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DEVELOPMENT OF AN INTELLIGENT MODEL TO CATEGORISE 

RESIDENTIAL WATER END USE EVENTS 

Abstract 

The aim of this study was to disaggregate water flow data collected from high resolution 

smart water meters into different water end use categories. The data was obtained from a 

sample of 252 residential dwellings located within South East Queensland (SEQ), Australia. 

An integrated approach was used, combining high resolution water meters, remote data 

transfer loggers, household water appliance audits and a self-reported household water use 

diary. Disaggregating water flow traces into a registry of end use events (e.g. shower, clothes 

washer, etc.) is predominately a complex pattern matching problem, which requires a 

comparison between presented patterns and those contained with a large registry of 

categorised end use events.  Water flow data collected directly from water meters includes 

both single (e.g. shower event occurring alone) and combined events (i.e. an event which 

comprises of several overlapped single events). To identify these former mentioned single 

events, a hybrid combination of the Hidden Markov Model (HMM) and the Dynamic Time 

Warping Algorithm (DTW) provided the most feasible and accurate approach available. 

Additional end use event physical context algorithms have been developed to aid accurate 

end use event categorisation. This paper firstly presents a thorough discussion on the single 

water end use event analysis process developed and its internal validation with a testing set. 

This is followed by the application of the developed approach on three independent 

households to examine its degree of accuracy in disaggregating two weeks of residential flow 

data into a repository of residential water end use events.  Future stages of algorithm 

development and testing is discussed in the final section. 

Key words: water end use event, water micro-component, residential water flow trace 

disaggregation, hidden markov model, dynamic time warping algorithm, water demand 

management 
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1 Introduction 

After decades of inadequate metering of water use, organisations have come to the realisation 

that it is almost impossible to evaluate the effectiveness of residential water demand 

management schemes without accurate and appropriate measurement of actual water 

consumption at an end use or micro-component level. This desire to better monitor and 

analyse water consumption has led to the conceptualisation of a Knowledge Management 

System (KMS) which is able to collect real-time water consumption data through a smart 

water metering system, transfer and store the data into a knowledge repository, analyse and 

disaggregate data into a registry of end use events, and produce a wide range of reports which 

can be accessed on-line by a broad range of users (e.g. consumers, water utilities, government 

organisations, etc.) (Stewart et al., 2010).  

Water end use data registries enable much deeper understanding on the determinants of 

residential urban water demand. Recently, there have been a numbers of reported studies that 

have utilised water end use data registries for a range of statistical modelling and decision-

making purposes. These studies explored the determinants of shower end use consumption 

(Makki et al., 2011), influence of residential appliance stock efficiency on end use 

consumption (Beal et al., 2011a, 2011b; Willis et al., 2011a), impact of visual display 

monitors on shower end use consumption (Willis et al., 2010a; Stewart et al., 2011), 

influence of water conservation attitudes on discretionary water end use consumption (Willis 

et al., 2011b),  and recycled water end uses in residential households (Willis et al, 2011c).  

Water end use studies such as these demonstrate the benefits of having available such data, 

and how it can be utilised to better inform urban water practices and policy going forward. 

However, the findings reported in these research papers were made possible through resource 

intensive flow trace analysis tasks in order to categorise water end use events; such an 

approach is not economically viable for large scale samples (i.e. citywide end use dataset).    

Before such an information system can be realised and the benefits of citywide end use data 

registries yielded, improved approaches for disaggregating high resolution water 

consumption data into end use events is required. Therefore, the key enabler for this KMS is 

the development of pattern matching algorithms which are able to automatically categorise 

collected flow trace data points received from wireless data loggers into particular water end-

use categories. To tackle similar complex problems, such as hand writing segmentation and 

recognition, speech recognition, fingerprint recognition, surface water level and seabed 

liquefaction predictions (Sannasiraj et al., 2004; Zhang et al., 2007), many powerful pattern 
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detection tools have been established and widely applied, including Artificial Neural Network 

(ANN) (Moon et al., 2009), Dynamic Time Warping (DTW) (Nguyen et al., 2011) algorithm 

and the Hidden Markov Model (HMM) (Cho et al., 1995). However, all these methods are 

data driven that require training datasets in the case of ANN and HMM models or reference 

datasets for the DTW method. To facilitate this study, over 7000 days worth of 5 second 

interval flow trace data was collected from 252 homes within South East Queensland (SEQ), 

Australia. This flow trace data was manually disaggregated into nine different water use 

patterns, including shower, faucet (tap), dishwasher, clothes washer, full-flush toilet, half-

flush toilet, bathtub, irrigation and leak. Utilising this extensive training set and through 

trialling many of the above mentioned analytical techniques (i.e. ANN, HMM and DTW), it 

was revealed that a hybrid approach using a combination of the Hidden Markov Model 

(HMM) and Dynamic Time Warping Algorithm (DTW) is the most suitable for solving this 

type of pattern matching problem.  

A comprehensive methodology is presented herein to illustrate the identification process for 

all of the single event category’s disaggregation from the collected flow trace data. To 

demonstrate the entire model design and verification process for single events, a complete 

clothes washer event analysis is shown. The approaches for disaggregating combined events 

(i.e. shower concurrent with toilet flush) are beyond the scope of this paper; however, they 

are briefly discussed in the context on the overall objectives of the greater study herein. 

2     Background 

2.1 Existing water metering process 

One of the deficiencies of the existing urban water management system is the current 

simplistic metering process. The current water metering system does not typically provide 

real-time water consumption data and in cases where it does, it does not provide a sufficient 

level of data resolution to allow water end use event categorisation. Conventional water 

meters  count each kilolitre of water as it passes through the meter without the ability to 

record when (i.e. time of day) and where the consumption takes place (e.g. washing machine, 

leakage, etc.). Water consumption readings are generally recorded manually on a quarterly or 

half yearly basis. Under most situations, a whole year’s worth of water consumption data is 

described by only two to four data points in the water businesses billing system. No further 

information is available to draw upon should there be any queries. Obviously, this 

conventional water metering system produces limited, delayed water consumption 
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information. Such a metering system is unable to provide effective support to water planning 

and management processes. This current metering approach is not adequate to meet the 

increasing level of government scrutiny on the utilisation of water resources and does not 

assist society at large to address the pressing water security issues associated with climate 

change. 

2.2 Advent of smart water metering and transition to more advanced systems  

The concept of smart metering embraces two distinct elements; meters that use new 

technology to capture water use information and communication systems that can capture and 

transmit real-time water use information. Smart water meters essentially perform three 

functions; they automatically and electronically capture, collect and communicate up-to-date 

water usage readings on a real-time (or nearly real time) basis (Neenan, 2008). Hence, a 

smart meter is a high frequency (e.g. 72 pulses per litre) sampling device (a data logger) that 

allows for the time series reading of water consumption. The information is available as an 

electronic signal; it can be captured, logged and processed like any other signal.   

 

An extension to the existing architecture of the smart water metering system is an advanced 

integrated water management system as conceptualised here, which is designed as a powerful 

tool to support an integrated water conservation management system, in order to sustain 

water savings. The primary functions of the system include, but are not limited to, collecting 

real-time water consumption data through a smart water metering system, transferring and 

storing the data into a knowledge repository and analysing the data, and producing a wide 

range of reports which can be accessed on-line by a broad range of users (e.g. consumers, 

water utilities, government organisations, etc.). 

 

However, the realization of such an advanced integrated water management system will only 

become possible when there is a robust analytical model available which can automatically 

and accurately disaggregate flow trace data into individual water end use event categories. 

The design and verification of such an analytical model is the ultimate aim of this study 

2.3 Reported water end use studies 

 

In recent years, a number of residential water end use studies have been completed using a 

range of single or mixed methods, such as household auditing, diaries, high resolution smart 

metering and pressure sensors, with a diverse range of per capita end use summaries. Jacobs 



5 
 

(2007) and Blokker (2010) provide summaries on a good proportion of the end use models 

developed from stochastic techniques, contingent valuation approaches (CVA), modelling, 

and metered methods. The introduction of advanced technology has enabled the direct 

capture and classification of water end use events. Table 1 provides a summary of reported 

end use studies completed that have applied high resolution smart meters, data loggers or 

pressure sensors completed internationally in the last 15 years. 

 

[Insert table 1] 

 

As displayed in Table 1, from a direct measurement and water end use recognition approach 

which is undoubtedly the future of this type of problem, the two main approaches presently 

reported include using smart water meters in conjunction with a decision tree based analysis 

tool such as Trace Wizard or Identiflow  or as more recently published, the inclusion of 

pressure sensors at individual appliances (i.e. HydroSense) along with a HMM based decision 

tool. Each approach has its own strengths and weaknesses, which were discussed in the 

following sections. 

2.3.1 Trace Wizard  

The presently used version of Trace Wizard is time consuming and resource intensive. The 

tasks required to complete an end use study are presented in Figure 1 and explained in detail 

in Appendix A. 

 [Insert figure 1] 

 

The advantage of Trace Wizard is that it applies a simple algorithm that interprets data based 

on simple flow boundary conditions (e.g. minimum and maximum volume or duration range, 

etc.), which allows the collected data to be analysed by the tool in a considerably short period 

of time (i.e. excluding data preparation process). However, while the initial analysis is rapidly 

completed, to achieve high levels of accuracy an experienced analyst needs to review 

recognised events and change them where they believe that the tool is poorly classifying 

them. Due to this human resource requirement the overall process is extremely time and 

resource intensive, and greatly relies on the flow trace analyst’s experience in understanding 

flow signatures. Moreover, Trace Wizard
 
is only able to analyse two simultaneous water 

events (Trace Wizard, 2003); therefore, the prediction accuracy would be reduced where 

there are a number of events occurring concurrently.  
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2.3.2 Identiflow   

In 2001, WRc, a research organisation based in United Kingdom, introduced Identiflow  as a 

cost effective program for measuring the component of domestic water consumption. Similar 

to Trace Wizard, the technique involved the capture of high resolution flow data and use 

software incorporating a decision tree algorithm to deconstruct a flow trace data series into 

constituent water end uses.  

 

Identiflow  achieved 74.8% accuracy in terms of the correctly classified volume when tested 

on 3870 events, which is relatively high compared to Trace Wizard. However, as this 

software was based on the analysis of fixed physical features of various water-using devices 

(e.g. volume, flow rate or duration, etc.) to make different decisions for categorisation, final 

classification accuracy is not always guaranteed and greatly dependent on the existing types 

of water devices. By applying this approach, two completely different water events could be 

placed into the same category if they have similar physical characteristics. Another 

disadvantage relates to its poor ability to identify modern appliance stock, for example, a 

washing machine manufactured in 2001 when the study was conducted could have a much 

different operation system, and thus flow rate and volume per wash, compared to new one 

produced in 2012, or a new toilet model would have a different cistern volume compared to 

the older one, which has a profound effect on the final recognition accuracy of Identiflow .  

2.3.3 HydroSense 

Froehlich et al. (2009; 2011) presented a longitudinal study of pressure sensing to infer real-

world water usage events in the home using a probabilistic-based classification approach. The 

validation showed that with a single pressure sensor, the probabilistic algorithm can classify 

real-world water usage at the fixture level with 90% accuracy and at the fixture category level 

with 96% accuracy. With two pressure sensors, these accuracies increase to 94% and 98%. 

 

This end use study approach resulted in a relatively high accuracy due to the employment of 

sophisticated pattern recognition algorithms. However, the main a shortcoming of the 

approach relates to its requirement for a number of pressure sensors to be attached to water 

devices inside households in order to accurately identify end use events using the HydroSense 

system. There may also be extensive calibration required for new homes that have different 

plumbing configurations to those studied (e.g. polymer pipe instead of copper). Aesthetics is 

another issue since the sensors are highly visible to the homeowner. These aspects potentially 
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increase the cost and reduce the feasibility of widespread implementation of this approach 

making it more difficult to commercially apply on a citywide scale. 

2.3.4 Summary assessment and persuasion for new model development 

In summary, the ideal approach that is most amenable to  citywide application is installing 

smart water meters  at the property boundary in conjunction with intelligent end use pattern 

recognition algorithms either in-built into the meter software or within a processing module 

at the utilities data centre. This is the lowest cost and non-intrusive approach to water end use 

disaggregation. However, for such widespread implementation, the following summarised 

limitations of the existing models (i.e. Trace Wizard and Identiflow ) have to be overcome: 

 inability to analyse collected data without human interaction and manual 

reclassification (i.e. main disadvantage);  

 inability to accurately distinguish different end use categories which have similar 

water flow characteristics (e.g. shower, bathtub and irrigation); 

 inability to classify an end use category that has various physical parameters 

depending on appliance models (e.g. dishwasher, clothes washer and toilet); and 

 inability to deal with multi-layer combined events (i.e. cannot handle three or more 

concurrent events). 

These shortcomings have motivated the development of an automatic flow trace analysis 

system which can address all of the above mentioned issues. For the building of such an 

intelligent model, an in-depth understanding of the existing techniques applied to this type of 

problem was required. Table 2 provides a brief summary of methods that have been 

employed in previous water end use and pattern recognition studies worldwide in the last 15 

years. A rating of each technique (i.e. 1 star (*) = poor; ** = below average; *** = average; 

**** = good; and ***** = excellent) has also been made regarding their processing time 

efficiency, classification accuracy, self-learning potential and an overall applicability rating 

for each technique to the herein examined water end use pattern recognition process. 

[Insert table 2] 

 

The ratings shown in Table 2 have been achieved through an intensive literature review and 

actual application of each technique to the present study. It was found that the decision tree 

procedure is the most time efficient technique since it can make recognition decisions 
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quickly; however, its overall applicability to end use recognition problems was rated as only 

“average” due to its average accuracy and its poor ability to incorporate self-learning 

functionality. ANN is another technique that has been widely applied to most pattern 

recognition problems such as hand writing, speech or signature. This technique works 

effectively if sufficient data is provided for training; nevertheless, the only available 

characteristics of one water event recorded from data logger only comprises of volume, 

duration, maximum flow rate and most frequent flow rate, which are not enough for the 

model to produce a reliable output. DTW is also a popular technique, but its application to the 

field of flow trace analysis was not preferred due to long processing time and average 

accuracy. The last technique applied in the field of pattern matching in the last 15 years is the 

Hidden Markov Model, which is very powerful in analysing patterns whose variations follow 

certain trends. It is this characteristic which makes HMM suitable to the signal collected in 

this study. Unlike the decision tree approach which requires the input of fixed characteristics 

for each pattern, or ANN that is only effective if adequate data is supplied, HMM just 

performs an analysis on the raw flow rate signal through the examination of flow rate change 

over the time. A sophisticated mathematical algorithm in HMM would be applied to reflect 

the true user’s behaviours when consuming water, or the mechanisms of machine-based 

devices, such as clothes washer and dishwasher.  Based on this property, no matter where and 

when the model is applied (i.e. in different regions at different time), if there are not 

significant changes in water use habits, then the proposed method is still reliable.  

Based on the detailed analysis conducted above regarding the strengths and weaknesses of 

each mathematical technique, the study proposed a hybrid method combining HMM and 

DTW, whose effectiveness was assessed in comparison with the existing water flow trace 

analysis models as presented in Table 3. It should be noted that although DTW has a 

relatively higher processing time, it was still considered an appropriate technique, as the 

number of unclassified events required for the analysis using this technique is very small 

compared to the overall collected data (i.e. most of unclassified events will be initially 

classified by HMM, and DTW is then applied to find missing clotheswasher and dishwasher 

events). Moreover, the ultimate aim of the present study is to achieve the most accurate flow 

trace analysis model; therefore, the combination of HMM and DTW is highly recommended. 

[Insert table 3] 
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3    Intelligent model to categorize water end use  

3.1 Need for understanding collected data 

To facilitate the building of such an advanced water management program, it is necessary to 

be able to automatically disaggregate water flow trace data into end use events. Figure 2 and 

3 show examples of clothes washer and dishwasher end use patterns. These figures illustrate 

that most flow events have similar typologies and, therefore have strong potential to be 

classified using existing pattern matching techniques such as Artificial Neural Network 

(ANN), Dynamic Time Warping algorithm (DTW), and Hidden Markov Model (HMM). 

Moreover, other event probability functions can be applied to make decisions on end use 

categorization (e.g. higher probability for certain end use event at certain time of day). The 

combined application of these pattern matching and event probability functions can enable 

the accurate determination of residential end use events. Achievement of such an automated 

approach will undoubtedly be of use to the urban water industry. 

 

[Insert figure 2]  

 

[Insert figure 3] 
 

3.2 Dynamic time warping algorithm 

Dynamic time warping algorithm is one of the most popular methods in measuring the 

similarity between two time series of different length. In general, this task is performed by 

finding optimal alignment between two series with some certain restrictions. The sequences 

are extended or shortened in the time dimension to determine a measure of their similarity 

independent of certain non-linear variations in the time dimension (Gollmer & Posten, 1996). 

The goal of DTW is to find a mapping path which has the minimal mapping distance. The 

procedure and constraints of the DTW algorithm are summarised as:  

(i) Given two vectors                    and                    
 

of 

length    and    respectively as in Figure 4. The boundary condition is that the 

two end pairs of the vectors are matched together, i.e. (   ,  ), (   ,  ). 

(ii) Define        |     |, with        is a given node in the mapping path, the 

possible fan-in nodes are restricted to                          . This local 
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constraint guarantees that the mapping path is monotonically non-decreasing in its 

first and second arguments (Figure 5). Moreover, for any given element, it should 

be able to find at least one corresponding element, and vice versa.  

(iii)Define        as the accumulated DTW distance between points of p (   to   ) and 

points of q (    to   ), where (        and         and               

   {                             , with initial condition        

      . 

(iv)  Therefore, the final accumulated DTW distance between   and    is        .  

 

[Insert figure 4] 

 

[Insert figure 5] 

 

In general, DTW is an algorithm to find an optimal match between two given sequences (e.g. 

time series) with certain restrictions. The sequences are "warped" non-linearly in the time 

dimension to determine a measure of their similarity independent of certain non-linear 

variations in the time dimension (WorldLingo, 2003). This sequence alignment method is 

often used in the context of HMM.  

DTW plays an important role in this study as it was applied to help select a set of prototypes 

to represent each category of water end use patterns for network training; and during the 

disaggregation process, DTW is also employed to find clothes washer and dishwasher events 

which were missed by other classifiers. 

3.3 Hidden Markov Model 

An HMM is a stochastic finite state automation defined by the parameter  = (π,a,b), where 

π is an initial state probability, a is state transition probability and b is observation 

probability, defined by a finite multivariate Gaussian mixture. Given an observed sequence 

                    a HMM model can be used to compute the probability of  , 

denoted as P(O| ) and to find the corresponding state sequence that maximises the 

probability of  , denoted as P(Q|O, ). The overall process for the establishment of a HMM 

model is presented in Appendix B. Figure 6 illustrates a typical left-right HMM model for an 

observation vector                   . 
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[Insert figure 6] 

HMM is one of the most popular techniques in the field of hand writing and speech 

recognition. Chien and Wang (1997) presented an adaptation method of speech hidden 

Markov models for telephone speech recognition while Cho et al. (1995) applied HMM in the 

problem of modelling and recognising cursive words.  

In the present study, HMM is utilised as the main classifier to disaggregate the majority of 

single events from the water flow trace data, and to help strip out all of the combined events 

for further analysis. 

4   Model development method 

4.1 Collected data  

4.1.1 Research regions 

Data utilised for the development of the model was sourced from 252 residential households 

fitted with a smart meter and data logger and located in the urban south east corner of the 

State of Queensland, Australia. These households were consenting participants in the recently 

completed South-east Queensland Residential End Use Study (SEQREUS) funded by the 

Queensland State Government (Beal and Stewart, 2012). Three separate water end use 

analysis reads occurred during the study. The first read was conducted in winter 2010 from 

14
th

 June to the 28
th

 June. The second read was taken in the summer 2010-11 between 1
st
 

December 2010 and 21
st
 February 2011. The final two week period of analysis occurred in 

winter 2011 from the 1
st
 June to the 15

th
 June. It was important to obtain a dataset for this 

study that included the entire spectrum of events across seasonal periods (i.e. irrigation). 

 

4.1.2 Characteristics of participating households 

Some general characteristics (i.e. household size and makeup, income, education level, etc.) 

of the participating households within each region are shown in Table 4. The average number 

of people per household was relatively consistent across all regions for all three measurement 

periods, with the Sunshine Coast having the lowest average occupancy of 2.5 people per 

household, and the Gold Coast region having the highest average of 2.9 occupants. The 

percentage of households occupied by two or less people was greater in the Sunshine Coast 

(average of 56 %) and Gold Coast (49 %) compared to the generally larger households in 
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Ipswich (53 %) and Brisbane (43 %). These percentages reflect the older demographic of the 

Sunshine Coast and Gold Coast regions which was also typified by the older age of children 

for these regions (Table 5). The descriptive statistics for the study sample are comparable to 

those of the wider SEQ region as published in the Australian Bureau of Statistics (ABS). The 

database taken from the SEQREUS was considered representative by the flow trace analysis 

pattern recognition team (Beal et al, 2011b) 

[Insert table 4] 

4.1.3 Collected unprocessed flow dataset utilised for study 

 

As mentioned prior, CSV files containing 0.014L/pulse water consumption data for every 

five second logging interval for each sample household was collected. To enable the 

application of HMM, water flow data collected was initially processed and manually broken 

down into nine different water end use categories with the number of samples shown in the 

second column of Table 5 using Trace Wizard (i.e. the overall process is presented in 

Appendix B). The database was then apportioned into a training (80%) and testing (20%) 

data set. This database was utilised for model development as described below. 

[Insert table 5] 

4.2 Intelligent models to categorise water end uses  

With the availability of training data, the process of disaggregating water end use events from 

the raw data could be completed. Figure 7 provides an overview of the key starting decision 

point for the HMM algorithm, namely, whether the flow data event detected is a single event 

(i.e. solid line in Figure 7) or combined event (dotted line in Figure 7). As mentioned prior, 

single events are those which occur in isolation (e.g. toilet flush) while combined events have 

simultaneous occurrences of single events (e.g. shower occurring while someone is using a 

tap) and are therefore more challenging to disaggregate. Readers should note that this paper is 

focused on single event categorisation from the flow data which makes up the large majority 

of end use events. Stripping apart and categorising combined events are the focus of 

subsequent research discussed later. 

[Insert figure 7] 

Within the present study, a detailed analysis of single events was performed to explain all 

employed techniques, the reason why those techniques were utilised at different steps, as well 
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as their limitations. The flow chart shown in Figure 8 illustrates the single end use event 

analysis process, which is the aim of this paper. 

Low-flow rate leak event pulses recorded by the smart water meter (i.e. isolated 0.0139L 

events) are evident in a large proportion of households. These events are initially extracted 

from the flow trace data set and classified in the ‘leak’ end use category. The remaining flow 

data would then be analysed using HMM to classify all water end use categories. These water 

end uses usually belong to two broader groups: (1) depends heavily on a water user’s 

behaviours, such as tap, bathtub, irrigation, shower and toilet; and (2) works under a pre-set 

mechanical process, such as clothes washer and dishwasher. It should be noted that for the 

purpose of this study, the end use category ’toilet’ was classified into a user’s behaviour 

group. This goes against historical conventions which indicate that toilets are mechanised 

devises with fixed functions (i.e. full and half flush). However, during this study the research 

team realised quickly that many modern toilets allow the user to select the amount of water to 

flush by holding down he flush button for a desired time period thereby creating a range of 

flush volumes for certain households. Therefore, in order that the developed analysis tool 

could accurately determine both the predictable mechanised toilet flushes as well as the 

fluctuating user defined ones, this end use category was assigned to the user behaviour group.  

The application of the HMM method resulted in the categorisation of water flow data into 

individual end use events associated with seven end use categories (i.e. shower, clothes 

washer, toilet, etc.). A proportion of data was classified into another category titled 

inconclusive events, as they did not distinctly fit within a particular end use category. For the 

inconclusive event category, the DTW algorithm was firstly applied in order to determine 

clothes washer and dishwasher events, as these end uses often have similar repeating 

mechanical wash cycles that are related to others occurring within a short 1-2 hour time 

period. Event time-of-day probability functions (i.e. probability of a certain event occurring 

at a certain time of day) combined with the HMM method was also applied to classify 

inconclusive end use events. The process outlined in Figure 8 resulted in the classification of 

the training data into a repository of water end use events. A detailed discussion on the water 

flow trace data disaggregation process is outlined below.  

[Insert figure 8] 
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4.2.1 Low flow-rate leak identification 

For typical low-flow leak events which usually occur after a toilet flush or when the tap 

fixture is not shut tightly (i.e. slow dripping tap), the minimum registered flow rate of the 

smart water meter (i.e. 1 pulse equating to 0.0139L occurring in 5 second recording interval 

equating to 0.167 L/min flow rate) is evident. Therefore, detecting these single pulse events is 

relatively simple and they can be categorised into the leak end use category as a first step.  

4.2.2 HMM classification 

The three most basic parameters which constitute a hidden Markov model ( ) are the initial 

state probability, state transition probability and observation probability (Camastra & 

Vinciarelli, 2008). To determine these three values, the number of state should be provided. 

In the present study, state is defined as the number of period occurring in each water end use 

event. For a very basic water end use event, there could be three states, which correspond to 

the event starting, constant flow rate and finishing. Each state will comprise a number of data 

points related to that particular water flow sequence in a particular time period. However, a 

HMM with only three states would not be effective in recognising typical water end use 

events that fluctuate significantly. For example, simple three state HMM analysis would not 

be suitable for an event which is about to finish but the water user suddenly turns it on again 

or for multiple overlapped events where the finishing period of one event occurs concurrently 

with the starting of others, etc. Therefore, residential household water end use events 

modelled in this study should be split into many smaller periods (i.e. state) so that their whole 

process transition could be fully examined. In the context of this study, the number of state 

which will result in the highest recognition accuracy would be selected using an iterative 

method.  

In total there are eight different residential water end use categories typically reported in 

studies and applied for this study, namely, shower, tap, dishwasher, clothes washer, toilet, 

bathtub, irrigation and leak. To recognise these water patterns from the water flow dataset, at 

least eight HMM models should be developed, one for each category. As mentioned prior, 

flow data also includes combined events where water end use events are occurring 

simultaneously (Figure 9). This category cannot be handled directly by these existing HMM. 

A further HMM using all combined events in the dataset can be applied in order to strip out 

these complicated interrelated events from the flow data. For the purpose of this study the 

combined events are removed from the flow dataset to enable all single events to be 
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classified; solving the combined multi-event disaggregation problem into water end use 

events is the subject of future research.  

[Insert figure 9]  
 

In the present study, the number of state is tested from 1 to 400, and it was found that the 

HMM model established using 100 states and trained at 100 iteration yields the highest 

recognition accuracy. The measured water flow sequence is defined as       

              where t is the observation time index and T is the total number of flow 

observations; a state vector is defined as                    where i is the state at index i 

and N is the maximum or the last state; the initial state probability is πi; the state transition 

probability is aij, and the observation probability bj(ok), where i and j are the state indices. 

Training algorithms are summarised and presented in Appendix B. 

By applying the above training algorithms to the water flow datasets collected from the 

household smart water meters, nine different water end use event categories were achieved, 

including shower, tap, dishwasher, clothes washer, toilet, bathtub, irrigation, leak and 

combined events. The first eight end use categorises are the focus of this study, while the last 

combined event category will be solved in future research. 

4.2.3 Single event analysis 

Applying HMM alone for end use classification did not achieve a satisfactory level of pattern 

matching accuracy needed for this problem (see Table 9). To improve prediction accuracy, a 

number of physical characteristics for end use event category were established from the 

extensive available dataset, such as those following: 

 Most collected shower events (87%) had a volume of greater than 7 litres. 

 The duration of a bathtub event is at least 4 minutes (91%). 

 The volume of toilet events for a particular home should be within a certain range 

(e.g. 3 to 8 litres) since a toilet cistern volume is fixed. 

 The flow rate and duration of dishwasher and clothes washer events for a particular 

home should be within a certain range because these appliances have a pre-set series 

of wash functions. 

 

Based on these physical characteristics, the above described HMM analysis process was then 

refined to include the following steps: 
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 Calculate the volume of events which were classified as shower by HMM. Any 

shower event which had a volume of less than 7 litres would be removed and placed 

in an inconclusive event set for future analysis. 

 Calculate the volume of events which were classified as toilet using the HMM 

technique. There are usually two typical volume ranges for toilet events in a 

particular home corresponding to both half-flush and full-flush toilet events. The first 

toilet event refinement task was to determine the two most frequent volumes of these 

two event sub-classifications, which were titled ‘full toilet volume’ (Vtoilet_full) and 

‘half toilet volume’ (Vtoilet_half ). Any event whose volume is out of the range of 

Vtoilet_full +/- 0.5 litres or Vtoilet_half +/- 0.5 (litres) would then be removed and put in the 

inconclusive event dataset for further analysis. 

 Determine the duration of all events which were recognised as bathtub through HMM 

applied alone.  Any bathtub event which had duration of less than 4 minutes would 

be removed and put in an inconclusive event dataset for later analysis. 

 Determine the flow rate of all events which were recognised as dishwasher and 

clothes washer through the HMM process. Determine the most frequent flow rate for 

the dishwasher and clothes washer event category, which were titled ‘typical 

dishwasher flow rate' (qtypical_dishwasher) and ‘typical clothes washer flow rate’ 

(qtypical_clotheswasher), respectively. Any dishwasher event or clothes washer event whose 

flow rate is out of the range of qtypical_dishwasher +/- 1.5 (litre/min) or qtypical_clotheswasher 

+/- 1.5 (litre/min) would be then removed and put in the inconclusive event set for 

further analysis. To illustrate this case, Figure 10 illustrates a set of events which 

were classified as dishwasher using the HMM method applied alone. In the figure, 

there are about twelve events which do not likely belong to this end use classification 

because they have much different flow rates when compared to the others; such 

events need to be reclassified. 

[Insert figure 10] 
 

4.2.4 Searching of dishwasher and clothes washer events missed by HMM 

Dishwasher and clothes washer are two special water end use categories which have regular 

cycles and have clearly defined consumption patterns. Figure 11 shows a typical clothes 

washer operation which comprises of 5 defined wash cycles. This section discusses the 

developed method used to search for missing clothes washer and dishwasher events that were 
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assigned to the inconclusive dataset during the HMM preliminary analysis process. This 

searching process is performed using the Dynamic Time Warping (DTW) algorithm, with the 

reference set to be all clothes washer or dishwasher events achieved from the refinement 

process, and the testing set to be events from the inconclusive data set. When searching for 

these mechanistic events, if any event in the inconclusive data set is determined to be similar 

to an event in the clothes washer or dishwasher set in terms of DTW distance, then it would 

be stripped out and classified as clothes washer or dishwasher. DTW was employed because 

it is one of the most effective methods to search for patterns existing in series (e.g. one 

clothes washer cycle within defined timeframe from next) which also have clearly defined 

patterns. 

[Insert figure 11] 

 

However, this searching process can be time consuming. In order to reduce analysis time 

without reducing pattern matching accuracy, a prototype reference set was created and 

applied for the searching activity. Prior research by the authors (Nguyen et al., 2011) outlines 

the algorithm for prototype selection and its application methodology. In the context of this 

study, the number of reference prototype selected for clothes washer and dishwasher event 

pattern matching purposes was one quarter of the original dataset. The completion of this 

analysis step resulted in the large majority of previously inconclusive clothes washer and 

dishwasher events to be categorised appropriately. 

4.2.5 Classification of the remaining events from inconclusive category 

Once all missing clothes washer and dishwasher samples have been stripped out of the 

inconclusive data set, the remaining tap, toilet, irrigation, shower and bathtub events in this 

dataset were determined. To achieve an end use category determination for the remaining 

events in the inconclusive category, event time of day probability function was applied. This 

probability function was determined from the existing water end use database and a summary 

of event likelihood values in hourly intervals is detailed in Table 11.  

The table shows that, for example, the probability of finding a shower event between 12 am 

and 1 am is 0.39%, finding a toilet event between 1 am and 2 am is 1.11%, or finding an 

irrigation event between 12 am and 3 am is 0%. From this table, it can be seen that there is 

more likelihood of a toilet event between 11 pm to 3 am than any other event, which depicts a 

typical households’ water use pattern. By combining the probability values given in Table 6 
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with those achieved using HMM, an aggregate likelihood value was determined thereby 

enabling the determination of the remaining inconclusive end use events into their likely end 

use category. This analytical process is described through an illustrative example.  

For an event that was extracted from the inconclusive data set, which occurred at 2:34:12 am, 

the HMM probability of this event being assigned to each end use category is detailed in 

Table 6. From HMM applied alone, this event was most closely aligned with a dishwasher 

event classification, but not with sufficiently high enough probability to justify a direct 

assignment.  

[Insert table 6] 

By multiplying the HMM probability values (Table 6) with those determined from the event 

time of day probability distribution (i.e. 2am to 3am in Table 11), an aggregate probability for 

the relevant end use event categories was determined (see Table 7).  

[Insert table 7] 

Table 7 shows that the previously listed inconclusive event could now be appropriately 

classified as a toilet event. By carrying out this process with all uncertain events in the 

inconclusive dataset, all single events would then be matched correctly. 

5 Modelling results and discussion 

5.1 Verification process against existing available dataset 

As mentioned in section 4.1.3, 20% of the database was reserved for verifying the proposed 

training algorithm. The outcomes of model testing are detailed in Table 8. 

[Insert table 8] 

 

Table 8 shows the testing accuracy of the reserved data using the HMM method applied 

alone. Within this verification process, HMM models for the eight different water end uses as 

listed above were employed to pattern match samples in the testing data set. The testing 

accuracy was estimated both in terms of number and respective volume of events. As can be 

seen from Table 8, the developed HMM models were quite good for dishwasher, clothes 

washer, full-flush toilet and half-flush toilet pattern recognition. The testing accuracy for 
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these event categories, in terms of the number of events, is greater than 80% of the validated 

testing samples. The higher prediction accuracy for these categories is due to them being 

largely pre-set mechanical processes that are less influenced by human behaviours and thus 

having less variability. However, there are instances where there is potential for lower 

accuracy for dishwasher and clothes washer event pattern recognition where the household 

uses a wide variety of appliance settings in a particular analysis period. Using a large number 

of different appliance settings results in a much wider variety of wash patterns with some 

having characteristics similar with other end use event categories, creating more likelihood of 

misclassification when applying the proposed algorithm.  

Toilet is another category which can be well recognised by HMM as it has a fairly consistent 

flow rate pattern and distinct volume range. It is known that most toilet cisterns have a fixed 

volume for both full and half flush toilet events, and a consistent refilling duration. It is these 

two characteristics which make the toilet event visible to the HMM classifier. However, the 

recognition problem becomes more challenging when dealing with toilets that exhibit 

leakage, which is a relatively common issue with old toilets. In this case, the typical pattern 

of toilet events has been distorted due to the presence of an associated leak event, which may 

confuse the classifier, and as a result, the matching accuracy would decrease. Another 

difficultly with toilet event classification is that there are some new models that allow the 

user to control the volume of water that is released for that particular flush.   

With the other water end use categories, the pattern matching accuracy in terms of number of 

events is lower than 75%, such as 72.9% for tap, 74.5% for shower, 73.9% for irrigation and 

67.3% for bathtub (Table 8). This result, though not ideal, is somewhat understandable as all 

of these end use categories are heavily influenced by human behaviours and thus have high 

variability. When analysing the existing database, it was found that there is almost no special 

characteristic for these types of end use. A long tap event usually has similar features to that 

of shower, irrigation or bathtub events. Shower and bathtub are two categories which are 

most often classified as the other, and short irrigation events are usually recognised as tap 

events. These issues can be overcome when combining HMM with other decision-making 

algorithms such as the event time of day probability function described previously.  

Apart from the testing in terms of number of events, the accuracy was also verified based on 

volume. As can be seen from Table 8, recognition accuracy in terms of total volume follows 

the same trend as that for number of events, albeit having lower values. This prediction 
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accuracy reduction implies that most of the misclassified events are long ones which have 

large volumes, and from the table, it can be derived that long bathtub events are sometimes 

considered as long showers, and vice versa, as their accuracies in terms of volume show the 

greatest accuracy reduction. The increase in irrigation accuracy provides hints that most 

misclassified irrigation events are the short ones, which usually have similar patterns to short 

showers or long tap events. It is understandable that toilet total volume prediction accuracy 

decreases because as explained above, toilet events with associated leaks are hard to be 

detected correctly by the classifier, and with the additional leakage, the volume of these 

misclassified toilet events are often large, which results in the drop in accuracy.  

5.2 Method application to independent sample of households 

To illustrate the application of the proposed method and to verify its accuracy for an 

independent sample of three households, a two-week sample of high resolution flow trace 

data was collected from these households (named Home 1, Home 2 and Home 3). For these 

three households, all water end use events in the logging period were recorded by residents in 

a diary (i.e. accurate categorised end use event repository to compare with automated 

classification with herein described analytical method). This verification analysis process 

enabled a true indication of end use classification accuracy. A clothes washer event for Home 

1was selected in order to detail all the steps involved in the single end use event recognition 

and classification process. A discussion is then provided to discuss the key analysis issues 

and outcomes for all end use categories.  

5.2.1  Applying HMM for clothes washer event recognition 

Firstly, HMM was applied for the ten different water end-use categories (i.e. tap, clothes 

washer, dishwasher, bathtub, shower, irrigation, full-flush toilet, half-flush toilet, leak and 

combined events) and were trained using HMM with 80% of the available database. The 

following parameters were adopted for this training: 100 states; 100 iterations; and 300 

possible observations. Developed HMM for each end use category were applied to the raw 

flow dataset obtained from Home 1. Figure 12 illustrates the registry of clothes washer events 

recognised using this described analytical process. 

 

[Insert figure 12] 
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5.2.2 Refining HMM recognised clothes washer events 

As can be seen in Figure 12, the most common peak flow rate for most of the clothes washer 

events in Home 1 was 11.2 L/min. Clothes washer events that had a peak flow rate outside of 

an 11.2 +/- 1.5 L/min interval range were removed from this end use category and placed in 

the inconclusive event category. Figure 13 shows the clothes washer events (i.e. 44 events) 

which remained after this refinement process was completed. A similar refinement process 

was performed for all other end use categories and these events were placed in the 

inconclusive event category dataset for further analysis. 

 

[Insert figure 13] 
 

5.2.3 DTW algorithm to find missing clothes washer events from inconclusive dataset 

The next step involved searching for missing clothes washer events contained in the 

inconclusive dataset using the DTW algorithm. The first task in this process involved the 

selection of a number of prototypes from the clothes washer event dataset after the refinement 

process for the particular home being analysed (i.e. 44 events). Applying the approach 

detailed in Nguyen et al. (2011), a total of 11 clothes washer events were selected as 

prototypes for inconclusive event dataset screening purposes (Figure 14).  

 

[Insert figure 14] 
 

 

Once clothes washer prototypes were selected, the DTW algorithm could then be applied to 

screen for missing wash cycles in an entire clothes washing event. The missing wash cycle 

search criterion for clothes washer recognition required that the relative difference between 

one clothes washing event in the reference set with another one in the testing set is less than 

5% in terms of DTW distance. By carrying out this process, all samples in the inconclusive 

set which are similar to that from the clothes washer dataset would be reassigned to the 

clothes washer event category. In the context of this Home 1 application, no missing clothes 

washer event was found in the inconclusive dataset, which infers that samples shown in 

Figure 13 are all clothes washer events which could be extracted from the single event dataset 

for this home. However, there could be many other clothes washer events contained in the 
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combined event category, which have not yet been recognised. The separation and 

recognition of single events that are contained within combined ones is the subject of future 

study. By comparing the output from the proposed method with information detailed in the 

Home 1 water consumption dairy, the accuracy of clothes washer recognition is 91.9% (Table 

10).  

5.2.4 End use event categorisation accuracy for remaining events 

The remaining end use event categories were processed following the above described 

analytical method described for the clothes washer category. A summary of the testing 

accuracy results for the three independent homes (i.e. Home 1 to 3) are described below: 

 Dishwasher events: similarly to clothes washer, dishwasher events operate following 

a series of pre-set mechanical processes, which follow a clearly defined flow pattern. 

Due to this flow pattern regularity, dishwasher recognition was quite robust, with 

92.1%, 86.5% and 96.5% classification accuracy achieved for Home 1, 2 and 3, 

respectively.  

 Tap events: Tap events are heavily influenced by human behaviours, thereby 

resulting in greater irregularity in flow patterns and slightly lower pattern recognition 

accuracy. The application and testing process indicated that  tap recognition accuracy 

was 83.2%, 95.9% and 80.1% for Home 1, 2 and 3, respectively, averaging 

approximately 86.4% overall (Table 9). 

 Shower events: shower event flow patterns also have a high degree of irregularity, 

thus making their accurate recognition difficult. The application and testing process 

indicated that  shower recognition accuracy was 84.8%, 94.8% and 94.5% for Home 

1, 2 and 3, respectively, averaging approximately 91.4% overall (Table 9). Home 1 

displayed lower recognition accuracy (i.e. 84.8%) than the others due to many shower 

events in this home have similar patterns to that of tap and bathtub.  

 Toilet events: These events are difficult to recognise due the variety of toilets 

available on the market with different cistern sizes and operation modes (i.e. full 

flush, half flush, user defined flush). Apart from the two most common types, which 

are full-flush and half-flush toilet, there is another which releases a user controlled 

volume of water for each flush. With this type of toilet, water is only flushed when the 

button is held, and it will stop when the button is released. Recognising this type of 

toilet event is more challenging for the proposed pattern matching algorithm. The 
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toilet event testing accuracy for Homes 1, 2 and 3 was 78.9%, 80% and 90.3%, which 

is slightly lower than the most other end use categories (Table 9).     

 Bathtub events: A bathtub, a long shower and an irrigation event can often have 

similar characteristics. Bath events are often classified as showers by HMM and vice 

versa.  Due to these issues, the recognition of bathtub events was considerably lower 

than the other event categories (i.e. low 70% accuracy values). To improve bathtub 

recognition accuracy further context data will be trialled in future model refinement 

stages of the research. 

 Irrigation events: Irrigation events do not often occur in an individual household in a 

particular recording period (i.e. Home 1) and when they do occur they are often have 

irregular flow patterns. Due to these issues, irrigation event categorisation accuracy 

was the lowest of all event categories at 56.4% to 66.1%, for Homes 2 and 3, 

respectively. Again, further context data will be a trialled in future model refinement 

stages of the research.  

5.2.5 Comparison between standalone HMM and method with additional processes 

HMM was selected as the basic classifier for the problem addressed in this study, however, 

due to the nature of the water flow data to be analysed, the technique applied alone did not 

adequately classify water end use events. To overcome the standalone HMM limitations, the 

above mentioned additional data refinement and processing steps improved recognition 

accuracy. The differences in end use event classification accuracy, in terms of number of 

events, when using HMM to test 20% of the reserved data, using only HMM on the new 

dataset, and using HMM in conjunction with a number of additional analysis processes on the 

new dataset, are presented in Table 9. 

 

[Insert Table 9] 

 

There appears to be no general trend in accuracy variation for each end use category when 

applying the standalone HMM technique on the 20% reserved data and on the three 

independent household datasets (Table 9). Accuracy reduced for bathtub, irrigation and toilet 

event recognition while a significant increase was achieved for shower. A robust trend could 

be seen on the remaining categories such as tap, dishwasher, and clothes washer.  
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More importantly, the change in recognition accuracy with the inclusion of the additional 

analysis processes is of greater concern. The inclusion of the additional analysis processes 

resulted in a significant improvement in end use classification accuracy for all categories.  

For end use categories which had clearly defined patterns such as dishwasher and clothes 

washer, an average classification accuracy increase of 6.1% and 5.5% respectively (average 

of three homes) was achieved. These relative small increases in event classification accuracy 

is due to the fact that the standalone HMM technique is robust for classifying consistent 

mechanised water flow patterns that are less influenced by human behaviours   

For end use categories that are more behaviourally influenced (i.e. tap, shower, toilet, bathtub 

and irrigation) and thus had higher flow pattern variability, there were much greater 

improvements in classification accuracy when the additional analysis processes were applied. 

An average increase of three homes of 9.7% for tap, 10.4% for shower, 8.9% for toilet, 

25.1% for bathtub and 24% for irrigation was attained. This improvement in classification 

accuracy indicates that the additional processes applied are effective in recognising events 

which are not easily recognised by the standalone HMM. In summary, the testing and 

application verification process provides strong evidence that residential water flow data 

disaggregation into end use event categories, requires a range of pattern matching, 

probabilistic and contextual analysis processes in order to achieve a desired level of accuracy. 

While most event categories exhibited good classification accuracy when applying the 

complete model, further analysis procedures need to be implemented to improve others; this 

is the subject of future research along with the disaggregation and classification of combined 

events. 

6 Comparison between proposed method with existing flow trace analysis tool 

One of the most popular flow trace analysis tools available in the market place is Trace 

Wizard, which was utilised for manual end use analysis for the repository of input data 

provided for this automated recognition study. This software requires several inputs for the 

flow trace disaggregation process, including minimum and maximum values of volume, 

duration, peak and most frequent flow rate of each end use category. For this software 

package to be applied accurately for the flow trace disaggregation process, it requires a lot of 

information sources to aid the analyst, including: (1) diary of water use for a particular period 

to understand general water use behaviours; (2) household water appliance/fixture audit (i.e. 

2 hours) to survey the features of water using devices (i.e. toilet flush volumes, clothes 
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washer average wash, flow rate of taps, etc.); (3) descriptive information on household 

participants (i.e. number of adults and children, etc.); and (4) water flow signature traces for 

each appliance. Even with the assistance of these information sources, high recognition 

accuracy is only achieved when an experienced analyst spends approximately 2 hours, for a 

2-week sample of flow data, to run analysis templates using this data as input, and manually 

checks that each end use event is being classified properly. Moreover, cross checking of the 

end use events from user’s diary against results exported from Trace Wizard has shown that 

the average accuracy of this software was just approximately 72%. Obviously, such a process 

cannot be applied on a widespread scale unless a robust automated method is developed to 

complete this task.  

To illustrate the accuracy of Trace Wizard
 
 analysis, without extensive manual intervention 

by an analyst, event recognition accuracy was determined for Homes 1 through to 3. Table 10 

details the level of classification accuracy, in terms of number of events, achieved using both 

the existing Trace Wizard
  
software tool and the new analytical method developed. Readers 

should note that the comparison is made only on the basis of single event classification (i.e. 

combined events have been removed from the sample). 

 

[Insert Table 10] 

 

Table 10 demonstrates that the developed method had high classification accuracy than Trace 

Wizard
 
 for the majority of water end use categories. The toilet end use category for Home 1 

and Home 2, and the irrigation end use category for Home 2 were the only end uses which 

showed slightly better accuracy when analysed with Trace Wizard
 
. The results show strong 

potential for the developed method to be further refined and improved in order to create an 

accurate, reliable and automated water end use disaggregation method that has commercial 

applications. 

7  Study implications 

The model developed in this study is the key element for the building of a Knowledge 

Management System (KMS) which is able to automatically categorise the flow data recorded 

from water meter into all end-use categories. One application of the KMS allows for 
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individual consumers to log into their user-defined water consumption web page to view their 

daily, weekly and monthly consumption tables as well as charts on water consumption 

patterns for categories of water end use. Moreover, cumulative water billing can be updated 

daily or even hourly, and on-line alarms could be generated to indicate potential causes for 

excessive water use (e.g. internal leaks). This will help consumers to take corresponding 

water saving actions. The availability of such fine grained water end use data will enable a 

water utility to intervene as soon as an exception alarm is raised for end uses such as a major 

water leak (Britton 2008; 2009). From an operational perspective, there are significant 

implications of the KMS for improving current practices of infrastructure planning and 

management. The provision of demand and supply data from water and wastewater systems 

and households can assist system modelling through: 

 Providing real-time diurnal pattern data of water demands at a household level which 

will assist with understanding required supply quantities, storage needs, excess supply 

available for resale or distribution, and discharge volumes; and 

 Providing better predictive models on wastewater system requirements (e.g. treatment 

processes, estuarine, marine and river impacts, etc.) through real-time end use data 

related to prior knowledge on the typical waste constitute materials associated with 

such uses.  

The data from a KMS will also provide significant insight into the development and 

effectiveness of water demand management strategies at the development scale.  

Moreover, the application of a KMS could significantly improve on current decision making 

relating to the development of Water Demand Management (WDM) strategies as well as 

provide empirical verification on achieved water savings from already implemented 

programs. The application of real-time end use data, for both water authorities and 

consumers, will undoubtedly revolutionise the current ad-hoc approach to WDM. Some of 

the benefits of a KMS for enhancing current demand management functions include the 

following: 

 The ability to monitor the effect of enforcement or restriction levels on water 

consumption; 
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 The ability to immediately quantify the effect of targeted education programs (e.g. for 

particular demographics, shower time, rebate program, etc.) on their intended water 

end use(s); 

 The capacity to establish the water savings resulting from implemented engineering 

applications such as efficient water appliances (e.g. washing machines, shower roses, 

etc.) and pressure and leakage management (Carragher et al., 2012); 

 The provision of real time water consumption data provided to water users/customers 

resulting in an increased level of knowledge and understanding of personal water 

consumption and how this compares with others; 

 A tool for definitive financial analysis of the cost and water saving benefits of 

implemented WDM programs, ultimately driving a least cost planning agenda; and 

 Easy identification of leakage in households or businesses. 

 

The KMS will allow for the instantaneous quantification of the effect of WDM strategies on 

water consumption. This will lead to significant improvement on the development and 

delivery of such measures, thus closing the loop on demand management strategies. Stewart 

et al. (2010) provides a detailed discussion on the benefits of smart metering and high 

resolution water end use data for enhanced urban water infrastructure planning and 

management. 

8 Conclusions and future research 

Smart water metering technology is presently available which can provide real-time high 

resolution water consumption data to the householder and water business. Availability of 

such high resolution residential water flow data allows for its disaggregation into individual 

water end use events, which is essential for a range of intelligent urban water management 

functions. While high resolution flow data can be obtained, the flow data disaggregation 

process is far from automated, requiring time consuming and resource intensive manual 

analysis, thereby making it a niche activity for water end use research studies. In an attempt 

to automate this end use disaggregation process and thus enhance current practices in the 

urban water industry, this study developed a robust hybrid analytical method employing 

HMM, DTW and event probability techniques. Pattern recognition algorithms (i.e. HMM) 

applied alone were not sufficient for accurate event categorisation due to the close similarity 
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between flow events. Context data such as the event time of day probability, established from 

an existing available end use database, combined with event category likelihood established 

from HMM enabled more accurate predictions of inconclusive events. 

The developed analytical method was reliable for categorising most end use categories with 

the exception of irrigation and bathtub. In order to significantly improve irrigation and 

bathtub recognition accuracy, as well as make smaller improvements to the other end use 

categories, further analytical processes and the application of more contextual data will be 

employed in future research. To achieve this, the researchers are currently seeking to build a 

greater repository of contextual data about each end use event category (i.e. relative 

frequency distributions for number, flow rate, duration, and volumes for each end use 

category) as well as build an optional analytical module allowing individual household 

calibration through the inclusion of descriptive information (i.e. number of children and 

adults, appliance stock information, etc.). The incorporation of these analytical steps is 

expected to significantly increase the level of inconclusive event pattern recognition. Another 

task considered for future research is to develop a technique to automatically find the most 

appropriate parameters for the HMM model (i.e. states, iterations and possible observations) 

rather than using trial and error approaches as presented in the current study. Moreover, the 

authors are presently working on developing a dynamic algorithm, which is able to self-learn 

from newly collected raw data from different independent smart meter sources, without 

completely relying on data registries achieved from previously collected database prototypes. 

This is the final goal of the current research investigation, which will enable the developed 

model to handle incrementally changing water flow patterns posed by the ongoing changes in 

water appliance technologies installed in households and shifting human behaviours. 
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APPENDICES 

 

Appendix A: Main tasks to be completed for an end use study 

 Task 1: A detailed water appliance/fixture stock inventory audit would be conducted 

by a researcher for each household within the surveyed group to determine the 

efficiency rating of each household fixture/appliance, household general water use 

behaviours (e.g. bath children at night), and household descriptive statistics (e.g. 

family make-up). Households were also requested to complete a diary of water use 

events over a one week period to gain even further knowledge on their water use 

habits. 

 Task 2: High resolution water meters (0.014 litres per pulse) and data loggers were 

used to record water volume data verse time (i.e. 5 or 10 seconds) for each household 

usually over a representative 2-week period. 

 Task 3: Analysts used completed water audits and diaries as well as sample flow trace 

data for each household to develop specific templates which served to pattern match 

water end uses based on some basic event boundary conditions, such as peak and 

mode flow rate, volume, duration, etc.  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V05-4007D5X-C&_user=793840&_coverDate=01%2F27%2F1995&_fmt=summary&_orig=search&_cdi=5637&view=c&_acct=C000043460&_version=1&_urlVersion=0&_userid=793840&md5=b66b56153f6780c30e07201eadd454cf&ref=full
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 Task 4: Based on developed templates, stock survey audit, diary information and the 

analysts’ experience, individual end uses were disaggregated and categorised using 

Trace Wizard.  

 

Appendix B: HMM classification training algorithms 

Step 1: Assume random probabilities for initial state probability πi, state transition 

probability aij, and observation probability bj(ok) as their initial valueswith the restrictions as 

follows: 

∑        
   : Total probabilities of starting in state j at time 1 is equal to 1. In this study, with 

100 states as suggested, a random vector containing 100 values, whose sum is 1, is selected 

for initial state probability πi 

∑         
   : Total transition probability from state i to all other states is equal to 1; 

therefore, random matrix with 100 rows and 100 columns (100 x 100), whose sum of each 

row is 1, is selected for state transition probability aij. (i.e. for 100 states) 

∑            
   : Total probability of having observation ok  at state j is equal to 1. There are 

300 possible observations as proposed for this study (i.e. the maximum flow rate recorded 

from water meter of any residential household never exceeds 300 pulses), a matrix with 100 

rows and 300 columns, whose sum of each column is 1, is randomly selected for observation 

probability bj(ok) 

The selection of random values for the above mentioned parameters does not affect the 

overall model as with each event presented for training, step 2, 3 and 4 will be then carried 

out 100 times  (i.e. 100 iterations) to ensure that the values of  πi, aij and bj(ok)  will converge 

to a certain number for each training sample  

Step 2: Using the values from step 1, determine the following parameters: 

 αt(i) : the probability of flow rate o1 through to ot  and being in state i at time t              

( iq t  )   given the HMM ( )  

 

  )|,...()( 21  iqoooPi ttt                                                                                              (1)   
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 βt(i) : the probability of flow rate ot+1 through to oT, given the HMM (  ) and given 

that the model is currently in state i at time t ( iq t  )   

       ),|()( 21  iqoooPi tTttt                       (2) 

 

 t(i) : the probability of being in state i at time t given a water flow sequence  ( O ) and 

HMM ( )         
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 t(i,j) : the probability of being in state i at time t, and in state j at time t+1, given a 

water flow sequence ( O ) and the HMM ( ) as . 
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Step 3: Calculate the following parameters for each water flow sequence ( O )  

          



T

t

t i
1

)(  : expected number of times in state i for the water flow sequence ( O )               

 

          





1

1

)(
T

t
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sequence ( O )        

     

Step 4: With the calculated values in step 3, the probabilities values of πi , aij and bj(ok)  can 

be updated by performing Equations 5 - 7  

   

            
)( 1 ii  
                                                                                       

                                           (5)    

 

                           

   

                                                                                                              (6)      

 

 

                                                                                                                                                                        

                                                                                                                                                 (7) 

 

 

It should be noted that the above calculations of πi , aij and bj(ok)  will be updated for any new  

water flow rate sequence ( O ) introduced into the HMM. The overall process is completed 

when all samples have been introduced for training.  Once the final HMM ( ) with πi , aij 

and bj(ok)  are available, the recognition process of new water flow sequence could be ready. 

Probability of a water flow sequence given a HMM can be determined using the following 

formula: 

             
1

( | ) ( )
N

T

i

P i 


O
                       (8)

 

where αT(i) is the probability of flow rate o1 through to oT and being in state i at time T, given 

the HMM ( ).  

Appendix C 

 

[Insert table 11] 
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Table 1. Conducted water end use studies using smart water meter, data logger and pressure sensor (Beal and Stewart, 2012) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study  Location Sample 

size (hh) 

Sample regime Dwelling type/s Data capture Data transfer and analysis Reference 

2011 – USA University of 

Washington 
Seattle, USA 5  5 weeks Mixture Pressure sensor 

Data transferred wirelessly to 

PC. Analysis using 
HydroSense 

Froehlich et al. (2011) 

2009 – 2011 Gold Coast 

Watersaver EUS 

 

Gold Coast, 

Aust.  
252 

Winter 2008 and 

Summer 2009 

Single, 

detached, dual 
reticulation  

Actaris CT5-S meters, Aegis 

Datacell R series loggers, 10 sec. 
int.  

Manual download to PC in-

situ Trace Wizard® 

 Willis et al. (2010a, 

2011b) 

2008 –USQ Investigation 

of domestic water end use 

Toowoomba, 

Aust. 
10 

Continuous for 

138 days 
Single detached 

Actaris CT5-S meters, Monita R 

series loggers, 10 sec. int. 

Wireless download – weekly 

email Trace Wizard® 
Mead (2008) 

2007 – NZ Water End Use 

and efficiency  project  

Auckland 

region 
51 

6 months: across 
summer and 

winter 

Single, detached  
Neptune disc meter, 34.2 pulses/L, 

Branz data loggers, 10 sec int. 

Manual download to PC. 

Trace Wizard® 
Heinrich (2007) 

2005 – Yarra Valley 

Water Residential End 

Use study 

Yarra Valley, 

VIC, Aust. 
100 

2 x 2 wks summer 

and winter 
Single detached 

Actaris CT5 modified to 72 

pulses/L. Monatec XT logger, 5 sec 

int. 

Manual download into MS 

Access database. Trace 
Wizard® 

Roberts (2004)  

2004 - Tampa Water 

Department Residential 

Water Conservation Study 

Florida, USA 26 

2 wk baseline data 

+ 2 x 2 wk data 

post retrofit 

High end users 
(230 L/p/d)  

Trident T-10 or Badger 25 meters,  
Meter-Master loggers, 

 Downloaded to PC and 
Trace Wizard® 

Mayer et al. (2004) 

2003 – Smart metering 

project in UK 

Across 10 UK 

Water utilities 
250 On going Mixture 

Indentiflow® smart meter (0.01 L 
resolution) and data logger at 1s. 

intervals 

Analysis using Identiflow ® 

software 

Kowalski & Marshallsay 

(2005) 

1998–2001 WA Water 

Corporation Domestic 

Water Use study  

Perth, WA, 

Aust. 

120 and 

600 

surveys 

18 months for 

single and 13 

months for multi 

Single and multi 
Smart meters and loggers 

(unspecified) 

Manual download to PC in-

situ and Trace Wizard® 
Bouwer (2000) 

1998 USA and Canada 

residential end use – 

AWWA 

USA/Canada 1,188  
2 x 2 wks summer 
and winter 

Single detached 
Magnetic water meters, Meter 
Master 100EL logger, 10 sec int.  

Manual logger and download 
ex-situ and Trace Wizard® 

Mayer et al. (2004) 
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Table 2. Existing pattern matchings techniques and a rating of their applicability to the present study 

Technique Research fields typically applied Technique rating category References 

Processing 

efficiency 

Recognition 

accuracy 

Self-learning 

potential 

Overall 

applicability 

Decision tree Medical decision making, risk 

management, ecological assessments, 

water end use studies, many others 

***** ** * *** Cha et al. (2009), Deng et al. (2011), 

Eggers et al. (2012), Yiee & Baskin 

(2011), Yuan & Shaw (1995) 

 

Artificial Neural 

Network (ANN) 

 

All pattern recognition problems 

including speech, handwriting, 

signature, finger print, etc. 

 

**** 

 

** 

 

** 

 

** 

 

Da & Xiurun (2005), Bhadeshia (1999), 

Hert et al (1990), Bishop (1995), 

Haykin (1999) 

 

Dynamic Time 

Warping (DTW) 

 

Limited fields including hand writing 

recognition, fault detection, or speech 

matching. 

 

*** 

 

*** 

 

** 

 

*** 

 

Myers & Rabiner (1981), Muller 

(2007), Rabiner & Juang (1993), Sakoe 

& Chiba (1978) 

 

Hidden Markov 

Model (HMM) 

 

Most effective in hand writing and 

speech recognition 

 

*** 

 

**** 

 

**** 

 

 

**** 

 

Baum & Petrie (1966), Starner & 

Pentland (1995), Baum et al (1970), 

Ghahramani & Jordan(1997), Satish & 

Gururaj (2003), Tapia (2004) 

Note: Rating system: 1 star (*) = poor; ** = below average; *** = average; **** = good; ***** = excellent.
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Table 3. Residential end use analysis techniques comparative analysis matrix 

Technique 

examined  

Equipment 

required 

Recognition 

analysis 

technique(s) 

Processing 

efficiency
1
 

Accuracy
2
 Cost

3
  Feasibility

4
 Overall

5
 

TraceWizard Smart meter 

and data 

logger 

Decision tree **** ** ** *** ** 

Identiflow  

 

Smart meter 

and data 

logger 

 

Decision tree 

 

**** 

 

** 

 

** 

 

*** ** 

HydroSense 

 

 

Smart meter,  

data logger 

and pressure 

sensors  

HMM *** 

 

***** 

 

* 

 

** 

 

*** 

Proposed 

model  

Smart meter 

and data 

logger 

HMM + DTW 

+ probability 

*** **** *** **** **** 

Note: 1processing efficiency relates to time required to recognise end use events, 2 accuracy relates to techniques degree of 

accuracy in recognising end use events correctly, 3cost relates to the capital cost for setup and ongoing resources required to 

analyse data received, 4feasibility relates to viability of widespread rollout of technology for automated end use analysis in a 

region, and 5overall relates to the combined overall assessment on the applicability of the technique for widespread viable 

automated end use analysis of residential water flow data. Rating system: 1 star (*) = poor; ** = below average; *** = 

average; **** = good; ***** = excellent   
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Table 4. General characteristics of monitored households (Beal and Stewart, 2012) 

Household 

Demograhics
1 

Gold Coast Brisbane Ipswich Sunshine Coast 

Winter 

2010 

Summer 

2010-11 

Winter 

2011 

Winter 

2010 

Summer 

2010-11 

Winter 

2011 

Winter 

2010 

Summer 

2010-11 

Winter 

2011 

Winter 

2010 

Summer 

2010-11 

Winter 

2011 

No. of 

households 
87 68 33 61 64 26 37 31 12 67 56 39 

No. of people
2
 230 192 91 164 182     79 96 81 33 171 131 98 

Av. Household 

occupancy 
2.6 3.0 3.2 2.6 2.8 3.0 2.7 2.6 2.8 2.5 2.4 2.6 

% Households 

with ≤ 2 people 
58% 46% 42% 41% 47% 42% 51% 58% 50% 46% 64% 59% 

% Households 

pensioners/ 

retired 

36% 37% 30% 16% 17% 4% 32% 32% 8% 45% 50% 46% 

Households 

with children 

(aged ≤ 17) 

34% 46% 52% 30% 38% 46% 21% 23% 33% 25% 23% 28% 

Average age of 

children (years) 
8.8 8.4 7.7 2.7 4.6 5.7 4.4 5.9 4.8 10 9.4 10.5 

Income bracket 

split
3
 

1:2:3:4:5:6:7 

13:11:8:6:

4:0:2 

13:15:8:11:7

:4:4 

5:8:5:3:

3:3:3 

6:9:19:6:

7:2:3 

5:9:18:6:

9:3:3 

1:3:10:

1:5:2:0 

8:6:8:5:

3:3:1 

6:6:7:3:3

:3:0 

1:3:2:2:3

:0:0 

18:23:1

4:5:0:4:

0 

14:22:9:2

:0:4:0 

9:14:7:1:

0:3:0 

Education level 

split
4
 

PS:HS:T:U  

1:21: 9:19 1:24: 16:27 
0:10: 

9:14 

0:17: 

10:23 

1:14:10:2

4 

0:5: 

5:15 

3:12: 

12:9 

3:12: 

10:6 
2:4: 4:2 

4:14: 

25:26 

4:10: 

21:21 

4:7: 

13:15 

Notes: 1data presented are averages, 2this is based on known household occupancies at the time of the initial household water audit and also includes any updates to occupancies which were collated in March this year. 

This does not include any visitors or absent residents. 3income categories: 1 = <$30,000, 2 = $30,000 – $59,000, 3 = $60,000 – $89,999, 4 = $90,000 - $119,999, 5 = $120,000 - $149,999, 6 = ≥ $150,000, 7 = prefer not 

to respond. 4education categories are PS = primary school, HS = high school, T = trade/TAFE, U = university (includes post graduate). 
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Table 5.  Data allocation to intelligent model development 

End use category 
Total number of 

collected samples 

Shower 7,265 

Faucet 36,349 

Clothes washer 8,975 

Dishwasher 4,877 

Toilet 15,468 

Bathtub 496 

Irrigation 1,290 

Combined event 2,883 
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Table 6.  HMM probability of the tested events 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End use model Probability (%) 

Faucet 0.0013 

Leak 0.0001 

Dishwasher 0.1233 

Clothes washer 0.0468 

Shower 0.0158 

Toilet 0. 1014 

Irrigation 0.0010 

Bathtub 0.0031 

Combined event 0.0008 
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Table 7.  Event final likelihood when combining HMM with time-of-day function 

End use model 
HMM probability 

(A) 

2:00-3:00 am event 

probability (B) 

Final probability         

(A) × (B) 

Faucet 0.0013 0.4223 5.5×10
-4 

Leak 0.0001 0 0 

Dishwasher 0.1233 0.1261 155.4 × 10
-4

 

Clothes washer 0.0468 0.0892 41.7 × 10
-4

 

Shower 0.0158 0.0196 3.1 × 10
-4

 

Toilet 0.1014 0.8251 836.7 × 10
-4

 

Irrigation 0.0010 0 0 × 10
-4

 

Bathtub 0.0031 0.0251 0.8 × 10
-4
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Table 8.  Testing accuracy against 20% reserved data 

End use model Training set 

(80%) 

Testing set 

(20%) 

Testing accuracy 

(%): In terms of 

number of event 

Testing accuracy     

(%): in terms of 

volume 

Faucet 5812 1453 72.9 73.4 

Dishwasher 7180 1795 84.4 81.8 

Clothes washer 3901 975 85.2 74.2 

Shower 12374 3094 74.5 69.6 

Full-flush toilet 15736 3934 83.8 71.5 

Half-flush toilet 7466 1867 82.6 69.7 

Irrigation 1032 258 73.9 77.3 

Bathtub 2306 576 67.3 54.2 
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Table 9.  Overall end use event matching accuracy comparison  

End use model 
Basic testing 

accuracy (%)
1
 

Home 1  Home 2  Home 3  

HMM 

 (%) 

Extensive testing 

accuracy
2
 (%) 

HMM 

 (%) 

Extensive 

testing accuracy 

(%) 

HMM 

 (%) 

Extensive 

testing accuracy 

(%) 

Tap 72.9 

 

74.3 

 

83.2 

 

82.6 

 

95.9 

 

73.3 

 

80.1 

Dishwasher 84.4 

 

86.6 

 

92.1 

 

83.2 

 

86.5 

 

87.1 

 

96.5 

Clothes washer 85.2 

 

86.2 

 

91.9 

 

82.1 

 

86.3 

 

86.6 

 

93.2 

Shower 74.5 

 

76.1 

 

84.8 

 

82.4 

 

94.8 

 

84.3 

 

94.5 

Toilet 82.6 

 

71.3 

 

78.9 

 

73.5 

 

80.0 

 

80.1 

 

90.3 

Irrigation 73.9 

 

NA
3
 

 

NA 

 

38.3 

 

56.4 

 

46.2 

 

66.1 

Bathtub 
67.3 

 

50.3 

 

71.9 

 

NA NA 

 

42.1 

 

70.7 

Notes:  
1. Basic testing accuracy:  HMM average testing accuracy on 20% reserved data  

2. Extensive testing accuracy: The combination of both HMM and proposed additional process 

3. Not applied in household. 
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Table 10 Accuracy comparison between the developed method and existing water flow trace analysis tool 

End use model 

Home 1  Home 2  Home 3  

Trace Wizard 

 (%) 

Developed 

method (%) 

Trace Wizard 

 (%) 

Developed method  

(%) 

Trace Wizard 

 (%) 

Developed method  

(%) 

Tap 62.8 83.2 71.6 95.9 77.4 80.1 

Dishwasher 75.5 92.1 82.2 86.5 89.8 96.5 

Clothes washer 89.9 91.9 84.3 86.3 76.5 93.2 

Shower 69.8 84.8 79.4 94.8 86.6 94.5 

Toilet 79.3 78.9 84.5 80.0 73.2 90.3 

Irrigation NA
1
 NA 58.2 56.4 71.1 66.1 

Bathtub 67.8 71.9 NA NA 67.8 70.7 

Notes: 

1. Not applied in household. 
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Table 11 Time-of-day probability distribution 

Time (24 hr) 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-

11 

11-

12 

12-

13 

13-

14 

14-

15 

15-

16 

16-

17 

17-

18 

18-

19 

19-

20 

22-

21 

21-

22 

22-

23 

23-

24 

Shower 0.39 0.10 0.02 0.02 0.49 2.06 9.10 9.35 11.24   7.72  5.19 3.97  3.28 2.42  2.77 3.22  5.30  8.35  6.46  5.56 4.28 3.22 1.81 0.39 

Tap 0.79 0.60 0.42 0.39 0.78 1.37 4.35 7.55 7.59 6.32 5.07 5.03 5.05 4.79 4.44 4.51 5.40 7.64 8.64 6.29 3.80 3.11 1.48 0.79 

Clothes 

washer 
0.43 0.08 0.09 0.27 0.29 0.89 3.34 7.81 11.10 12.88 10.99 8.02 6.59 5.57 4.28 4.71 5.03 4.34 4.06 3.86 1.28 1.04 0.61 0.43 

Dishwasher 1.01 0.61 0.13 0.00 0.40 0.28 2.60 4.56 6.46 6.91 5.09 3.66 4.16 4.44 4.41 3.40 3.08 5.02 9.61 12.61 6.46 4.62 1.56 1.01 

Toilet 1.28 1.11 0.83 0.69 1.38 2.35 5.53 7.96 6.91 5.69 4.72 4.27 4.21 4.35 4.40 4.78 5.35 6.03 6.00 5.82 4.74 4.13 2.47 1.28 

Bathtub 1.28 1.11 0.83 0.69 1.38 2.35 5.53 7.96 6.91 5.69 4.72 4.27 4.21 4.35 4.40 4.78 5.35 6.03 6.00 5.82 0.13 0.11 0.03 1.28 

Irrigation 0.00 0.00 0.00 0.00 0.00 0.00 2.85 2.44 4.07 2.03 1.63 2.85 2.22 3.66 4.07 5.22 12.54 20.29 21.00 10.32 4.51 0.00 0.00 0.00 

Leak 0.15 0.15 0.00 0.15 0.00 0.00 1.34 4.16 4.16 4.46 6.09 9.36 10.40 7.58 11.00 16.64 11.29 6.09 2.23 1.78 1.04 1.19 0.30 0.15 
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Figures 

 

Figure 1 Schematic illustrating water end use analysis process 
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Figure 2 Flow rate pattern of clothes washer events 
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Figure 3 Flow rate pattern of dishwasher events 
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Figure 4 Boundary condition for the two end points in DTW path mapping 
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Figure 5 Local constraint for DTW path mapping 

 

Figure 6 A typical left-right HMM model (i.e. a12 is the transition probability from state 1 to 2,  π1 is the probability of being in state 1 at time 1 

and b1(o1) is the probability that  observation  o1 is generated in state 1) 
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Figure 7 Entire end use categorising process flow chart for both single and combined events 
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Figure 8 Intelligent model structure for single event categorisation 
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Figure 9 Example of flow rate characteristics for single and combined events 
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Figure 10 Dishwasher events categorised using HMM method 
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Figure 11 Flow rate pattern of a full clothes washer operation with 5 cycles 
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Figure 12 Clothes washer events categorised from preliminary analysis using HMM 
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Figure 13 Categorised clothes washer events after refining process 



61 
 

Figure 14 Prototypes of clothes washer events 

 


