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Abstract 

The rapid dissemination of residential water end-use (e.g. shower, clothes washer, etc.) 

consumption data to the customer via a web-enabled portal interface is becoming feasible 

through the advent of high resolution smart metering technologies. However, in order to 

achieve this paradigm shift in residential customer water use feedback, an automated 

approach for disaggregating complex water flow trace signatures into a registry of end-use 

event categories needs to be developed. This outcome is achieved by applying a hybrid 

combination of gradient vector filtering, Hidden Markov Model (HMM) and Dynamic Time 

Warping Algorithm (DTW) techniques on an existing residential water end-use database of 

252 households located in South-east Queensland, Australia having high resolution water 

meters (0.0139 L/pulse), remote data transfer loggers (5s logging) and completed household 

water appliance audits. The approach enables both single independent events (e.g. shower 

event) and combined events (i.e. several overlapping single events) to be disaggregated from 

flow data into a comprehensive end-use event registry. Complex blind source separation of 

concurrently occurring water end use events (e.g. shower and toilet flush occurring in same 

time period) is the primary focus of this present study. Validation of the developed model is 

achieved through an examination of 50 independent combined events.   
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1.    Introduction 

1.1 Advanced Role of Sensor technology and ‘big data’ analytics in water resources 

management 

Sensor technology and the ‘big data’ they generate combined with advanced machine 

learning techniques provide numerous opportunities for enhancing outdated approaches 

covering all the various segments of water resources management (Schimack et al. 2010; 

Uslander et al. 2010). Reported studies demonstrate that such technologies and techniques are 

increasingly influencing how we better monitor and manage large-scale water basins (e.g. 

White et al. 2006; Quinn et al. 2010; Murla et al. 2010), river stream flow (Limdim et al. 

2010; David et al. 2013), drinking water reservoir quality (Glasgow et al. 2004), water 

treatment plant operations (Storey et al. 2011), water distribution system networks (Dorini et 

al. 2006), consumer water end use consumption (Nguyen et al. 2013a; Willis et al. 2011c), 

and wastewater plant operations (Durrenmatt and Gujer, 2012).   The research focus of this 

paper is on the application of sensors (i.e. high resolution smart meters) and ‘big data’ 

analytical techniques at the urban water scale; specifically the residential water consumer and 

their end use water consumption. This frontier area of water end use or micro-component 

analysis research is beginning to attract research attention. Froehlich et al. (2011) conducted a 

study using pressure sensing devices to infer water usage events in households in Washington 

State, USA. CSIRO (2012) have recently combined an acoustic sensor with smart water 

metering systems in order to disaggregate residential water consumption into end use 

categories. The authors (Nguyen et al. 2013a) utilised machine learning techniques such as 

HMM and DTW to disaggregate remotely collected high resolution water flow data received 

from smart meters into single end use event categories, which is the precursor to this present 

paper seeking to disaggregate concurrently occurring end use events. With these technologies 

becoming commercially viable, the vision of an intelligent expert system, which can perform 

autonomous water end use analysis and provide feedback and decision support to both water 

consumers and authorities, is rapidly becoming a reality. 

 

1.2 Vision of an advanced urban water management system 

The era when urban water planning focused only on how to build and supply water has been 

replaced by a new paradigm, where the precise accounting and management of urban water 

consumption is deemed essential to maintenance of a sustainable water future. Lower water 

yield reliability, from traditional water supply sources, and the increasing demand for water 



in urban areas, requires the development of a more adaptive and innovative water resource 

management approach, fed by robust real-time information. As a consequence, an increasing 

number of smart water metering technologies have been introduced to the market. Such 

metering devices embrace two distinct elements: meters that use new technology to capture 

water use information; and communication systems that can capture and transmit real-time 

water use information (Stewart et al. 2010). While current forms of smart metering 

technology can provide total consumption data to the customer and utility at high levels of 

resolution, they fail to disaggregate this data into its end-use use categories. This study 

envisions and provides the architecture for an advanced smart metering system that enables 

customers and utilities to actively monitor, through web-portal interfaces, real-time 

information about what, when, where and how water was consumed at their meter connection 

(e.g. 56 litre shower occurring between 06:55-07:15 Tuesday 25 May 2012). The proposed 

system allows individual consumers to log into their user-defined water consumption web 

page to view their daily, weekly, and monthly consumption tables, as well as charts on their 

water end-use patterns across major end use categories (e.g. leaks, clothes washer, 

dishwasher, tap, toilet, shower and irrigation). It can also rapidly alert them of occurring leak 

events so that they can immediately address them instead of the current slow feedback 

process from current metering technology (e.g. monthly or quarterly alert at best).   

 

The analytical report generated by the new advanced integrated water management system 

will help utilities identify the water consumption patterns of their various consumer types and 

assist with a range of urban water planning and management functions (Stewart et al. 2010). 

However, such a system requires a robust analytical model to automatically and accurately 

disaggregate the flow trace data into individual water end-use event categories. Current end-

use disaggregation processes used by the authors and their aligned research teams requires 

extensive manual data collection and analysis as summarised in Figure 1 (Beal et al. 2011a). 

Automation of this resource intensive process is essential to developing the proposed 

advanced water management system that has commercial viability. The design and 

verification of an automated flow pattern recognition model that has good accuracy is the 

ultimate aim of this study. 

 

 [Insert Figure 1] 

 

 



1.3 Review of reported water end use studies and analysis approaches applied 

In recent years, a number of residential water end use studies have been completed using a 

range of single or mixed methods, such as household auditing, diaries, high resolution smart 

metering and pressure sensors, with a diverse range of per capita end use summaries. Jacobs 

(2007) and Blokker (2010) provided summaries on a good proportion of the end use models 

developed from stochastic techniques, contingent valuation approaches (CVA), modelling, 

and metered methods. The introduction of advanced technology has enabled the direct 

capture and classification of water end use events. Table 1 provides a summary of reported 

end use studies that have applied high resolution smart meters, data loggers or pressure 

sensors completed internationally in the last 15 years. 

 

[Insert Table 1] 

 

As displayed in Table 1, from a direct measurement and water end use recognition approach 

which is undoubtedly the future of this type of problem, the two main approaches presently 

reported include using smart water meters in conjunction with a decision-tree based analysis 

tool such as Trace Wizard or Identiflow or as more recently published, the inclusion of 

pressure sensors at individual appliances (i.e. HydroSense) along with a HMM based decision 

tool. Each approach has its own strengths and weaknesses, which were discussed in detail in 

(Nguyen et al., 2013a). 

 

In summary, the ideal approach that is most amenable to citywide application is installing 

smart water meters at the property boundary in conjunction with intelligent end use pattern 

recognition algorithms either in-built into the meter software or within a processing module 

at the utilities data centre. This is the lowest cost and non-intrusive approach to water end use 

disaggregation. However, for such widespread implementation, the following summarised 

limitations of the existing models (i.e. Trace Wizard and Identiflow) have to be overcome: 

• inability to analyse collected data without human interaction and manual 

reclassification (i.e. main disadvantage); 

• inability to accurately distinguish different end use categories which have similar 

water flow characteristics (e.g. shower, bathtub and irrigation); 

• inability to classify an end use category that has various physical parameters 

depending on appliance models (e.g. dishwasher, clothes washer and toilet); and  



• inability to deal with multi-layer combined events (i.e. cannot handle three or more 

concurrent events). 

 

These shortcomings have motivated the development of an automatic flow trace analysis 

system which can address all of the above mentioned issues. For the building of such an 

intelligent model, an in-depth understanding of the existing techniques applied to this type of 

problem is required. Nguyen et al. (2013a) presented a detailed review of pattern recognition 

techniques available and provided a rating for them (i.e. 1 star (*) = poor; ** = below 

average; *** = average; **** = good; and ***** = excellent) for their processing time 

efficiency, classification accuracy, self-learning potential and an overall applicability rating 

for each technique to the herein examined water end use pattern recognition process (Table 

2). 

[Insert Table 2] 

 

Based on this review Nguyen et al. (2013a) suggested a method using a hybrid combination 

of the Hidden Markov Model (HMM) and Dynamic Time Warping (DTW) algorithm to help 

classify single independent events into appropriate end use categories. However, in 

residential households a small proportion of water end use events are occurring 

simultaneously (e.g. shower and toilet flush). Therefore, in order to achieve the vision of an 

automated and intelligent water management system, this current paper presents a robust 

method which integrates the analytical techniques employed in single event classification 

with vector gradient filtering method to perform a comprehensive combined event analysis. A 

detailed literature review of HMM and DTW techniques, including their theoretical 

foundations and application to single event analysis has been conducted in Nguyen et al. 

(2013a). This present paper only summarises the applied HMM and gradient vector filtering 

methods and outlines their crucial roles in combined event disaggregation. 

 

1.4 Overview of applied pattern recognition techniques 

HMM is a statistical Markov model in which the system being modelled is assumed to be a 

Markov process with unobserved (hidden) states. In a regular Markov model the visible state 

transition probabilities are the only parameters. In a hidden Markov model, the state is not 

directly visible, but the output, which is dependent on the state, is visible. Each state has a 

probability distribution over the possible output tokens. Therefore, the sequence of tokens 

generated by an HMM gives some information about the sequence of the states (Ephraim and 



Merhav, 2002). HMM was used as the principal technique for the classification of all single 

end use events in (Nguyen et al., 2013a). In the present study, the existing HMM model, 

which was previously applied in single event analysis, is incorporated with some additional 

physical parameters to help disaggregate a combined event into many samples and assign 

them to specific end-use categories.  

Another mathematical tool is utilised for combined event analysis, namely, gradient vector 

filtering. This technique has been widely applied in many fields such as image enhancement, 

noise reduction or digital signal enhancement (Boashash, 2003). It relies on the analysis of 

the multi-dimensional gradient vector of the original signal to extract information contained 

in the signal, so that unnecessary parts can be filtered or removed (Shapiro and George, 

1998).  Based on that principle, another version of this technique has been developed to suit 

this particular study. The proposed method also considers the gradient change of the flow rate 

data series to determine whether a flow rate fluctuation is actually a new event occurring on 

top of the base event or expected variation within the base event.  

 

2. Research objective 

The development of pattern matching algorithms which are able to automatically categorise 

the collected flow trace data points, received from the wireless data loggers, into particular 

water end-use categories requires the resolution of two key research questions; firstly, how to 

recognise single events from the collected flow trace?; and, secondly, how to separate a 

combined event into its appropriate single event categories? The first research question was 

successfully achieved using a hybrid combination of the HMM and DTW algorithm (Nguyen 

et al., 2013a).  The key objective of this current investigation is to solve the latter more 

challenging problem of disaggregating multiple combinations of simultaneously occurring 

water end use events in residential households into single events assigned to their appropriate 

end use category.  Validation of the developed combined event disaggregation model is 

achieved through its application and accuracy testing on 50 independently collected 

combined events.   

 

3. Model input data 

3.1 Research regions 

Data utilised for the development of the model is sourced from 252 residential households 

fitted with a smart meter and data logger and located in the urban south east corner of the 



State of Queensland, Australia. These households are consenting participants in the recently 

completed South-east Queensland Residential End Use Study (SEQREUS) funded by the 

Queensland State Government (Beal and Stewart, 2012). A sample of properties is taken 

from the Sunshine Coast Regional Council (n=67), Brisbane City Council (n=61), Ipswich 

City Council (n=37) and Gold Coast City Council (n=87) to use as a database for the study.  

 

3.2 Winter and summer samples 

Three separate water end use analysis reads occurred during the study. The first read was 

conducted in winter 2010 from 14th to the 28th June. The second read was taken in the 

summer 2010-11 between 1st December 2010 and 21st February 2011. The final two week 

period of analysis occurred in winter 2011 from the 1st to the 15th June. It is important to 

obtain a dataset for this study that included the entire spectrum of events across seasonal 

periods (i.e. irrigation). While seasonal affects may induce higher amounts of irrigation  

events from some householders on hot dry days and potentially different frequencies for 

event categories (i.e. longer showers in winter), the signature trace for particular end use  

event categories (e.g. clothes washer or shower pattern) are not particularly affected by  

seasonal influences (Beal et al. 2011b). 

 

3.3 Property selection 

To ensure the research findings are representative of a population, an appropriate sample 

must be selected (Howell, 2004). The study seeks to target just mains-only supplied detached 

dwellings which make up the majority of residential stock in the region at present. 

Participating households were requested to complete a questionnaire survey developed to 

assist in determining the socio-demographic characteristics and socioeconomic status of 

households. These surveys also assisted in determining environmental and water conservation 

perceptions and attitudes of consumers. The completed questionnaire surveys (n=252) were 

entered into Predictive Analytics Software 18.0 (PASW formally SPSS), a statistical analysis 

program. PASW 18.0 is a popular data storage platform and statistical analysis software with 

researchers and businesses. Descriptive statistical enquiries were carried out to determine the 

socio-demographic characteristic of the research sample. The outcome of this analysis 

process was the decision on certain criteria for sample selection as displayed in Table 3 

below. 

[Insert Table 3] 



3.4 Characteristics of participating households 

Some general characteristics of the participating households within each region are shown in 

Table 4. The average number of people per household is relatively consistent across all 

regions for all three measurement periods, with the Sunshine Coast having the lowest average 

occupancy of 2.5 people per household, and the Gold Coast region having the highest average 

of 2.9 occupants. The percentage of households occupied by two or less people is greater in 

the Sunshine Coast (average of 56 %) and Gold Coast (49 %) compared to the generally 

larger households in Ipswich (53 %) and Brisbane (43 %). These percentages reflect the older 

demographic of the Sunshine Coast and Gold Coast regions which is also typified by the 

older age of children for these regions (Table 4). 

[Insert Table 4] 

 

3.5 Collected unprocessed flow dataset utilised for study 

As mentioned in the provided abstract, CSV files containing 0.0139 L/pulse water 

consumption data for every five second logging interval for each sample household was 

collected. To enable the application of HMM, water flow data collected was initially 

processed and broken down into eight different water end use categories with the number of 

samples shown in the second column of Table 5. The database was then apportioned into a 

training (80%) and testing (20%) data set. 

 

[Insert Table 5] 

 

4. Model architecture   

4.1 End use classification process overview 

With the available database, the disaggregation process of the water end-use events from the 

raw data is developed and shown in Figure 2. As mentioned previously, single events are 

those which occur in isolation (e.g. toilet flushing only), while combined events have 

simultaneous occurrences of water usage (e.g. a shower occurring while someone else is 

using a tap), which is more challenging to disaggregate. At the very first step, HMM 

algorithm is used to recognise if an event is a single event or a combined event. The 

outcomes from this process are a group of classified single events and another group 

containing unclassified combined events.  



In the case of the single events, it is very likely that not all of them are correctly assigned to 

the appropriate categories due to the high complexity level of the present problem. Therefore, 

to achieve a reliable single event classification, additional techniques and criteria need to be 

utilised, in conjunction with the HMM technique. The detailed procedure is shown in Figure 

3. The next important task involves the combined event classification, which remains one of 

the most complicated problems in the field of pattern matching. The detailed procedure is 

summarised in Figure 4.  

[Insert Figure 2] 

4.2 Single event analysis 

The present study focuses on the combined event classification of the flow trace analysis 

system. However, a brief introduction and explanation of the required procedures for the 

achievement of a single event classification is presented in this section; a more detailed 

technical overview was provided by Nguyen et al. (2013a). The flow chart in Figure 3 

illustrates a comprehensive single end-use event analysis process. 

The analysis starts with identifying the leak event, which usually occurs in a continuous 

manner. The low-flow rate leak event pulses, recorded by the smart water meter (i.e. isolated 

0.0139L events), are evident in a large proportion of the households. These events are 

initially extracted from the flow trace data set and are classified in the ‘leak’ end-use 

category. The remaining flow data is then analysed using the HMM to classify all the water 

end-use categories, usually into two broader groups: (1) depends heavily on a water user’s 

behavior (related to tap, bathtub, irrigation, shower and toilet); and (2) works under a pre-set 

mechanical process (related to clothes washer and dishwasher). The HMM method 

categorises the water flow data into eight basic end-use categories (i.e. shower, clothes 

washer, dishwasher, tap, full flush toilet, half flush toilet, irrigation and bathtub) and a group 

of unclassified combined events (dashed line in Figure 2). The categorisation process of 

combined events is presented in the next section. In the single event classification, to strip out 

misclassified samples, which are also products obtaining from the initial HMM application 

where they exist, a screening process is further performed on all these classified single events 

to determine the one which do not fit neatly within a range of certain criteria for each 

particular end-use category. As a result, a number of classified single events are removed 

from their respective categories and relocated to a group titled inconclusive events. 



For the inconclusive event category, the DTW algorithm is applied to determine the clothes 

washer and dishwasher events, as these end-uses often have similar repeating mechanical 

wash cycles (i.e. related to others occurring within a short 1-2 hour time period). The event 

time-of-day probability functions (i.e. the probability of a certain event occurring at a certain 

time of day), combined with the HMM method, is then applied to classify the inconclusive 

end-use events which usually depend on user’s behaviours (i.e. shower, tap, irrigation, toilet 

and bathtub). The process outlined in Figure 3, results in the classification of the raw flow 

trace data into a repository of water end-use events. The next primary step in the overall 

study is to perform a combined event classification. 

[Insert Figure 3] 

 

4.3 Combined event analysis 

In the current study, a combined event is formed by at least two simultaneous single events. 

There is no restriction on the starting and finishing time of each component event, as long as 

they have an overlapped period with each other. This overlap makes the problem extremely 

complicated; no information is given on how many single events contribute to the combined 

event, or when each of them starts or finishes. Therefore, it is essential to explore the 

formation of a combined event to establish the criteria for the separation process.  

An intensive analysis of the collected data reveals that most combined events last more than 

one minute, allowing enough time for many end-use categories to overlap. In a combined 

event, the longest component is named the “base-event”, and all other shorter events are 

called “sub-events”, which are superimposed on top of the base event (i.e. in Figure 8, Event 

1 is defined as a base event, and all other events are named sub-events). An important finding 

is that most of the collected base events include the shower, bathtub and long irrigation, as 

they all last substantially longer than the other, shorter end-uses. Nevertheless, a toilet event 

associated with leaks can sometimes act as a base event due to the long lasting period of the 

leak; however, such case is insignificant as it would be stripped out from the raw data at the 

beginning of the analysis process. For sub-events, the most common categories are the tap, 

clothes washer, dishwasher, toilet, and short irrigation.  

With the availability of the established HMM model for single event recognition, the analysis 

of a combined event is ready by using the same technique, in conjunction with other pre-



determined criteria. The whole combined event analysis process is separated into two stages, 

the Sub-event analysis and the Base-event analysis, which are clearly presented in Figure 4. 

In the first stage analysis, a separation process employing the modified gradient vector 

filtering method is applied to disaggregate the uncategorised combined event into one base 

sample and several sub samples, where the term “sample” is used to refer to the products 

obtained from the separation process before the classification. Once these samples are 

assigned to their proper categories, they are called “events”. This analysis section includes 

two layers. The HMM method is applied to the sub samples to determine whether they are 

actual complete single events or just parts of other events within the combined event. At this 

stage, to achieve a reliable decision related to the sub event judgment, some pre-determined 

criteria are incorporated into the existing HMM model. The criteria are the direct outcomes 

from an intensive statistical study on the whole collected database, which reflects the true 

user’s behavior on different types of water end-use categories. The products obtained after 

the first layer analysis are the actual, already- classified, single events, and sometimes some 

additional unclassified sub samples, which do not satisfy the threshold criteria to be assigned 

to any particular water end-use category. These undetermined samples are then passed 

through the second layer analysis which is similar to the first one. The only difference 

between Layer 1 and 2 is that all products achieved after the separation process in Layer 2 

(both sub and base samples) would be classified using criteria applied for sub event. The 

unclassified samples after sub-event Layer 2 analysis, where they exist, are considered as 

parts of the original base event and, therefore, are returned to that base event at the same time 

index it has achieved prior to the separation process. 

A base event, as previously defined, is the longest single event within the combined event. 

However, in the second stage of the analysis, the base sample, achieved after the initial 

separation process, remains problematic, that is, whether it is a single event or another 

combined event. This uncertainty arises because it is just the remaining product after small or 

spiky sections are taken away from the original combined event. To tackle this issue, the 

subjected base sample is dissected into many smaller parts, using the same filtering 

technique, for further analysis. The outcome of the second stage analysis, following the 

HMM classification process, is a classified a single base event, with the potential for other 

classified sub events, where they exist. 



Once the model is completely developed, the verification process follows, which involves 

testing on 50 independent combined events. The technique verification and result discussion 

are performed in Section 9 - Model verification. 

[Insert Figure 4] 

 

5. Combined event separation process 

The first required step in the combined event classification analysis is to separate the 

subjected event into several smaller parts as displayed in Figure 7. The flow data records the 

water usage; therefore, the flow rate changes (gradients) indicate a device is switched on or 

off. A modified gradient vector filtering method is developed to allow the analyst to dissect a 

combined event to any desired level. This technique plays a fundamental role, in conjunction 

with the other analytical procedures, to help achieve the separation performance.  

The principle of this technique is based on an examination of the gradient change, alongside 

the event sample, to make different leveling decisions. The method derivation can be 

explained as follows: 

Given a combined event sample, whose flow rate is demonstrated as a vector 𝒂 =

(𝑎1,𝑎2, … 𝑎𝑗 … ,𝑎𝑚) of length 𝑚, the gradient of vector 𝒂, 𝒈 = (𝑔1,𝑔2, …𝑔𝑗 … ,𝑔𝑚−1), is 

defined as : 

                𝑔𝑗 = (𝑎𝑗+1−𝑎𝑗)
𝑑𝑡

    ,     1 ≤ 𝑗 < 𝑚                  (1) 

where 𝑗 is the sampling index, 𝑎𝑗 is the water flow rate, expressed in terms of litre per minute 

recorded at time 𝑡𝑗, and 𝑑𝑡 is the sampling interval ( 𝑑𝑡 = 𝑡𝑗+1 − 𝑡𝑗 ). The increase of flow 

rate gradient indicates the occurrence of a new water use, while the decrease of flow rate 

implies the completion of a water use. However, due to the possible fluctuation of water 

pressure in the main, or the intentional flow rate adjustment during the water consumption 

from the user, the gradient of one event could be unstable, which leads to the 

misclassification of this event. To overcome this problem, the proposed filtering method is 

applied to help remove these confusing variations during the analysis.  

The main objective is to determine the period (i.e. a series of data points) during which the 

flow rate fluctuations are not due to the starting or ending of a water-use. The task is carried 



out by setting a criterion for decision making. Given 𝑙 as the desired filtering threshold, the 

filtering process is performed on an event section  𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑘, (𝑗 < 𝑘), only if (∀ 𝑔𝑛 ∈ 𝒈) 

and (𝑗 ≤ 𝑛 ≤ 𝑘), all |𝑔𝑛| < 𝑙. The new flow rate ( 𝑎𝑛′  ) for this period is set to the average 

flow rate as: 

             𝑎𝑛′   = 1
𝑘−𝑗+1

∑ 𝑎𝑛𝑘
𝑛=𝑗          (𝑗 ≤ 𝑛 ≤ 𝑘)          (2) 

 

If the flow rate gradient is greater than the filtering threshold  𝑙,  it would be considered as a 

new event’s starting or completion.  

As defined in the prior section, a combined event comprises of one base event and other sub 

events. In relation to their relative position, the sub event could overlap the base event at 

three different situations: (i) the sub even starts and finishes earlier than the base event; (ii) 

the sub even starts later, but finishes earlier than the base event; (iii) the sub even starts and 

finishes later than the base event. Given two random events, their possible overlapping 

sections are indicated in Figure 5.  

[Insert Figure 5] 

Therefore, in order to separate the sub samples from the original combined event, an 

examination should be undertaken in these three sections. Figure 6 illustrates a typical 

combined event separation process. In the first step, the aim is to find out whether there is 

any sub event starting earlier or finishing later than the base event. At the finishing time (tk) 

of a combined event, if the flow rate drop (𝑎𝑘−1 − 𝑎𝑘) at the end of a combined event is 

approximate to the last flow rate rise (𝑎𝑚−1 − 𝑎𝑚), i.e. 𝑎𝑘−1 − 𝑎𝑘 ≈ −(𝑎𝑚−1 − 𝑎𝑚)  then it 

is very likely that there is a sub event clamped between   𝑡𝑚 ≤ 𝑡 ≤ 𝑡𝑘. The same principle can 

also be applied on the starting phase to detect a sub event in that zone. In the example shown 

in Figure 6, no sub event is found in the above mentioned zones; however, a typical example 

for this scenario is presented in Section 8. 

Given an original combined event as displayed in Figure 6a, once all the sub events occurring 

at the two ends of the combined event are identified and removed, the next step is to strip out 

the other samples located within the left-over combined event.  



The second step in this separation process is to determine the gradient vector of the remaining 

combined event using Equation (1). Then, the above mentioned gradient vector filtering 

threshold 𝑙 is used to filter out the flow rate fluctuations. It should be noted that the filtering 

method developed for this study only appears in this step to level the gradient vector of the 

left-over combined event. A range of threshold values for 𝑙 from 0.05 to 0.85 (L/min/min) 

have been tested and value of 𝑙 − 0.2 L/min/min is adopted as it yields the highest overall 

recognition accuracy for the model. The leveled gradient vector is shown in Figure 6c. 

[Insert Figure 6a] 

[Insert Figure 6b] 

[Insert Figure 6c] 

Based on the filtered gradient vector, the starting and ending moment of each sub sample for 

separation is determined by finding the point where the gradient vector changes from zero to 

a positive value (the starting point of a process), and the point where the gradient changes 

from a negative value to zero (the finishing point of a process). In Figure 6c, the sub samples, 

determined by this criterion, are marked as 1 and 2. It should be noted that the separation 

process using this filtering technique ignores the first phase of the remaining combined event, 

as found in reality. Indeed, it is very unlikely that many events would start at the same time 

after stripping off the overlapped sub events at the initial state (as performed in the previous 

steps). 

Once all the starting and ending points of each sub sample have been determined, the 

removing process can be performed by subtracting those samples away from the base event. 

The achieved products of this process are displayed in Figure 7. 

[Insert Figure 7] 

6. Sub-event analysis 

Prior to the establishment of an overall methodology for performing the combined event 

analysis, it is necessary to create category index 𝑖 = 1, 2, … , 8 representing all the eight end-

use categories, with the corresponding order as follows: 1- shower, 2 - faucet, 3 - clothes 

washer, 4 - dishwasher, 5 - full flush toilet, 6 - half flush toilet, 7 - bathtub, and 8 - irrigation . 

The main process in Layer 1 is the classification process using HMM with threshold criteria. 



6.1 Layer 1 classification process using HMM with threshold criteria 

The classification process is to be achieved by employing the HMM method, with the 

likelihood presented as a vector 𝒄 = (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8) . The sample will be 

categorised as 𝑖 if 𝑐𝑖  is the maximum element of 𝒄. The testing of the selected combined 

events reveals that the utilisation of the HMM alone is not sufficient to deal with such a 

complex recognition problem, which is shown over low classification accuracy. Therefore, 

some other additional criteria need to be employed. In the present study, the modified 

likelihood of one sample (𝐶𝑖) can be determined using Equation (3). 

            𝐶𝑖 = 𝑘𝑚,𝑖𝑘𝑟,𝑖𝑐𝑖              𝑖 = 1,2, … 8     (3) 

where 𝑖 represents the corresponding water end-use category, as mentioned above.  𝑘𝑚,𝑖 and 

 𝑘𝑟,𝑖 are the magnified factor and the reduced factor for the end-use category 𝑖 respectively, 

and 𝑐𝑖  is the original HMM likelihood of the tested sample. The determination of the 

magnified factor (𝑘𝑚,𝑖) and the reduced factor (𝑘𝑟,𝑖) is different for each end-use category. 

The achievement of 𝑘𝑚,𝑖 and 𝑘𝑟,𝑖 for the clothes washer, dishwasher and toilet are presented 

in Section 6.1, while Section 7.1 elaborates the steps used to obtain these parameters for the 

shower, bathtub and irrigation. 

The first step in this analysis is used to classify the already separated sub samples, based on 

some pre-determined criteria. To perform this task, one proposition is made regarding the 

possible end-use categories of these sub samples. As discussed previously, via many manual 

analysis processes, these small samples are found to most likely belong to the following 

categories 𝑖 = 2,3, 4,5,6 . Therefore, within this classification process, the end-uses of these 

samples are limited to the above mentioned categories (i.e. one sub sample can be assigned to 

one of the following types: faucet, clothes washer, dishwasher, full flush toilet, half flush 

toilet and nothing else). To establish a set of criteria for the classification of each particular 

category, some preparatory tasks are required. In the present study, the combined event 

classification is performed after the completion of the single event analysis; therefore, all 

outcomes achieved in the preceding part are inherited and applied into this analysis module. 

Table 6 shows the necessary parameters for the clothes washer, dishwasher and toilet 

categories, achieved from the single event classification process, when considering any 

particular home.  

[Insert Table 6] 



 

With the already classified clothes washer, dishwasher and toilet events achieved from the 

single event analysis (when investigating one particular home), it is possible to determine the 

typical flow rate of those clothes washer and dishwasher events; it is also possible to 

determine the typical volume of the toilet events to be used as the representative physical 

parameters for that home.  

When using the HMM technique for the pattern matching problem in this study, the sample is 

assigned to the category which has the maximum value among  (𝐶1) to (𝐶8). There are five 

categories to be classified in this analysis, namely: the faucet (tap), clothes washer, 

dishwasher, full flush and half flush toilet. As a consequence, the value of 𝐶1,𝐶7  and 𝐶8, 

which illustrates the integrated possibility of this sample to be shower, bathtub and irrigation, 

would be zero. The final HMM likelihood vector, calculated by combining with the 

magnified factor and the reduced vector for one sub sample, is presented in the form 

of      𝑪 = (0,𝐶2,𝐶3,𝐶4,𝐶5,𝐶6, 0,0).   

 

6.1.1 Clothes washer event 

In the first layer analysis, to help detect the presence of a clothes washer event underlying a 

combined event, one criterion is set. This criterion is based mainly on the search for the 

number of clothes washer or dishwasher events, right before and after the combined event, to 

work out the probability of having those end-uses in the combined event. In the present study, 

a range of ten events, prior to and subsequent to, the combined event, are examined. As one 

clothes wash usually takes at least thirty minutes or more, depending on the user’s setting, a 

long time interval is often expected between each cycle; therefore, it is most likely to find 

only one or two clothes washer cycle within the searching range of ten events.  

 

In order to establish the probability value for detecting the presence of the clothes washer 

event, and its relative occurrence position with the combined event, the whole database for 

the 252 homes was analysed. The analysis outcome is based on a consideration of the range 

of the ten events, before and after the subjected combined sample. The output shows that, if 

there is at least one clothes washer event, in front of a combined event in a time series (Case 

1), the probability of having another one in the combined one is (𝑝3,1 = 36.4%). In the case 

of the clothes washer event being detected immediately after the occurrence of the combined 

event (Case 2), the probability now is (𝑝3,2 = 57.2%). Finally, if one combined event is 



enclosed by two clothes washer events (Case 3), (𝑝3,3 = 92.6%) makes it certain that more 

clothes washer samples would be found in the combined event. These probabilities are 

transformed into the magnified factor to include in the clothes washer HMM likelihood. 

As mentioned previously,  𝑐3 is the HMM probability that the subjected sample is assigned to 

the clothes washer. This value can be modified by incorporating a magnified factor 𝑘𝑚,3 to 

reflect the likelihood of a variation when there are a certain number of clothes washer events 

found in front of, and behind, the subjected combined event. The magnified factor 𝑘𝑚,3 for 

the clothes washer can be calculated as: 

               𝑘𝑚,3 = 1 + 𝑝3,𝑗    (4) 

where 𝑗 = 1,2,3 representing Cases 1, 2 and 3.  

The values of (𝑘𝑚,3),  for different cases, are determined by adding the increase in the 

probability of finding the clothes washer event (𝑝3)  to the original factor of one. The 

selection of these magnified factors is proved to be effective for this particular study, 

demonstrated in the verification process in Section 9. In this study, 𝑘𝑚,3 is equal to 1.364, 

1.572 and 1.926, for case 1, 2 and 3, respectively. 

However, the verification process has been proved that, to boost the separation accuracy, 

another criterion should be established and combined with 𝑘𝑚,3. All the washing machines 

perform under a pre-set mechanical process, which results in a fairly constant flow rate for all 

cycles; therefore; for a sample to be recognised as a clothes washer event, its flow rate must 

stay within a certain limit of the typical flow rate for the currently used washing machine. In 

this case, a reduced factor,  𝑘𝑟,3, is obtained to take into account the difference in sample flow 

rate, with the typical flow rate of the subjected washing machine, which can be achieved 

from a single event analysis process. The achievement of this factor is performed through the 

analysis of 8975 classified clothes washer samples (from 252 homes), collected to facilitate 

this study.  

By finding the variation between the flow rates of all the clothes washer events, from one 

particular home, with the typical flow rate of the washing machine, these differences are 

assigned to four ranges: 0.5 to 1.5 (L/min) (Case 1), 1.5 to 2.5 (L/min)  (Case 2) , 2.5 to 3.5 

(L/min) (Case 3), and greater than 3.5 (L/min) (Case 4). This process is repeated 252 times, 

for all households, to achieve the total number of samples sorted into each case. The findings 



reveal that 7990 clothes washer events (89.08%) have the flow rate difference in the range of 

0.5 to 1.5 (L/min) compared to the typical flow rate. The percentages for cases 2, 3 and 4 are 

5.28% (474 samples), 3.31% (297 samples) and 2.33% (214 samples), respectively.  

If q is the most frequent flow rate of the currently tested sample, 𝑑𝑞 is the absolute difference 

between 𝑞  and 𝑞𝑡,3 , the typical clothes washer flow rate of the surveyed home, then the 

reduced factor (𝑘𝑟,3) obtained is 0.8908, 0.0528, 0.0331, and 0.0233, for Cases 1, 2, 3 and 4, 

respectively. 

 

6.1.2 Dishwasher event 

For the dishwasher event classification, the determination of the magnified factor (𝑘𝑚,4) and 

the reduced factor (𝑘𝑟,4)  are similar to that of the clothes washer. The magnified 

factor  (𝑘𝑚,4), which demonstrates the probability of having a dishwasher event within a 

combined event, is achieved through the analysis of the 1109 combined events. From the 

study, it is (𝑝4,1 = 52.6%) obvious that there is the presence of at least one dishwasher event 

within range of 10 events before the subjected combined event (Case 1). If there is a 

dishwasher event detected within the range of 10 events after the combined event, and none 

of them is found in front of the combined event, the probability of finding one event within 

the combined event is (𝑝4,2 = 33.2%) (Case 2).  

 

In the last scenario, if one combined event is clamped by two dishwasher events, both in front 

of it, and behind it, the probability in this case occurring is 84.2% (Case 3). With the 

possibility of finding the dishwasher event within the combined event based on its relative 

occurrence position; the magnified factor 𝑘𝑚,4 for the clothes washer can be calculated using 

equation 5; 𝑘𝑚𝑑 is equal to 1.526, 1.332 and 1.842, for cases 1, 2 and 3, respectively. 

             𝑘𝑚,4 = 1 + 𝑝4,𝑗          (5) 

where 𝑗 = 1,2,3 representing Cases 1, 2 and 3.  

The reduced factor 𝑘𝑟,4  for the dishwasher classification is also achieved using the same 

process as used for the clothes washer. A dataset of 4877 classified dishwasher events is 

examined to determine this parameter, which considers the difference between the subjected 

sample flow rates with the dishwasher typical flow rate from all 252 homes. The values of 



𝑘𝑟,4 are obtained, namely: 0.9426, 0.0335, 0.0133, and 0.0106 for the four ranges of 0 to 1.5, 

1.5 to 2.5, 2.5 to 3.5, and greater than 3.5 (L/min) respectively. 

 

6.1.3 Toilet event  

In terms of the full flush and half flush toilet recognition, only the reduced factor is applied 

(𝑘𝑟,5 and 𝑘𝑟,6), which reflects the volume difference of the tested sample with the typical full 

flush and half flush toilet volumes of the surveyed home. In a similar way to the criterion of 

the flow rate difference for the clothes washer and the dishwasher recognition, the sample can 

be classified as the toilet, if its volume is within the allowable limit of the cistern volume for 

the full flush event and the half cistern volume for the half lush event of the currently used 

toilet. Through the examination of the 23861 toilet events (i.e. both full flush and half flush 

toilet), it is revealed that 15014 samples (62.92%) are manually classified as the toilet, 

although their volume differences range from 0.5 to 1.5 litres compared with the typical toilet 

volume at their homes (Case 1).  

 

For the difference in the range of 1.5 to 2.5 (Case 2), 2.5 to 3.5 (Case3), 3.5 to 15 (Case 4), 

and greater than 15 litres (Case 5), the number of achieved samples are 3693 (15.48%), 3095 

(13.07%) and 2509 (8.63%), respectively. If 𝑣𝑠 is the volume of the currently tested sample, 

𝑑𝑣 is the volume absolute difference between 𝑣𝑠 and 𝑣𝑡,5,6, the typical toilet volume of the 

surveyed home, then the reduced factor 𝑘𝑟,5 and 𝑘𝑟,6 for the different values of 𝑑𝑣  will be 

achieved as 0.6292, 0.1547, 0.1308, 0.0863 and 0, for Case 1 to Case 5, respectively.  

 

6.1.4 Threshold establishment 

The subjected samples in this analysis process are achieved by removing the spiky sections 

from the original combined event using a subjective separation process; therefore, it is still 

uncertain whether these sub samples are the actual single events or only parts of a base event. 

To answer the question relating to this issue, a threshold value is set for the decision making. 

This boundary for an end-use category was the HMM likelihood value 𝑏. Thus, the major 

percentage (𝑝𝑠) of the sample size (e.g. 𝑝𝑠   = 50%, 60% or 70%, etc.) classified to this 

particular end-use has to have a minimum HMM score of  𝑏𝑖 for category i. The aim of this 

step is to find a vector 𝒃 = (𝑏1,𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8) which comprises the threshold values 

for all the end-use types. To find the value for 𝒃, an analysis of the 78843 unclassified 

samples, from the 252 homes, is performed using the existing HMM model, which was 



applied in single event analysis. The number of samples classified for each category is 

summarised in Table 7: 

[Insert Table 7] 

 

For each end-use category dataset, the likelihood of all the samples is determined using the 

HMM method. If these likelihood values are sorted in descending order, then 𝑏  is the 

minimum HMM score of the first (𝑝𝑠 %) of the likelihood values. There are eight different 

water end-uses in this analysis; therefore, vector 𝒃 contained the eight threshold values of all 

the categories required. The present study employed an iterative method for the range of 𝑝𝑠 

varying from 40% to 90%. The corresponding vector 𝒃,  which results in the highest 

recognition accuracy during the verification process, is adopted as the final threshold values 

for all the end-uses. Over several trials, the value for 𝒃  at 𝑝𝑠of 73% is achieved (as shown in 

the Table 7). 

The achieved vector 𝒃 implies that the top 73% of 6175 shower events and 4389 dishwasher 

events have a minimum likelihood of 0.000267 and 0.0015148, respectively. With the 

established criterion for each end-use category, if any particular event is already assigned to a 

class, based on the HMM method, if its likelihood is less than the threshold value for that 

particular class, then that event still remains unclassified, and will be put aside for further 

analysis.  

With all the criteria established to be incorporated into the HMM method, the sub event 

classification is now ready. The final likelihood of one sample being categorised, as the 

faucet, clothes washer, dishwasher, full flush toilet or half flush toilet, is determined, as 

presented in Table 8. 

[Insert Table 8] 
 

6.2 Second layer sub-sample analysis 

The next analysis stage aims to classify an undetermined sub sample into appropriate end use 

category. The first task to be undertaken in this stage is to break down the subjected 

undetermined sample into its respective smaller sample elements, which are named 

“secondary sub samples and base sample”, using the proposed filtering method. All products 

achieved from this separation process will be categorised using the HMM method along with 



the subsequent threshold value criterion. The outcome achieved from this classification can 

fall into one of the following cases: 

i. Some of the secondary sub samples are assigned to particular end use categories and 

some still remain uncertain due to the failure to meet the threshold values. 

ii. All secondary sub samples are successfully assigned to their appropriate water end 

use categories. 

iii. All secondary sub samples still remain undetermined. 

The first case implies that the original undecided sub sample is actually a combination of 

some single events with parts of the original base event. This conclusion can be explained 

based on the extraction of classified single events in the subjected sub sample, and 

undetermined secondary sub samples which are parts of the actual base event. In this case, all 

remaining uncertain secondary sub samples would be returned to the original base sample at 

the same time index as it was before the separation process. In the second case where all 

secondary sub samples are assigned to different end use categories, then it could be inferred 

that the undetermined sub sample is actually a combination of many other single events. In 

the third case, if all separated secondary sub samples fail to be classified into any end use 

category, it is likely that they are all parts of the actual base event, and they would be 

returned to the base sample for further analysis. 

A limitation of this process is that there is small probability that the actual single events 

underlying in the undecided sample are sometimes recognised as parts of the original base 

sample, and vice versa due to the similar shape and characteristics. Therefore, a perfect 

classification for this layer analysis is unable to be achieved. The effect of this issue is the 

drop in the final recognition accuracy, which is discussed later in the verification process. 

 

7. Base-event analysis 

Once all the sub events are fully classified, the final step in this combined event study is to 

analyse the base sample. The base sample is the product obtained after removing all spiky 

samples from the original combined event after the initial separation process. As explained in 

the previous section, via many intensive analysis processes on the collected data, it is 

revealed that the majority of the base events are formed by only one, or a combination, of the 

following end-use categories: shower, bathtub, long irrigation, and full flush toilet. The 

procedure to this type of event is similar to that for the sub event. Firstly, the proposed 

filtering method (Section 5) is used to separate the primary base sample into many smaller 



secondary sub samples, and a new secondary base sample. Once this step is finished, the 

HMM, which incorporates some pre-defined base-event analysis criteria, is followed to help 

with the recognition of all the new sub samples. However, it should be noted that in this 

analysis, the possible end-uses for the secondary sub samples in the base event analysis is 

limited to the shower, bathtub, irrigation and toilet. Additionally, the likelihood vector of one 

sample is in the form of 𝒄 = (𝑐1, 0,0,0, 𝑐5, 0, 𝑐7, 𝑐8). The criteria applied to the HMM (i.e. the 

magnified and reduced factors) are discussed in detail for shower and bathtub end-uses.  

 

7.1 HMM with threshold criteria for base samples  

7.1.1 Shower 

For the formulation in Section 6.1, the statistical study of the shower end-use find that about 

87% of all the shower events have a volume greater than 7 litres (Case 1), 7.7% in the range 

of 6 to 7 litres (Case 2), 3.8% in the range of 5 to 6 litres (Case 3), while 1.5% of the samples 

have a volume less than 5 litres (Case 4) (Nguyen et al., 2013a). It can be inferred that if any 

sample has a volume less than the lower limit of 5 litres, then it would be less likely to belong 

to shower category. The reduced factors (𝑘𝑟,1) for the shower event are obtained as 1, 0.077, 

0.038 and 0.015, if the volume of the tested sample falls into Case 1,2,3 and 4, respectively. 

 

7.1.2 Bathtub 

In terms of the bathtub, the duration of the usage is the governing characteristic, which 

requires further attention. One of the important findings from the analysis of the bathtub 

dataset is that 91% of the bathtub events have a length greater than 4 minutes (case 1), 7.2% 

in the range of 3 to 4 minutes (Case 2), 1% in the range of 2 to 3 minutes (Case 3), and 0% if 

the duration was less than 2 minutes (Case 4) (Nguyen et al., 2013a). From these findings, a 

corresponding reduced factor (𝑘𝑟,8) is applied to the HMM score of the subjected sample in 

consideration of the length of time for the event. The values of 𝑘𝑟,8 are adopted as 1, 0.072, 

0.001 and 0 for the four corresponding cases. 

 

7.1.3 Irrigation and full flush toilet 

For the irrigation event, there is no dominant distribution in the characteristics, such as 

duration, flow rate or volume, as this type of end-use is subjected to the user’s behaviour. As 

a result, the primary HMM score is adopted as the final likelihood for this type of end-use, 

and the magnified factor (𝑘𝑚,8) and the reduced factor (𝑘𝑟,8) are adopted as 1. In terms of the 



full flush toilet, 𝑘𝑚,5 and 𝑘𝑟,5 are readopted as the criteria for this end-use in the analysis 

process.  

 

With all the criteria incorporated into the HMM method, the new sub sample classification is 

now ready. The final likelihood of one sample being categorised as shower (1), full flush 

toilet (5), irrigation (7) and bathtub (8) is determined (see Table 9). Once all the sub samples 

are assigned to the different categories, the last step is to check against the threshold value. If 

the final HMM score of the sample is less than the corresponding threshold value, then it 

could be confirmed as part of the original base event, and is added to the base sample at the 

same time index as before.  

[Insert Table 9] 

 

The final step in the combined event analysis is to classify the remaining secondary base 

sample, which is assigned to the shower, bathtub, irrigation or toilet. At this step, the HMM, 

with the magnified and reduced factors, is employed to perform the required task. However, 

unlike all the previous recognition processes, the process of checking against the threshold 

value is skipped, with the score achieved from this technique being adopted as the final 

likelihood for the decision making. Indeed, it is found during the analysis that the overall 

accuracy does not show any change if the secondary base sample is separated and further 

analysed when failing in threshold value checking; therefore, with the suggested procedure, 

the current model can still guarantee the reliability and save significant processing time. 

 

8. Combined event analysis example 
For a more comprehensive understanding of the overall study, the proposed technique is 

performed on one typical combined event collected to explain, in detail, how each step is 

applied. The original event’s details are extracted directly from the user’s diary (presented in 

Table 10 below). 

[Insert Table 10] 

 

 

Some additional information in the household is also provided as: 

• One clothes wash started from 7:30 am and finished at 8:13 am  



• No dish washing in the morning   

• Toilet cistern volume: 7.0 L 

From the given information, a manual analysis was performed to separate this event; the 

outcome is shown in Figure 8 below: 

[Insert Figure 8] 

 

8.1 Combined event separation process 

The ultimate aim for this example is to apply the proposed technique to achieve the 

disaggregated single events matching the ones shown in the above figure. With the event 

sample presented as 𝒂 = (𝑎1,𝑎2, … 𝑎𝑗 … ,𝑎𝑚), where m= 58. As introduced in Section 5, the 

first step is to identify whether any sub event occurs before the base even starts or completes 

after the base event finishes. As can be seen from Figure 9, no sub event is found during the 

initial phase, but a sub event displayed by the blue line is identified and separated from the 

original event in the final phase. 

[Insert Figure 9] 

The second task is to strip out all the sub samples, which completely lies on top of the 

remaining base one. This objective is accomplished by firstly calculating the gradient vector 

𝒈 of the remaining combined sample using Equation (1). The required vector is shown in 

Figure 10 below: 

[Insert Figure 10] 

 

At this point it is important to remember that the aim of finding the gradient vector is to 

determine the period for each sub sample. Based on the achieved gradient vector, the task is 

undertaken by looking for the moment when each sub sample starts (the rise of the original 

event’s flow rate, which is presented over the gradient change from zero to a positive value) 

and finishes (flow rate drop displayed over the gradient change from a negative value to 

zero). To perform this task, the developed filtering method is employed to help level out the 

gradient vector. As mentioned in the previous section, the value 𝑙  of 0.2 L/min/min is 

recommended for the filtering purpose of this particular study. The filtered vector is 

displayed in Figure 11.  



[Insert Figure 11] 

 

With all the identified starting and finishing points of the underlying sub samples, the second 

separation task is now ready. The complete products of the combined event breaking down 

process are shown in Figure 12. 

[Insert Figure 12] 

8.2 Sub event recognition 
Figure 13 shows two sub samples extracted from the original combined event, which are 

named “Sub 1” and “Sub 2”. 

[Insert Figure 13] 

 

In Layer 1 analysis, all the sub samples are passed through the HMM recogniser, with the 

output categories restricted to faucet, clothes washer, dishwasher and toilet. The information, 

presented in Table 11, is given by the surveyed home to enable the combined event analysis. 

[Insert Table 11] 

 

It should be noted that when the whole autonomous flow trace analysis system is completed, 

the detection of the above physical characteristics could be achieved automatically. By 

applying the HMM method, in addition to the adopted reduced and magnified factors (shown 

in Section 6.1) on each sub sample, the final HMM likelihood for each of them is obtained. 

At the end of this process, Sub 1 is classified as half flush toilet, and Sub 2 still remains 

undetermined due to the failure in threshold value checking (Appendices A1 and A2). Thus, a 

second layer analysis is required to further examine the undetermined sub sample 2. 

 

Within this analysis, the subjected undetermined sample is broken down again. The separated 

products are named “Sub 3” and “Sub 4”, and are displayed in Figure 14. 

 

[Insert Figure 14] 

 



With the availability of two new sub samples, the recognition process using the HMM on 

each of them is ready. From the analysis, Sub 3 and Sub 4 are classified as half flush toilet 

and faucet respectively (Appendices A3 and A4). This outcome is identical to what was 

written in the collected user’s diary. 

 

8.3 Base sample analysis 

The final task in this study is the recognition of the base sample, which is presented in Figure 

15 below. 

[Insert Figure 15] 

As previously discussed, the possible end-uses of the base event in this study are limited to 

the shower, bathtub, long irrigation and full flush toilet, as they are long enough to allow the 

overlapping with other events. In the present analysis, the HMM, in combination with some 

other pre-determined criteria for bathtub and shower, is applied to determine the final 

likelihood of the subjected sample. From the HMM final score (Appendix A5), the base 

sample is eventually classified as the shower, which matches the one given in the user’s 

dairy. 

  

In summary, with the achieved classified events, it can be stated that the proposed method is 

effective in dealing with the problem of disaggregating a combined event into different 

components. In this illustrative example, only a tiny faucet event is missed as it was 

considered as a part of the based shower event. This problem is insignificant and 

understandable as, in reality, the flow rate of most events are unstable due to the fluctuation 

of water pressure, or the adjustment of the water user. The volumes of these missed events 

are minor compared to that of the original combined event; therefore, the final recognition 

accuracy of the overall study is not really affected. However, to confirm the efficiency of the 

proposed disaggregation technique, more testing should be undertaken. The next section 

introduces a comprehensive verification process of the final algorithm on various types of 

common combined events. 

 

9. Model verification 

9.1 Combined event classification accuracy 

The model is verified using another independent 50 combined events, which are basically 

divided into three categories with the increasing level of complexity. 



 

Type 1 of the independent combined events includes two events which occur simultaneously. 

The longer one of these two events plays as the base event, while the remaining one is 

considered as the sub event. This is the simplest event combination in reality; therefore, in the 

present study, only five samples of this type are collected to facilitate the testing process. 

 

Type 2 of the independent combined event comprises a group of concurrent events, in which 

the longest event is the base one and all other smaller events laying on top of this large event 

are sub events. This is the most common type of event combination, and 35 independent 

samples are used to serve the verification. 

The last, and the most complex, type of combined event is the one which comprises two 

overlapped layers. A typical sample of this problem is shown in the illustrative example in 

Section 8. For example, one combined event includes three components; the longest one lies 

in the bottom, and plays as the base event. Some simultaneous events, located right above the 

base one, are considered as the first overlapping layer. In the second overlapping layer, some 

other events will occur on top of the sub events in layer 1. There are 10 samples of this type 

collected for the present study. Figure 16 shows examples of each type of the independent 

combined events verified in the present study. 

[Insert Figure 16a] 

[Insert Figure 16b] 

[Insert Figure 16c] 

 

The efficiency of the proposed technique is thoroughly verified by examining all aspects of 

the independent samples.  In the present study, two accuracy indices are achieved to give the 

reader a broad overview of how effective the recommended method is in analysing each type 

of combined event, and one accuracy index obtained for the recognition of the particular 

water end-use category. For the individual combined event examination, the method 

effectiveness is illustrated over the accuracy in terms of the number of events, AN. This is 

achieved by determining the ratio between the numbers of correctly classified single events, 

over the total events, within the combined one. The accuracy, in terms of volume, AV, aims to 

find the ratio between the correctly classified volume over the actual volume of each single 



event, within the combined one. These two indices are clearly presented in Table 12 for the 

three different types of event combinations. A detailed description and accuracy of each 

tested event can be found in Appendices A6, A7 and A8. 

[Insert Table 12] 

 

From Table 12, it can be seen that all Type 1 combined events are accurately separated and 

identified. The accuracy of 98.9%, in terms of volume, is obtained because during the 

separation process, the starting and ending points of each component single event were not 

perfectly determined. This result leads to the slight difference in the volume of the separated 

event compared to that of the actual single event. The accumulation of all the volume 

variations results in the drop of the average accuracy for this type of combined event.  

 

The great separation accuracy achieved for this event combination becomes a good 

preparation for the testing of more complicated combined events. Over many manual end-use 

studies, combined event Type 2 is found to be the most common event combination found in 

reality, which is comprised of one large base event and several other sub events; therefore, 

the testing on this type of sample is the main focus for this verification process. Within 35 

independent samples of this type, there are 223 sub events, spreading over the following end-

use kinds, such as: tap, toilet, clothes washer and dishwasher; and 35 base events belonging 

to the shower, irrigation and bathtub end-use. The results from the proposed technique show 

that six base events are misclassified (accuracy of 82.9%), which substantially reduces the 

accuracy, in terms of volume, for those testing samples, as these base events cover the 

majority of the sample volumes. In terms of the sub event recognition, 181 out of the 223 sub 

events are placed into their correct category (81.2%). The outcome shows that the method is 

highly efficient when dealing with this type of sample. In summary, 81.4% of total events 

extracted from the 35 samples have been accurately put into the correct groups, while 82.6% 

of the total volumes have been properly sorted.  

 

The high recognition accuracy attained for this type of combined event has the potential to 

extend the proposed technique for more complicated event combinations. The next level of 

the combined event that is tested includes two overlapping layers, as introduced earlier in this 

section. For this type of event, 10 samples (i.e. 65 sub events, ranging from tap, toilet, clothes 

washer, dishwasher, and bathtub, to shower), and 10 base events (of the shower, bathtub and 



irrigation) are collected and verified.   Unlike type 1 and 2, this type of event allowed a 

combination of many large events (such as the shower, irrigation and bathtub); therefore, the 

longest event is identified as the base event, and all shorter events, even irrigation, bathtub or 

shower, are identified as sub events. Surprisingly, the accomplished accuracy, in terms of the 

number of events for this type, is even higher than that of type 2 (82.7% compared to 81.4%), 

and the accuracy for the volume is almost the same (82.4% compared to 82.6%). Thus, the 

proposed method is effective in analysing most types of combined events, from the easiest 

one of two overlapping events to the most complicated sample–two overlapping layers of 

many events.  

However, for a more comprehensive understanding of how the technique performed on each 

type of end-use, Table 13 is established to indicate the accuracy achieved for each particular 

end-use for all three tested types: 

[Insert Table 13] 

 

The table shows that the disaggregation accuracy is over 75% for all water end-uses, with the 

highest, 89.7%, for clothes washers, and the lowest, 76.5% for irrigation. Due to their similar 

patterns, the shower, bathtub and irrigation events are often misclassified, which dramatically 

bring the accuracy down for these end-uses. To overcome this problem, it is recommended 

that more information should be provided on the available types of end-use presented in the 

surveyed home (e.g. the survey home does or does not irrigate, etc.). The right identification 

of the base events makes a significant contribution to the overall system accuracy, as their 

volumes are often completely dominant all other sub events. In terms of the sub event, the 

high classification accuracy of the clothes washer, dishwasher and toilet events are proved.  

 

The incorporation of the magnified factors and reduced factors into the HMM likelihood of 

these end-uses is very effective for this type of problem. Within this verification process, 

most of the misclassified toilet events are put into the faucet group, as their patterns are 

distorted due to the pressure loss occurring when many events occur concurrently. Moreover, 

unlike traditional full flush and half flush toilets, the water pattern of some new toilet models 

is not constant anymore, as the user can decide the amount of water to be released. The 

combination of these two issues has imposed a difficulty on the classification of a toilet event 

underlying a combined event. The performance on the faucet event is impressive, as 87.1% of 



the overall faucet samples are accurately classified. This notably high accuracy is due to the 

fact that most faucet patterns are unpredictable; however, in reality, they usually have 

relatively small volumes, which is the main characteristic for the system to recognise. In 

addition, with a huge number of collected faucet events to facilitate this study, the developed 

HMM classifier is also more effective for the faucet category. 

 

9.2 Comparison with existing combined event analysis methods 

As mentioned previously, one of the most widely used tools for flow trace analysis in the 

water industry is Trace Wizard (Beal and Stewart, 2012), which was developed to 

disaggregate a series of flow signals into different end-use categories. However, the accuracy 

of this software depends greatly on the reliability of the input parameters, which requires 

detailed information about the available water end-use (e.g. whether to have irrigation, 

bathtub, or dishwasher, etc.). The water efficiency, the maximum, minimum and most 

frequent flow rate of every single end-use device in the surveyed home was needed. The 

collection of such input data, however, is resource intensive, while the method itself is not 

feasible for large scale application. The first paper on a single event analysis (Nguyen et al., 

2013a) proposed a new method to solve the primary single event classification. The new 

method’s recognition accuracy is shown to far outweigh the Trace Wizard. In terms of the 

combined event analysis, the highest complexity level that Trace Wizard could manage is the 

Type 2 event combinations (i.e. a group of simultaneous events with only one overlapping 

layer); therefore, the very low disaggregation accuracy is often expected when analysing 

Type 3 event combinations. With its ability to examine the three types of combined events, 

the newly developed method stands out for being the ideal solution for the combined event 

analysis. To illustrate the difference between the Trace Wizard and the proposed technique, a 

further testing process is performed on 50 independent samples, with the outcomes shown in 

Table 14. 

[Insert Table 14] 

 

As displayed in Table 14, the recognition accuracy achieved for the Type 1 event 

combination is very high, with 8 out of 10 single events, included in the 5 samples, are 

assigned to the appropriate category.  The two misclassified samples are faucet events, whose 

volumes are relatively small; therefore, the average accuracy, in terms of volume attained, is 

almost absolute. However, a considerable difference is shown by the Type 2 event analysis; 



only 166 out of 258 single events are accurately identified; this included 141 sub events and 

25 base events. The misclassification of 10 base events, whose volumes are significantly 

large, brings down the average accuracy in terms of the volume to 65.2%.  

 

The final testing is conducted on the Type 3 combined events, which has gone beyond the 

ability of the Trace Wizard. In this analysis, all the sub events located in the second 

overlapping layer are ignored. This action dramatically affects the average accuracy in terms 

of the number of events. Only 5 out of 10 base events, and 24 out of 65 sub events, are put 

into the right groups. The result shows that an accuracy of 38.6% in terms of the number of 

events and 55.4% in terms of the volume were achieved. In summary, the average testing 

accuracy on three different combined event types of 41.6% and 72.3%, the Trace Wizard is 

far behind the proposed method. The new method correctly classifies 88% of the total events 

and volumes using this technique. This outcome again proves that the newly developed 

algorithm for the combined event analysis is expected to be widely applied in the future. 

 

10. Conclusions, limitations and future directions  

The establishment of an integrated water management system, which employs smart water 

metering, in conjunction with an intelligent algorithm to automate the flow trace analysis 

process, is becoming more and more feasible. The first fundamental step to extract the single 

events from the flow rate series, and assign them to appropriate categories, was achieved 

using a model containing a hybrid combination of HMM and DTW algorithms. This single 

event disaggregation model is comprehensively described in (Nguyen et al., 2013a). 

However, combined events are a significant proportion of residential consumption and the 

goal of having a comprehensive automated pattern recognition model would not be achieved 

without solving this challenging disaggregation and recognition process. The present study 

provides a robust event classification process for combined events through applying the 

HMM, DTW algorithm and gradient vector filtering techniques Model validation testing of 

50 independent simultaneously occurring  events of increasing combination complexity 

demonstrated good accuracy. The average disaggregation accuracy achieved through the 

validation process, both in terms of the number of events and their volume, was 88%.  

 

The main difficulty encountered when dealing with combined event disaggregation is the 

pattern distortion of all the contributing single events, due to the pressure lost in the pipe, 

when many events occur simultaneously. The outcome results in a reduction in the overall 



disaggregation accuracy. For example, a distorted toilet or dishwasher event induced by 

pressure loss has a similar shape to that of a faucet, and may be eventually classified as a 

faucet event. Collecting and manually classifying the single event components of a much 

larger sample of combined events will be the focus of future research in order to better under 

the influence of pressure drop on single event characteristics. 

 

The final analytical stage of the greater study will be to formulate an intelligent self-learning 

algorithm, which allows the system to characterise the distinct end-use characteristics of any 

new residential house analysed by the system, by drawing on existing extensive registries of 

event signature prototypes already established and interpreting these new variant events and 

accurately assigning them to the prototype registry. Once this algorithm is complete, a user 

friendly automatic flow trace analysis application will be developed. The application will 

integrate the already completed single and combined event classification processes, along 

with the future developed self-learning processes into one comprehensive residential water 

end use event pattern recognition system. A verification process on samples of independent 

homes from various urban areas within Australia, and later abroad, will be carried out to 

confirm the accuracy level of this application for various situational context (e.g. region, 

dwelling type, etc.).  

 

11. Model development implications for urban water management 

The model developed in this study is the key element for the building of an integrated water 

management system which is able to automatically categorise the flow data recorded from 

water meter into all end-use categories. One application of this system allows for individual 

consumers to log into their user-defined water consumption web page to view their daily, 

weekly and monthly consumption tables as well as charts on water consumption patterns for 

categories of water end use. Average and/or best practice water end use charts can also be 

provided for similar family types in the suburb or city of the householder so they can see how 

their consumption compares (i.e. compared to descriptive norms) and address consumption 

categories of high consumption (e.g. comparably high shower use may entice the homeowner 

to install a high efficiency shower head). Moreover, cumulative water billing can be updated 

daily or even hourly, and on-line alarms could be generated to indicate potential causes for 

excessive water use. This will help consumers to take corresponding water saving actions. 

 



From an operational perspective, there are significant implications for improving current 

practices of infrastructure planning and management. The provision of demand and supply 

data from such a system can assist in urban water system modelling and infrastructure 

planning through: 

• Providing real-time diurnal pattern data of water demands at a household level which 

will assist with understanding required supply quantities, storage needs, excess supply 

available for resale or distribution, and discharge volumes; 

• Providing better predictive models on wastewater system requirements (e.g. treatment 

processes, estuarine, marine and river impacts, etc.) through real-time end use data 

related to prior knowledge on the typical waste constitute materials associated with 

such uses; 

• Better modelling of water and wastewater systems and improved identification of 

upgrade requirements for stressed infrastructure; 

• A comprehensive understanding of the expandability of a particular region (with 

existing infrastructure) and management of growth based on water demands; and  

• Effective priority infrastructure planning and regional planning. 

 

The data from the integrated water management system will also provide significant insight 

into the development and effectiveness of water demand management strategies at the 

development scale. Moreover, the application could significantly improve the current 

decision making relating to the development of Water Demand Management (WDM) 

strategies as well as provide empirical verification on achieved water savings from already 

implemented programs. The application of real-time end use data, for both water authorities 

and consumers, will undoubtedly revolutionise the current ad-hoc approach to WDM, by 

providing: 

• The ability to monitor the effect of enforcement or restriction levels on water 

consumption; 

• The ability to immediately quantify the effect of targeted education programs (e.g. for 

particular demographics, shower time, rebate program, etc.) on their intended water 

end use(s); 

• The capacity to establish the water savings resulting from implemented engineering 

applications such as efficient water appliances (e.g. washing machines, shower roses, 

etc.) and pressure and leakage management; 



• Real time water consumption data provided to water users/customers resulting in an 

increased level of knowledge and understanding of personal water consumption and 

how this compares with others; and 

• A tool for definitive financial analysis of the cost and water saving benefits of 

implemented WDM programs, ultimately driving a least cost planning agenda; and 

• Easy identification of leakage in households or businesses. 

The system will allow for the instantaneous quantification of the effect of WDM strategies on 

water consumption. This will lead to significant improvement on the development and 

delivery of such measures, thus closing the loop on demand management strategies. Stewart 

et al. (2010) also provided a detailed discussion on the benefits of smart metering and high 

resolution water end use data for enhanced urban water infrastructure planning and 

management. 
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Figure 1  Schematic illustrating the water end-use analysis process (Beal et al., 2011a) 

Figure 2 End use event classification process (Nguyen et al., 2013a) 

Figure 3  Single event analysis process (Nguyen et al., 2013a) 

Figure 4  Combined event analysis process 

Figure 5  Possible overlapping positions of two random samples 

Figure 6a         Original combined event for method illustration 

Figure 6b         Gradient of the remaining combined sample 

Figure 6c  Filtered gradient vector 

Figure 7        Achieved samples after separation process 

Figure 8   Actual singles events in the combined one 

Figure 9   Separation of sub sample at starting and finishing phase 

Figure 10 Gradient of the remaining sample 

Figure 11   Filtered gradient of the remaining sample 

Figure 12   Products achieved from the separation process 

Figure 13   Sub samples achieved from the separation process 

Figure 14   Two secondary sub samples achieved from the separation process 

Figure 15   Base sample achieved from the separation process 

Figure 16a   Type 1 independent combined event 

Figure 16b   Type 2 independent combined event 

Figure 16c   Type 3 independent combined event 

 

 

 

 

 

 

 

 

 

 



 

Figure 1 Schematic illustrating the water end-use analysis process (Beal et al., 2011a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2 End use event classification process (Nguyen et al., 2013a) 
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Figure 3 Single event analysis process (Nguyen et al., 2013a) 

 

 

 

 

 

Removing odd events using physical features of each end-use category 

Apply Time-of-day probability function on the inconclusive set to search for additional 
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Figure 4 Combined event analysis process 

 

(*): any event whose likelihood is less than threshold 
value will remain unclassified. 
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Figure 5 Possible overlapping positions of two random samples 

 

 

 

   



Figure 6a Original combined event for method illustration 

 



Figure 6b Gradient of the remaining combined sample 

 

 



Figure 6c Filtered gradient vector 

 

 

 

 



Figure 7 Achieved samples after separation process 

 

 

  

 



Figure 8 Actual singles events in the combined one 

 

 

 



Figure 9 Separation of sub sample at starting and finishing phase 

 



Figure 10 Gradient of the remaining sample 
 

 



Figure 11 Filtered gradient of the remaining sample 

 



Figure 12 Products achieved from the separation process 



Figure 13 Sub samples achieved from the separation process 

 

 

 



Figure 14 Two secondary sub samples achieved from the separation process 

 



Figure 15 Base sample achieved from the separation process 

 



Figure 16a   

 



Figure 16b Type 2 independent combined event 

 



Figure 16c Type 3 independent combined event 

 

 

 



Table 1 Conducted water end use studies using smart water meter, data logger and pressure sensor (Beal and Stewart, 2012) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study  Location Sample 
size (hh) 

Sample regime Dwelling type/s Data capture Data transfer and analysis Reference 

2011 – USA University of 
Washington Seattle, USA 5  5 weeks Mixture Pressure sensor 

Data transferred wirelessly to 
PC. Analysis using 
HydroSense 

Froehlich et al. (2009; 
2011) 

2009 – 2011 Gold Coast 
Watersaver EUS 

 

Gold Coast, 
Aust.  252 Winter 2008 and 

Summer 2009 

Single, 
detached, dual 
reticulation  

Actaris CT5-S meters, Aegis 
Datacell R series loggers, 10 sec. 
int.  

Manual download to PC in-
situ Trace Wizard® 

 Willis et al. (2010a, 
2011b) 

2008 –USQ Investigation 
of domestic water end use 

Toowoomba, 
Aust. 10 Continuous for 

138 days Single detached Actaris CT5-S meters, Monita R 
series loggers, 10 sec. int. 

Wireless download – weekly 
email Trace Wizard® Mead (2008) 

2007 – NZ Water End Use 
and efficiency  project  

Auckland 
region 51 

6 months: across 
summer and 
winter 

Single, detached  Neptune disc meter, 34.2 pulses/L, 
Branz data loggers, 10 sec int. 

Manual download to PC. 
Trace Wizard® Heinrich (2006) 

2005 – Yarra Valley 
Water Residential End 
Use study 

Yarra Valley, 
VIC, Aust. 100 2 x 2 wks summer 

and winter Single detached 
Actaris CT5 modified to 72 
pulses/L. Monatec XT logger, 5 sec 
int. 

Manual download into MS 
Access database. Trace 
Wizard® 

Roberts (2005) 

2004 - Tampa Water 
Department Residential 
Water Conservation Study 

Florida, USA 26 
2 wk baseline data 
+ 2 x 2 wk data 
post retrofit 

High end users 
(230 L/p/d)  

Trident T-10 or Badger 25 meters,  
Meter-Master loggers, 

 Downloaded to PC and 
Trace Wizard® Mayer et al. (2004) 

2003 – Smart metering 
project in UK 

Across 10 UK 
Water utilities 250 On going Mixture 

Indentiflow® smart meter (0.01 L 
resolution) and data logger at 1s. 
intervals 

Analysis using Identiflow® 
software 

Kowalski and 
Marshallsay (2005) 

1998–2001 WA Water 
Corporation Domestic 
Water Use study  

Perth, WA, 
Aust. 

120 and 
600 
surveys 

18 months for 
single and 13 
months for multi 

Single and multi Smart meters and loggers 
(unspecified) 

Manual download to PC in-
situ and Trace Wizard® Loh and Coghlan (2003) 

1998 USA and Canada 
residential end use – 
AWWA 

USA/Canada 1,188  2 x 2 wks summer 
and winter Single detached Magnetic water meters, Meter 

Master 100EL logger, 10 sec int.  
Manual logger and download 
ex-situ and Trace Wizard® Mayer et al. (2004) 



Table 2 Existing pattern matching techniques and a rating of their applicability to the present study (Nguyen et al., 2013a) 

 
Technique Research fields typically applied Technique rating category References 

Processing 

efficiency 

Recognition 

accuracy 

Self-learning 

potential 

Overall 

applicability 

Decision tree Medical decision making, risk 

management, ecological assessments, 

water end use studies, many others 

***** ** * *** Cha et al. (2009), Deng et al. (2011), 

Eggers et al. (2012), Yiee & Baskin 

(2011), Yuan & Shaw (1995) 

Artificial Neural 

Network (ANN) 

All pattern recognition problems 

including speech, handwriting, 

signature, finger print, etc. 

**** *** ** *** Da & Xiurun (2005), Bhadeshia (1999), 

Hert et al (1990), Bishop (1995), 

Haykin (1999), Zhang et al (2007) 

Dynamic Time 

Warping (DTW) 

Limited fields including hand writing 

recognition, fault detection, or speech 

matching. 

*** *** ** *** Myers & Rabiner (1981), Muller 

(2007), Rabiner & Juang (1993), Sakoe 

& Chiba (1978) 

Hidden Markov 

Model (HMM) 

Most effective in hand writing and 

speech recognition 

*** **** **** 

 

**** Starner & Pentland (1995), Baum et al 

(1970), Ghahramani & Jordan(1997), 

Satish & Gururaj (2003), Tapia (2004)  



Table 3 Criteria for sample selection (Beal and Stewart, 2012) 

Criteria Comment / Justification for criteria 

Consented to end use study Ethical clearance requirement for all collaborating research partners. 

Residential single detached 

dwellings only 

Required to have a single residential water meter specific only to the 

property being metered in order to capture single household data. 

Only town (potable) water 

supply to household 

Households which has more than one supply source internally plumbed 

(e.g. rainwater tank or recycled water to toilet) was not included due to the 

additional smart metering requirement. 

Water meters accessible and 

readily replaced with smart 

meters and associated data 

loggers 

Water meters need to be replaced with minimum disturbance to property. 

Data transfer requires a clear GPRS network signal. Concrete lid may 

reduce reception. In summary, the site was reviewed to ensure that it was 

fit-for-purpose for equipment installations and data collection reliability. 

Owner-occupied household Due to consent reasons and that water bills are payed for by the home 

owner (i.e. landlord), only ‘home owners’ have been included in the study. 

Also, rental households are typically transient and can move every 6-12 

months, thus not providing a good sample for seasonal comparisons. 



Table 4 General characteristics of monitored households (Beal and Stewart, 2012) 

Household 
Demograhics1 

Gold Coast Brisbane Ipswich Sunshine Coast 
Winter 
2010 

Summer 
2010-11 

Winter 
2011 

Winter 
2010 

Summer 
2010-11 

Winter 
2011 

Winter 
2010 

Summer 
2010-11 

Winter 
2011 

Winter 
2010 

Summer 
2010-11 

Winter 
2011 

No. of 
households 87 68 33 61 64 26 37 31 12 67 56 39 

No. of people2 230 192 91 164 182     79 96 81 33 171 131 98 
Av. Household 
occupancy 2.6 3.0 3.2 2.6 2.8 3.0 2.7 2.6 2.8 2.5 2.4 2.6 

% Households 
with ≤ 2 people 58% 46% 42% 41% 47% 42% 51% 58% 50% 46% 64% 59% 

% Households 
pensioners/ 
retired 

36% 37% 30% 16% 17% 4% 32% 32% 8% 45% 50% 46% 

Households 
with children 
(aged ≤ 17) 

34% 46% 52% 30% 38% 46% 21% 23% 33% 25% 23% 28% 

Average age of 
children (years) 8.8 8.4 7.7 2.7 4.6 5.7 4.4 5.9 4.8 10 9.4 10.5 

Income bracket 
split3 
1:2:3:4:5:6:7 

13:11:8:6:
4:0:2 

13:15:8:11:7
:4:4 

5:8:5:3:
3:3:3 

6:9:19:6:
7:2:3 

5:9:18:6:
9:3:3 

1:3:10:
1:5:2:0 

8:6:8:5:
3:3:1 

6:6:7:3:3
:3:0 

1:3:2:2:3
:0:0 

18:23:1
4:5:0:4:

0 

14:22:9:2
:0:4:0 

9:14:7:1:
0:3:0 

Education level 
split4 
PS:HS:T:U  

1:21: 9:19 1:24: 16:27 0:10: 
9:14 

0:17: 
10:23 

1:14:10:2
4 

0:5: 
5:15 

3:12: 
12:9 

3:12: 
10:6 2:4: 4:2 4:14: 

25:26 
4:10: 
21:21 

4:7: 
13:15 

Notes: 1data presented are averages, 2this is based on known household occupancies at the time of the initial household water audit and also includes any updates to occupancies which were collated in March this year. 
This does not include any visitors or absent residents. 3income categories: 1 = <$30,000, 2 = $30,000 – $59,000, 3 = $60,000 – $89,999, 4 = $90,000 - $119,999, 5 = $120,000 - $149,999, 6 = ≥ $150,000, 7 = prefer not 
to respond. 4education categories are PS = primary school, HS = high school, T = trade/TAFE, U = university (includes post graduate). 



Table 5  Data allocation 

End-use category Collected samples 

Shower 7,265 

Tap 56,349 

Clothes washer 8,975 

Dishwasher 4,877 

Toilet 15,468 

Bathtub 496 

Irrigation 1,290 

Combined events 2,883 

 



Table 6 Required feature parameters for clothes washer, dishwasher and toilet event 

classification 

 

End-use category Feature parameters 

Clothes washer Typical flow rate  -  𝑞𝑡,3 

Dishwasher Typical flow rate  -  𝑞𝑡,4 

Toilet Typical volume    -   𝑣𝑡,5,6 



Table 7 Number of samples classified to different end-use categories using HMM method 

 

End-use category Number of classified 

sample 

Corresponding 

threshold value (𝑏𝑖) 

Shower 6175 0.0000267 

Faucet 44076 0.0063820 

Clothes washer 8257 0.0001280 

Dishwasher 4389 0.0015148 

Full flush toilet 7888 0.0001098 

Half Flush Toilet 5507 0.0003098 

Irrigation 1806 0.0000273 

Bathtub 744 0.0000138 



Table 8 Final likelihood of one sample for sub event analysis 

 

Category                   Original HMM 

likelihood (𝑐𝑖) 

Magnified 

factor (𝑘𝑚,𝑖) 

Reduced 

factor (𝑘𝑟,𝑖) 

Modified 

likelihood 

 (𝐶𝑖) 

Threshold value  

checking  (𝑏𝑖) 

Faucet  𝑐2 1 1  𝐶𝟐  𝑏2 

Clothes washer  𝑐𝟑 𝑘𝑚,3 𝑘𝑟,3  𝐶3  𝑏𝟑 

Dishwasher  𝑐4 𝑘𝑚,4 𝑘𝑟,4  𝐶4  𝑏4 

Full flush toilet  𝑐5 1 𝑘𝑟,5  𝐶5  𝑏5 

Half flush toilet  𝑐6 1 𝑘𝑟,6  𝐶6  𝑏6 

 



Table 9 Final likelihood of one sub sample in base event analysis 

 

Category                   Original HMM 

likelihood (𝑐𝑖) 

Magnified 

factor (𝑘𝑚,𝑖) 

Reduced 

factor (𝑘𝑟,𝑖) 

Modified 

likelihood  (𝐶𝑖) 

Threshold value  

checking  (𝑏𝑖) 

Shower  𝑐1 1 𝑘𝑟,1  𝐶𝟏  𝑏1 

Full flush toilet  𝑐5 1 𝑘𝑟,5  𝐶5  𝑏5 

Bathtub  𝑐7 1 𝑘𝑟,7  𝐶7  𝑏7 

Irrigation  𝑐8 1 1  𝐶𝟖  𝑏𝟖 



Table 10 Independent combined event description 

 

End-use category Start time Event description 

Shower 8:15:00 1 shower event in main bathroom 

Basin tap 8:15:30 1 short tap event from basin 

Main toilet 8:16:00 1 full toilet flush event 

Kitchen tap 8:16:35 1 kitchen tap event 

Ensuite toilet 8:17:00 1 half flush event 

 



Table 11 Physical characteristics of all end-use devices in the surveyed home 

End-use Given information 

Clothes washer • 1 clothes washer cycle was found within 

10 events prior to the combined one. 

• No clothes washer was found within the 10 

events after the combined one. 

• Typical clothes washer flow rate of the 

surveyed home: 11.25 (L/min). 

 

Dishwasher • No dishwasher event was found within the 

10 events before and after the combined 

one. 

• Typical dishwasher flow rate of the 

surveyed home: 2.33 (L/min). 

 

Full flush toilet • Typical volume of all full flush toilet 

events of the surveyed home: 6.62 (L). 

Half flush toilet • Typical volume of all half flush toilet 

events of the surveyed home: 3.11(L). 



Table 12 Average disaggregation accuracy for all three types of combined event 

 

Type AN AV 

1 100 98.9 

2 81.4 82.6 

3 82.7 82.4 

Overall 88.0 88.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 13 Disaggregation accuracy for each end-use category 

 

Event category Number of events for 

verification 

Number of correctly 

disaggregated events 

Accuracy (%) 

Shower 23 18 78.3 

Faucet 163 142 87.1 

Clothes washer 29 26 89.7 

Dishwasher 24 20 83.3 

Toilet 78 64 82.1 

Bathtub 19 15 79.0 

Irrigation 17 13 76.5 
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Table 14 Comparison between the proposed technique with existing methods 

Type of 

combined event 

Disaggregation accuracy using 

Trace Wizard 

Disaggregation accuracy using the 

proposed method 

AN AV AN AV 

Type 1 – 5 

samples  

80 96.3 100 98.9 

Type 2 – 35 

samples    

64.3 65.2 81.4 82.6 

Type 3 – 10 

samples 

38.6 55.4 82.7 82.4 

Average 

accuracy 

41.6 72.3 88.0 88.0 
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A1.  Sub1 event classification using HMM 

End use  Original HMM  

Likelihood  

Threshold value  Final output  

Faucet  1.77 x 10-6  6.38 x 10-3  The sample will 

be categorised 

as half flush 

toilet  

Clothes washer  4.18 x 10-13  1.28 x 10-4  

Dishwasher  5.01 x 10-4  1.51 x 10-3  

Full flush toilet  2.61 x 10-5  1.1 x 10-4  

Half flush toilet  3.26 x 10-3  3.1 x 10-4  
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A2.  Sub2 event classification using HMM 

End use  Original HMM  

Likelihood  

Threshold value  Final output  

Faucet  1.59 x 10-10  6.38 x 10-3  Undetermined 

event  

require 

second layer 

analysis  

Clothes washer  1.17 x 10-12  1.28 x 10-4  

Dishwasher  8.48 x 10-11  1.51 x 10-3  

Full flush toilet  3.67 x 10-8  1.1 x 10-4  

Half flush toilet  1.55 x 10-6  3.1 x 10-4  
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A3.  Sub3 event classification using HMM 

End use  Original HMM  

Likelihood  

Threshold value  Final output  

Faucet  3.73 x10-5  6.38 x 10-3  The sample will be 

categorised as half 

flush toilet  
Clothes washer  1.17 x 10-6  1.28 x 10-4  

Dishwasher  3.31 x 10-5  1.51 x 10-3  

Full flush toilet  4.48 x 10-3  1.10  x 10-4  

Half flush toilet  3.21 x 10-2  3.10  x 10-4  
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A4.  Sub4 event classification using HMM 

End use  Original HMM  

Likelihood  

Threshold value  Final output  

Faucet  3.11 x 10-1  6.38 x 10-3  The sample will 

be categorised 

faucet  
Clothes washer  8.30x 10-3  1.28 x 10-4  

Dishwasher  1.90 x 10-2  1.51 x 10-3  

Full flush toilet  8.40 x 10-3  1.10 x 10-4  

Half flush toilet  1.68 x 10-2  3.10 x 10-4  
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A5. Base event classification using HMM 

End use  Original HMM  Likelihood   Final output  

Shower   3.12 x 10
-5

  The sample will   

be categorised as 

Shower  
Bathtub  3.72 x 10

-13
  

Irrigation  4.16 x 10
-28

  

Full flush toilet  2.78 x 10
-8
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A6. Disaggregation accuracy for type 1 combined event 

Event number Event description AN  AV  

Base event Sub event 

1 1 toilet 1 tap 100 100 

2 1 toilet 1 tap 100 100 

3 1 bathtub 1 toilet 100 94.6 

4 1 toilet 1 tap 100 100 

5 1 toilet 1 tap 100 100 
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A7. Disaggregation accuracy for type 2 combined event 

Event 
number 

Event description AN  AV  

Base event Sub event 

1 1 bathtub 2 taps, 2 toilets 80 99.5 

2 1 shower 4 taps, 1 toilet 83.3 97.8 

3 1 shower 1 tap, 1 toilet 66.7 99.3 

4 1 shower 1 tap, 1 toilet 66.7 90.4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

1 bathtub 

1 bathtub 

1 bathtub 

1 shower 

1 shower 

1 shower 

1 shower 

1 shower 

1 irrigation 

1 bathtub 

1 bathtub 

 

1 bathtub 

1 shower 

1bathtub 

1 shower 

1 shower 

1 shower 

1 shower 

1 irrigation 

1 irrigation 

1 bathtub 

2 taps, 1 toilet 

1 tap, 1 toilet 

2 taps  

1 tap, 1 toilet  

7 taps  

2 taps, 3 toilets  

4 taps,  2 clothes washers 

3 taps,  3 clothes washers, 1 toilet 

6 taps, 1 toilet,  2 dishwashers  

5 taps, 2 toilets, 1 clothes washer  

2 taps, 1 toilet, 3 clothes washers, 2 
dishwashers  

4 taps, 2 toilets  

6 taps, 2clothes washers  

2 taps, 2 toilets, 1 clothes washer 

5 taps, 2 clothes washers, 1 toilet  

1 tap, 2 toilets, 2 dishwashers  

2 taps, 2 toilets, 2 dishwashers  

2 taps, 1 toilet, 2 clothes washers 

2 taps, 1 toilet,  2 clothes washers 

2 taps, 1 toilet, 2 dishwashers 

1 tap, 2 clothes washers, 2 
dishwashers  

100 

66.7 

100 

66.7 

87.5 

83.3 

85.7 

75 

70 

77.8 

77.8 

 

42.8 

77.8 

83.3 

81.8 

50 

57.1 

83.3 

66.7 

83.3 

100 

100 

97.1 

98.1 

98.4 

81.9 

90.5 

95.6 

97.9 

4.6 

96.7 

94.0 

 

10.6 

27.6 

92.5 

94.4 

40.9 

97.9 

96.6 

9.6 

94.1 

100 
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26 

27 

28 

29 

30 

31 

32 

 

33 

 

34 

35 

 

1 bathtub 

1 bathtub 

1 shower 

1 irrigation 

1 shower 

1 shower 

1 irrigation 

 

1 irrigation 

 

1 shower 

1 shower 

 

2 taps, 2 toilets  

3 taps, 1 toilet  

2 taps, 1 toilet, 1 dishwasher  

1 tap, 2 clothes washers, 1 toilet 

6 taps, 1 dishwasher  

1 tap, 2 toilets, 2 dishwashers 

2 taps, 1 toilet, 1 clothes washer, 
dishwasher 

2 taps, 1 toilet, 1 clothes washer, 
dishwasher 

5 taps, 1 toilet, 1 clothes washer 

6 taps, 4 toilet 

 

 

66.7 

100 

100 

100 

100 

83.3 

100 

 

83.3 

 

87.5 

100 

 

71.9 

100 

100 

100 

100 

27.4 

100 

 

95.1 

 

92.1 

100 
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A8. Disaggregation accuracy for type 3 combined event 

Event 
number 

Event description AN  AV  

Base event Sub event 

1 

2 

3 

4 

5 

 

6 

7 

8 

9 

10 

1 shower 

1 shower 

1 bathtub 

1 bathtub 

1 irrigation 

 

1 shower 

1 irrigation 

1irrigation 

1 shower 

1 irrigation 

2 taps, 2 toilets 

2 taps, 1 toilet 

3 taps, 1 toilet 

3 taps, 2 toilets 

14 taps,1 bathtub, 1 shower,  2 
toilet, 3 clothes 

1 tap, 2 toilets, 1 bathtub 

4 taps, 2 toilets, 1 bathtub 

1 shower, 1 bathtub 

7 taps 

3 taps, 3 toilets 

80 

100 

80 

83.3 

90.5 

 

80 

87.5 

66.7 

87.5 

77.4 

99.8 

99.3 

94.6 

94.5 

44.8 

 

81.1 

63.4 

70.6 

81.9 

94.5 
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