the following:

• Control System Architecture consisting of four func-
tional subsystems (Figure 1):

· Perception Subsystem: collects, manages and
processes available information about the vehi-
cle’s road traffic environment, and provides it
through the World Model to the Real-Time De-

cision Making & Driving Maneuver Control, and
Driving Maneuvers.

· Real-Time Decision Making & Driving Maneuver
Control: makes driving decisions based on the in-
formation provided by the Perception Subsystem.
This software subsystem is the main focus of this
paper and further explained below.

· Driving Maneuvers: closed-loop control algo-
rithms, able to maneuver the vehicle in a specific
traffic situation. All driving maneuvers are struc-
tured in a common way, their operational behav-
iors are modeled as deterministic finite automata.
Details have been published in (Furda and Vlacic
(2009)).

· Vehicle Interface: low-level vehicle control (e.g.
speed and steering angle).

Fig. 1. Simplified view of the driverless vehicle control
software architecture and the flow of data.

Furthermore, we have decomposed the problem of Real-
Time Decision Making into two consecutive stages (Figure
2):

Fig. 2. The decision making process consisting of two
consecutive stages.

• Decision Stage 1: Selects the set of feasible driving
maneuvers, i.e. those driving maneuvers which can
be safely performed, and which conform to the road
traffic rules. The approach used in this first stage is
based on discrete events and a Petri Net model, which
enables not only the analysis and simulation, but
also the formal algorithm verification of this safety-
critical decision making stage. Details about this first
decision stage have been published in (Furda and
Vlacic (2009)).



• Decision Stage 2: Selects and activates the most ap-
propriate driving maneuver from the set of feasible
ones. Since the set of feasible driving maneuvers only
contains those maneuvers which can be safely per-
formed in the specific road traffic situation, this stage
is not safety centric. However, it focuses on a variety
of other important objectives, such as maximizing the
efficiency, comfort, or minimizing travel times. This
second stage is the main topic of this paper and is
further elaborated in section 2, below.

2. MULTIPLE CRITERIA-BASED DECISION
MAKING (MCDM)

2.1 Selecting the Most Appropriate Driving Maneuver

The goal of the second decision making stage (Figure 2)
is to select and execute the most appropriate alternative
from those driving maneuvers which have been determined
to be feasible in the current traffic situation.

Each of the feasible driving maneuvers offers multiple exe-

cution alternatives, which can be selected through discrete
driving maneuver parameters. For instance, the overtaking
maneuver could be performed at low or high speed, in
distant or close proximity to the front vehicle, and on the
right or left hand side. In order to select the most appro-
priate driving maneuver, and for it the most appropriate
execution alternative, we apply Multiple Criteria Decision
Making (MCDM) as follows.

Objectives: we define a hierarchy of objectives starting
from a main, most general driving objective, which is then
further successively broken down into more specific and
therefore more operational objectives on lower hierarchy
levels. Eventually, the bottom level of the objective hier-
archy contains only objectives objj which are fully opera-
tional and which are measurable through their attributes
(Figure 3).

Fig. 3. Hierarchy of objectives (Chankong and Haimes
(1983)).

The most general objective for autonomous driving is
to safely reach the specified destination. More precisely,
this objective is broken down into a lower hierarchy level
containing more specific objectives, which specify how to
achieve the objective of the higher level. Thus, we define
the following objective hierarchy consisting of four (k = 4)
level 2 objectives:

• Drive to destination safely =: objLevel1

· Stay within road boundaries =: objLevel2
1

keep distance to right boundary := attr1

keep distance to left boundary := attr2

· Keep safety distances =: objLevel2
2

keep distance to front vehicle := attr3

keep distance to moving obstacles := attr4

keep distance to static obstacles := attr5

· Do not collide =: objLevel2
3

keep minimum distance to obstacles := attr6

drive around obstacles := attr7

avoid sudden braking := attr8

avoid quick lane changes := attr9

· Minimize waiting time =: objLevel2
4

maintain minimum speed := attr10

avoid stops := attr11

Attributes: a set of measurable attributes
{attr1, attr2, .., attrp}, p ∈ N (N=set of natural numbers)

is assigned to each objective on the lowest hierarchy level
(in our example it is level 2 with p = 11). An attribute
is a property of a specific objective. In order to define
various levels of importance, weights may be assigned to
each attribute.

Alternatives: in the context of our application, decision
alternatives correspond to the execution of driving ma-
neuvers. Therefore, in a first step, we regard each element
of the set of driving maneuvers {M1,M2, .., Mn}(n ∈ N)
to be an element of the set of alternatives A:

A = {M1,M2, .., Mn}
However, each driving maneuver Mm (1 ≤ m ≤ n)
offers one or multiple execution alternatives by specifying
discrete 1 parameter values (e.g. fast/slow, close/far, etc.).
The driving maneuver parameters correspond in MCDM
terms to decision variables, where each alternative is
respresented by a decision variable vector.

We obtain:

M1 = {M1
1 ,M1

2 , .., M1
j }

M2 = {M2
1 ,M2

2 , .., M2
k}

...
Mn = {Mn

1 ,Mn
2 , .., Mn

l },
where n denotes the number of driving maneuvers, and j,
k, l the number of execution alternatives for the maneuvers
M1, M2, and Mn respectively.

Therefore, the set of alternatives A contains all execution
alternatives of all n driving maneuvers:

A =
n�

m=1

Mm = {M1
1 , M1

2 , .., M1
j ,M2

1 , .., M2
k , ..,Mn

1 , ..Mn
l }

For the sake of readability, we denote all alternatives as:

A = {a1, a2, .., aq}, (q = j + k + .. + l)
Utility Functions: utility functions f1(ai), ..., fp(ai) specify
the level of achievement of an objective by an alternative
ai ∈ A (i ∈ [1, q]) with respect to each of the p attributes.

For each attribute attri (i ∈ [1, p]), we define a utility
function fattri = fi:

fi : A → [0, 1]

1 In order to reduce the computational costs, we discretize the
otherwise continuous parameter values of driving maneuvers.



Consequently, defining utility functions fi for all alterna-
tives a1, a2, .., aq and all attributes attri (i ∈ [1, p]) results
in the following decision matrix:

ai attr1 attr2 ... attrp

a1 f1(a1) f2(a1) ... fp(a1)
a2 f1(a2) f2(a2) ... fp(a2)
...

...
...

...
...

aq f1(aq) f2(aq) ... fp(aq)

The remaining problem is to select the best among the
feasible alternatives. A variety of MCDM methods can be
applied in order to solve this problem, such as dominance
methods, satisficing methods, sequential elimination meth-
ods, or scoring methods (Yoon and Hwang (1995)). In the
following example we choose a widely used scoring method,
the Simple Additive Weighting Method, in which the value
V (ai) of an alternative ai is calculated by multiplying the
utility function values with the attribute weights and then
summing the products over all attributes (see equation
1) (Yoon and Hwang (1995)). The alternative with the
highest value is then chosen.

2.2 Example

In this example we assume the traffic situation shown in
Figure 4. The vehicle on the left side is a driverless vehicle,
passing a stopped vehicle.

Fig. 4. Driverless vehicle (left) passing a stopped vehicle
(right) (right-hand side driving).

For this situation, without oncoming traffic, the first deci-
sion making stage determined the following two driving
maneuvers as feasible: Passing the stopped vehicle, or
Stop&Go (i.e. waiting behind the temporarily stopped
vehicle).

For the sake of simplicity, we assume that only the follow-
ing few execution alternatives for the two driving maneu-
vers are possible:

• Passing maneuver M1:
· a1 := speed=slow, lateral distance=small
· a2 := speed=slow, lateral distance=large
· a3 := speed=fast, lateral distance=small
· a4 := speed=fast, lateral distance=large

• Stop&Go maneuver M2:
· a5 := distance to front vehicle=small
· a6 := distance to front vehicle=large

Consequently, the set of feasible alternatives is:

A = {a1, a2, .., a6}
The utility functions fi(A) evaluate the achievement level
of each attribute i for each of the 6 alternatives. In order
to allow comparisons between the levels of achievement of
different objectives, the values of the utility functions fi

are scaled to a common measurement scale, the interval of
real numbers between 0 and 1. We define:

fi ∈ [0, 1] ⊂ R,

where the value 1 denotes the optimal achievement of
an objective, while 0 denotes that the objective is not
achieved at all.

We define the utility functions as follows. Each of the 6
alternatives are rated regarding on how well they fulfill
the driving objectives on the lowest hierarchy level. We
rate the alternatives on a scale from 0 to 1, where:

• 1 denotes optimal fulfillment of the objective,
• 0.75 denotes good fulfillment,
• 0.5 denotes indifference,
• 0.25 denotes bad fulfillment,
• 0 denotes unsatisfactory fulfillment.

In our example, the utility function values are assigned
based on heuristics reflecting the preferences of a human
driver, as listed in Table 1.

For calculating the best solution, we choose in this example
the Simple Additive Weighting Method (Yoon and Hwang
(1995)). We define the value of an alternative ai as follows:

V (ai) :=
p�

j=1

wjfj(ai), (1)

where p denotes the number of attributes.

Each attribute is assigned a weight wj , which reflects its
importance. For autonomous driving, the importance of
various objectives changes depending on the road condi-
tions. For example, on a wide boulevard at higher speed,
the attribute “attr8 : avoid sudden braking” is more im-
portant than the attribute “attr1: keep distance to right
boundary”. However, in a residential area, the opposite
might be the case. Consequently, instead of defining invari-
able attribute weights, this method offers the possibility
to adapt the attribute weights, and therefore the decision
preferences, according to the current traffic environment.
In our example, we define the attribute weights as listed
in Table 1.

Using the utility functions and attribute weights as listed
in Table 1, we calculate the value of each alternative:

V (a1) =
11�

j=1

wjfj(a1)

= 1 ∗ 1 + 1 ∗ 0.5 + 2 ∗ 0.5 + 1 ∗ 0.5 + 1 ∗ 0.25
+ 1 ∗ 0.25 + 1 ∗ 1 + 3 ∗ 0.5 + 2 ∗ 0.75 + 2 ∗ 0.75
+2 ∗ 1 = 11.0



Table 1. Heuristic definition of utility functions fi : A → [0, 1] for the 6 alternatives a1, .., a6

and 11 attributes attr1, .., attr11. Weights indicate the level of importance. The column V (ai)
lists the calculated values for each alternative ai.

ai attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 attr9 attr10 attr11 V (ai)
a1 1 0.5 0.5 0.5 0.25 0.25 1 0.5 0.75 0.75 1 11
a2 1 0.25 0.5 0.5 1 1 1 0.5 0.75 0.75 1 12.25
a3 1 0.5 0.5 0.5 0.25 0.25 1 1 0.25 1 1 12
a4 1 0.25 0.5 0.5 1 1 1 1 0.25 1 1 13.25
a5 0.5 0.5 0.25 0.5 0.25 0.25 0 0 1 0 0 4.5
a6 0.5 0.5 1 0.5 0.75 1 0 0.25 1 0 0 8

Weight w1 = 1 w2 = 1 w3 = 2 w4 = 1 w5 = 1 w6 = 1 w7 = 1 w8 = 3 w9 = 2 w10 = 2 w11 = 2

V (a2) = 12.25; V (a3) = 12.0; V (a4) = 13.25; V (a5) = 4.5
V (a6) = 8.0

The highest value max
1≤i≤6

V (ai) = 13.25 is achieved

by alternative a4 (passing at fast speed with a large
lateral distance to the stopped vehicle). Therefore, this
alternative is chosen for execution.

2.3 Discussion

Multicriteria Decision Making methods are established
mathematical tools which are widely applied in a large
variety of engineering and science fields with complex
decision problems (Stadler (1988), White (1976)). For our
problem of autonomous driving, MCDM offers a variety of
benefits:

• The hierarchy of objectives allows a systematic and
complete specification of goals to be achieved by the
vehicle.

• The utility functions can be defined heuristically to
reflect the choices of a human driver, or, alternatively,
learning algorithms can be applied.

• MCDM allows the integration and evaluation of a
very large number of driving alternatives.

• Decision flexibility can be achieved by defining the
set of attribute weights depending on the road condi-
tions.

• Additional objectives, attributes, and alternatives
can be added without the need of major changes.

However, since the method is highly based on heuristics
(i.e. heuristic definition of objectives, utility functions,
and attributes), if MCDM alone is used (without the first
decision making stage (Figure 2)), it is difficult the ensure
that all made decisions will always lead to safe driving.
We have addressed this problem, by ensuring that the
MCDM process only selects the most appropriate driving
maneuver from the set of feasible driving alternatives,
which is the outcome of the first decision stage (Figure
2).

2.4 Experimental Test Results

In order to demonstrate the decision making functionality,
all other components, most of all the Perception Subsys-
tem, but also Driving Maneuvers, are required.

The Decision Stage 1 outcomes have already been demon-
strated in both 3D simulation (Figure 5) (Boisse et al.

(2007)) and in on-road experiments with Cycab vehicles
(Figure 4) (Furda and Vlacic (2009)).

So far, the second decision making stage has been tested in
the 3D simulation. Figure 6 shows the 3D simulation envi-
ronment and the decision making graphical user interface.
In the shown traffic scenario, the autonomous vehicle (left)
approaches a stopped vehicle. The first decision making
stage determines three driving maneuvers as feasible: over-
taking (passing), platooning (stop&go), and emergency
stop. The second, MCDM-based decision making stage
correctly assesses the overtaking maneuver as the most
appropriate one, which is then performed by the vehicle
control software (Figure 1).

In the shown simulation, we have also obtained correct
decision results for other situations, such as approaching
an intersection, or avoiding collisions with pedestrians and
static obstacles.

Fig. 5. The 3D simulation environment is a model of the
test environment for the real driverless vehicle at our
Nathan Campus (Griffith University).

3. CONCLUSION

This paper has addressed the problem of Real-Time De-
cision Making for autonomous city vehicles. After decom-
posing the problem into two consecutive decision making
stages, and demonstrating a solution for the first decision
making stage, we have designed and developed the MCDM
model, which is then applied in the second decision making
stage.



Fig. 6. 3D simulation environment and the decision making graphical user interface of the autonomous vehicle control
software (edited screenshot, left-hand side driving).

A step-by-step explanation, accompanied by an example,
showed how MCDM can be applied, in order to decide
about the most appropriate driving maneuver.

Compared to so far existing solutions, the application of
MCDM offers a variety of benefits with respect to the
problem specification, decision flexibility, and scalability.

We have demonstrated the first stage of our decision
making approach in both a 3D simulation and real-world
experiments. Furthermore, successful 3D simulation tests
of both decision making stages demonstrate that the
developed solution is suitable for complex situations, such
as those found in city road traffic environments.
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