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SUMMARY

We examined the spatial distribution pattern and meteorological drivers of dengue fever (DF) in
Guangdong Province, China. Annual incidence of DF was calculated for each county between
2005 and 2011 and the geographical distribution pattern of DF was examined using Moran’s I
statistic and excess risk maps. A time-stratified case-crossover study was used to investigate the
short-term relationship between DF and meteorological factors and the Southern Oscillation
Index (SOI). High-epidemic DF areas were restricted to the Pearl River Delta region and the
Han River Delta region, Moran’s I of DF distribution was significant from 2005 to 2006 and
from 2009 to 2011. Daily vapour pressure, mean and minimum temperatures were associated
with increased DF risk. Maximum temperature and SOI were negatively associated with DF
transmission. The risk of DF was non-randomly distributed in the counties in Guangdong
Province. Meteorological factors could be important predictors of DF transmission.
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INTRODUCTION

Dengue fever (DF) has been known from antiquity
and is still a major global public health concern.
The disease, which can be caused by four distinct
dengue viruses, is transmitted by Aedes mosquitoes
[1] and is epidemic in more than 100 countries. DF

is now the fastest spreading mosquito-borne disease
in the world, and in the past 50 years, case incidence
has multiplied 30-fold, with about 30–54·7% of the
world’s population (2·05–3·74 billion) now living in
areas where dengue viruses can be transmitted [2].

In 1978, a sudden outbreak of DF occurred in
Foshan City, Guangdong Province after an absence
of 30 years. Since then, Hainan, Guangxi, Fujian,
Yunnan and Zhejiang have all reported DF outbreaks
[3]. Guangdong Province has had the highest DF inci-
dence in mainland China during the past decades,
accounting for more than 65% of all cases in the
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country [4]. However, the incidences in the counties
within Guangdong is not homogenous [4]. A better
understanding of the spatial pattern of DF would
help to identify high-risk areas and might assist in
the development of DF control and prevention strat-
egies in the province.

Meteorological factors can influence the lifespan,
breeding, survival, and population dynamics of the
vector mosquitoes both directly and/or indirectly.
Studies have shown that meteorological factors,
including rainfall, temperature, and relative humidity,
are important environmental factors that could influ-
ence the transmission dynamics of DF. El Niño/
Southern Oscillation (ENSO) is a significant index
of quasi-periodic climate pattern, which affects most
countries in the Pacific and Indian Oceans. The
Southern Oscillation Index (SOI), the atmospheric
component of El Niño, is defined as the normalized
difference in atmospheric pressure between Darwin
(Australia) and Tahiti (French Polynesia). In
Guangdong Province, negative SOI values are associ-
ated with El Niño conditions (dry and warm), and
positive SOI values with La Niña conditions (wet
and cool). Other studies have linked the SOI to the
risk of DF transmission [5]. The use of geographical
information systems (GIS) with spatial statistics,
including spatial smoothing and autocorrelation
analysis, has been increasingly applied to infectious
diseases, especially zoonoses and vector-borne dis-
eases over recent years [6–9]. In this study, we
explored the spatial pattern of DF transmission in
Guangdong Province from 2005 to 2011 with the
aim of identifying the high-risk areas of DF trans-
mission, to provide a basis for dengue control and
prevention measures. We further examined the short-
term effect of meteorological factors and SOI on DF
epidemics to assess their ability to predict dengue
outbreaks.

MATERIALS AND METHODS

Setting

Guangdong Province is located in southeastern
China (20° 12′ N, 25° 31′ N, 109° 45′ E, 109° 45′ E)
as showed in Figure 1. The province comprises 21
prefecture-level cities and 122 counties with a total
land area of 179800 km2 and a population of about
104303132 according to the national census in 2010.
Guangdong has a subtropical climate influenced by
the Asian monsoon, with an annual average

temperature of 19–24 °C. The summer is wet with
temperatures between 28 and 29 °C in July, while
the winter is usually mild, dry and sunny with tem-
peratures between 16 and 19 °C in January. The
average annual rainfall in the study area was between
1300 and 2100 mm and the humidity was between
69% and 83%.

Materials

Records of DF cases in Guangdong Province be-
tween 2005 and 2011 were obtained from the Nation-
al Notifiable Disease Surveillance System. Blood
samples from all DF patients’ were collected in hospi-
tals and sent for diagnostic confirmation to the labora-
tory of Guangdong Provincial Center for Disease
Control and Prevention. Demographic data were
obtained from the Guangdong Statistical Yearbook.

To conduct a GIS-based analysis on the spatial dis-
tribution of DF cases, the county-level polygon map
at 1:250000 scale was obtained from Data Sharing
Infrastructure of Earth System Science (www.
geodata.cn), on which a county-level layer containing
information regarding latitudes and longitudes of
central points of each county was created. All DF
cases were geocoded and matched to the county-level
layers of polygon and point by administrative codes
using ArcGIS 10.0 software (ESRI, USA).

Daily meteorological data, including mean tem-
perature, maximum temperature, minimum tempera-
ture, relative humidity, rainfall, atmospheric pressure
and SOI from 2005 to 2011, were retrieved from the
China Meteorological Data Sharing Service System
(http://cdc.cma.gov.cn/index.jsp) and the website of
the Australian Bureau of Meteorology (http://www.
bom.gov.au/).

GIS mapping and spatial analysis

To manage variations of incidence in small popu-
lations and areas, the annual average incidences of
DF per 100000 in each county over the 7-year period
were calculated, and spatial rate smoothing was
implemented. Based on the overall annual average
incidence (2·5/100000), all counties were grouped
into four categories [9]: non-epidemic areas, low
epidemic areas with annual average incidence between
0 and 2/100000 persons, medium epidemic areas with
an incidence between 2 and 4/100000 persons, and
high epidemic areas with an incidence >4/100000 per-
sons. The counties were coloir-coded according to the
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epidemic level. To assess the risk of DF in each
county, an excess risk map was produced. The excess
risk was defined as the ratio of the observed incidence
at each county divided by the average incidence. The
average incidence of the whole province was calcu-
lated as the number of cases in the province divided
by the total population at risk [10].

Global spatial autocorrelation analysis was per-
formed in GeoDa095i software. Moran’s I, spatial
autocorrelation statistic was calculated and visualized
in the form of a Moran scatter plot. First, a
contiguity-based spatial weight was constructed for
each county by creating a rook contiguity weights
file. Second, Moran’s scatter plot was produced with
a spatial lag of incidence on the vertical axis and a
standardized incidence on the horizontal axis. The
number of permutation tests was set to 999 and the
pseudo-significance level was set at 0·01.

Time-stratified case-crossover analysis

A time-stratified case-crossover model was utilized
to examine the short-term association of daily DF
with daily meteorological factors (including tempera-
ture, relative humidity, precipitation, and atmospheric
pressure) and SOI. This design compares the exposure

in the case period when events occurred with the
exposures in nearby control periods to determine the
differences in exposure that might explain the differ-
ences in the daily number of DF cases [11, 12]. In
the present study, the case and control periods were
matched by day of the week in order to control for
any weekly patterns of DF cases or weather variables.
Control periods were compared with cases using
the time-stratified method with 28 days strata [13].
Such a time-stratified case-crossover study design
ensured that each case day had three matching
control days to avoid an overlap bias in the risk
estimation [14]. For this study, the first stratum was
1–28 January 2005, and the second was 29 January
to 25 February 2005; for a DF case on 28
January 2005, the control days were 7, 14 and 21
January 2005. The case-crossover method inherently
controls for any long-term trends and seasonal
patterns of disease and explanatory variables, and
individual characteristics such as age, sex, and edu-
cational level [15]. Studies have demonstrated that
the time-stratified case-crossover analysis provides
unbiased estimates in the presence of strong seasonal
confounding [16, 17]. Here, public holidays (as a
binary variable) were included in all models as a
potential confounding factor. We did univariate and

Guangdong

Fig. 1 [colour online]. Location of Guangdong Province in China.
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multivariate models, only two weather variables were
included in one model. We also performed analysis
to include all the weather variables in one model. We
estimated the linear effect of the meteorological factors
according to different lag structures including the cur-
rent day (lag 0) up to 3 days prior (lag 3). Results of
the analysis were expressed as excess risk (ER) of
DF based on a one-unit increase in the weather vari-
ables. ER was calculated using the formula: ER=
(OR−1) × 100%, where OR (odds ratio) was obtained
through the conditional logistic regression model. All
statistical tests were two-sided. The ‘season’ package
of R version 2.14.1 (R Foundation, Austria) was
used to fit the time-stratified case-crossover model.

RESULTS

Spatial distribution of DF in Guangdong Province

There were 1709 DF cases reported in Guangdong
Province during 2005–2011. The time series of daily
DF cases and key meteorological variables are
depicted in Supplementary Figure S1 (available
online). There were seasonal patterns in these vari-
ables. Annual average incidences at the county level
ranged from 0 to 8·07/100000. High-epidemic DF
areas were mainly restricted to the Pearl River Delta

region and Han River Delta region, the DF incidences
of the counties in these two areas were 2–4/100000
persons or more than 4/100000 persons (Fig. 2).

Figure 3 shows the risk map of DF, where the ER is
defined as a ratio of the observed number divided by
the expected number of DF cases. Counties in light
grey had lower incidences than expected, with risk
ratios <1. In contrast, counties in dark grey to black
shading had incidences higher than expected or risk
ratios >1.

Spatial autocorrelation of DF in Guangdong Province

A Moran scatter plot was created and a significance
assessment through a permutation test was im-
plemented by global spatial autocorrelation analysis
for annualized average incidence of DF (Fig. 4). The
number listed on the top of the graph (0·2433) is
Moran’s I statistic (Fig. 4a), and a histogram was
generated by performing the significance assessment
of Moran’s I statistic (Fig. 4b). The brown part is
the reference distribution and the yellow bar is the
statistic (Fig. 4b). In addition the number of permu-
tations (n=999) and the preudo-significance level
(0·002) were also listed in the upper left corner, as
well as the value of the statistic (0·2433), its expected

Incidence (1/100 000)

0

0–2

2–4

>4

0 37·5 75 150 225 300
km N

Fig. 2. Annual average incidence of dengue fever in the counties in Guangdong Province, China, 2005–2011.
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mean [E(I)=0·0083], and the mean and standard devi-
ation of the empirical distribution were −0·0057 and
0·0494 (as shown at the bottom of Fig. 4b). The stat-
istic was significant for Moran’s I at a level of 0·01.
Spatial autocorrelation analysis for annualized inci-
dence of DF in Guangdong Province from 2005 to
2011 showed that Moran’s I was significant from

2005 to 2006 and from 2009 to 2011, but not signifi-
cant in 2007 and 2008 (Table 1).

The association between DF and meteorological factors

Figure 5 illustrates the results of the time-stratified
case-crossover analyses. In the figure, w/Tmin on the

Excess risk

<0·5(101)

0·5–1·0(2)

1·0–2·0(2)

2·0–4·0(4)

>4(10)

0 37·5 75 150 225 300
km

N

Fig. 3. Risk map of dengue fever at the county level in Guangdong Province, China, 2005–2011.
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Fig. 4. Global spatial autocorrelation analysis for annualized average incidence of dengue fever (DF) in Guangdong
Province, China, 2005–2011. (a) The Moran’s scatter plot for annualized average incidence of DF. (b) Histogram for
significance assessment of Moran’s I.
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y-axis means that the minimum temperature was con-
trolled for in the model. However, when one weather
variable was controlled in the model of the same
variable, it was the result of univariate model for
that variable. It was found that atmospheric pressure
(at lag 0–3 days) was associated with increased DF
risk in both single- and two-factor analyses, and the
ER appeared to be larger when other meteorological
factors were controlled for. Daily mean and minimum
temperatures have delayed effects on DF with lags of
3 and 2 days, respectively. Daily maximum tempera-
ture was associated with decreased DF risk at a lag
of 0–2 days, and this effect persisted when other
meteorological factors were included. The SOI was
found to be associated with decreased DF at lags of
0–1 days. Corresponding ERs were 7·68 [95% confi-
dence interval (CI) 5·58–9·83] per 1 hPa increase in
atmospheric pressure on the current day, 6·99 (95%
CI 3·38–10·74) for a 1 °C increase in daily mean tem-
perature after controlling for pressure at a lag of 3
days, 0·83 (95% CI 0·50–1·17) for a 1 °C degree
increase in daily minimum temperature after control-
ling for pressure at a lag of 3 days, −0·50 (95% CI
−0·94 to −0·06) for a 1 °C increase in daily maximum
temperature after controlling for mean temperature
on the current day, and −0·99 (95% CI −1·46 to
−0·52) for a one-unit increase in SOI on the current
day, respectively. No significant association was
observed for relative humidity and rainfall in the
results. When all the weather variables were included
in one model, a similar result was produced.

In the sensitivity analysis, we conducted a time-
stratified case-crossover study for the high-risk
areas of the Pearl River Delta and Han River Delta
regions, separately, which yielded similar results with
that of the whole province (Supplementary Figs S2
and S3).

DISCUSSION

In this study, both exploratory spatial analysis
and case-crossover analysis of DF and meteorological
factors were conducted in Guangdong Province. Our
analyses demonstrated that spatial distribution of
DF in the counties in Guangdong Province was non-
random, and the high-epidemic areas were mainly
restricted to the Pearl River Delta and Han River
Delta regions. From the analysis of the association
between DF and meteorological factors, we found
that atmospheric pressure (at lags of 0–3 days)
and daily mean and minimum temperatures with
2- to 3-day lags were statistically significantly and
positively associated with DF, while daily maximum
temperature (at lags of 0–2 days) and SOI (at lags
of 0–2 days) were negatively associated with DF
epidemics.

Since 2005, the high-epidemic areas of DF have
been mainly restricted to the Pearl River Delta and
Han River Delta regions, which is consistent with pre-
vious studies [4, 10]. Efficient allocation of health
resources in DF control and prevention programmes
requires such accurate information on the geographi-
cal pattern of DF transmission. Thus, the results of
this study may assist with the allocation of health
resources more effectively and efficiently. According
to the findings of this study, we suggest that more
dengue control resources should be placed in the
Pearl River Delta and Han River Delta regions. We
identified areas of increased risk that are again located
in the Pearl River Delta and Han River Delta regions
(Fig. 3). Yi and colleagues [18] analysed the distri-
bution pattern of Aedes mosquitoes in Guangdong
Province, and found that both the Pearl River Delta
and Han River Delta had higher Aedes mosquito
density than other areas, which suggests that the
high risk of DF in these two areas must be partly
attributed to the high density of Aedes mosquitoes.
Additionally, Guangdong is also the major source
of labourers in South East Asia. As a result, many
overseas Chinese communities had their origins in
Guangdong. The residents in these regions keep
close connections with South East Asian countries
that are in the dengue-endemic regions. Imported
dengue cases were believed to have been the cause of
the outbreaks according to some studies [4]. Since
2000, frequent migration and rapid urbanization have
emerged in Guangdong Province, especially in the
Pearl River Delta and Han River Delta regions [19],
which are the core economic region in the Province.

Table 1. Spatial autocorrelation analysis of annual
average incidences of dengue fever in Guangdong
Province, 2005–2011

Year Moran’s I E[I] Mean S.D P value

2005 0·3703 –0·0083 –0·0060 0·0518 0·0010
2006 0·1500 –0·0083 –0·0071 0·0371 0·0050
2007 –0·0043 –0·0083 –0·0081 0·0413 0·8140
2008 –0·0004 –0·0083 –0·0057 0·0509 0·7830
2009 0·2727 –0·0083 –0·0070 0·0556 0·0010
2010 0·4476 –0·0083 –0·0083 0·0496 0·0010
2011 0·2544 –0·0083 –0·0070 0·0359 0·0010
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Gubler [20] predicted that if global trends of unpre-
cedented population growth, continued globalization
and unprecedented urbanization continue as projected,
there will be continued increases in the severity,
frequency, geographical distribution and magnitude
of DF epidemics in the future. All these factors
may contribute to the increased DF risk in the Pearl
River Delta and Han River Delta regions. Preventing
or reducing dengue virus transmission depends criti-
cally on the control of the mosquito vectors or inter-
ruption of human–mosquito contacts. At present,
integrated vector management (IVM) is the strategic
approach to mosquito control and dengue prevention
promoted by the WHO [21], but an efficient
long-term sustainable control programme is needed,
which should combine a top-down and a bottom-up
approach, including IVM, environmental improve-
ments, climate and vector surveillance-based early

warning system, planned population growth and con-
trolled urbanization.

Spatial autocorrelation analysis showed that there
was non-random spatial distribution of DF in
Guangdong Province during the period 2005–2011.
More specifically, by calculating Moran’s I annually,
our study showed that the distribution of DF from
2005 to 2006 and from 2009 to 2011 was non-random
geographically, but in 2007 and 2008 distribution of
cases appeared to be random. Fluctuation in popu-
lation immunity plays a major role in dengue
transmission, because the disease does not induce per-
manent immunity. The non-random and clustered dis-
tribution in Guangdong from 2005 to 2011 might be
due to population immunity. Two major outbreaks
in Guangdong Province occurred in 2002 and 2006,
with more than 1000 cases each year, and the popu-
lation immunity may have been maintained at a
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high level after the outbreaks. The distribution would
therefore appear to occur randomly in the following
years. Some studies have shown that both the inci-
dence and geographical distribution of DF were
related to environmental factors and climatic factors
[3, 19]. In the future it will be helpful to investigate
the changes in these factors when DF distribution is
non-random and random. This study provides base-
line information on the geographical distribution of
DF in Guangdong Province.

Previous studies have reported that meteorological
factors are associated with dengue transmission
[22, 23]. The results of this study illustrated that
vapour pressure, which is a measure of the actual
water vapour content of the atmosphere, has a
strong positive correlation with the incidence of DF
in Guangdong Province. This finding was in accord-
ance with studies in other areas. For example, on
the Caribbean island of Barbados a positive relation-
ship was found between vapour pressure and DF inci-
dence at a lag of 6 weeks [24]. Hales and co-workers
analysed climatic associations of global dengue
outbreaks between 1975 and 1996, and found that
the annual average vapour pressure was the most
important individual predictor of DF distribution
[25]. Higher atmospheric vapour pressure may favour
the vector mosquitoes; under these conditions infected
mosquitoes would feed more frequently or feed on
multiple individuals, thereby increasing the trans-
mission of the disease [24].

Daily mean and minimum temperatures were posi-
tively associated with DF incidence, while daily maxi-
mum temperature was inversely associated with DF
incidence. Temperature has been shown to influence
many vector-borne diseases [6, 26], affecting both
the survival time and habitats of the vector, and also
their replication, maturation, and infective periods.
Higher temperature was found to shorten the extrinsic
incubation period and viral development rate, and
increase the amount of infectious mosquitoes in the
environment [27]. Correlation studies between cli-
matic factors and the distribution of A. albopictus
[28] showed that they breed in those areas where the
annual mean temperature is above 11·8 °C, the mean
temperature in January was above 5·8 °C, and the
annual precipitation was above 500mm [28]. When
the atmospheric temperature is too low, dengue virus
development slows down and the mosquito biting
rate declines. According to a study by Hawley, the
optimum temperature limits for A. albopictus range
from 20 to 27 °C, with a maximum temperature

around 30 °C [29]. In laboratory studies survival
rate started to decrease when the temperature rose
above 28 °C [30]. Guangdong Province has a humid
subtropical climate influenced mainly by the Asian
monsoon. Summers are wet with high temperature
and a high humidity index. Winters are mild, dry
and sunny. The annual mean temperature ranges
from 19 to 24 °C; the annual maximum temperature
ranges from 34·6 to 39·0 °C. Therefore, as temperature
increases to the optimum temperature for A. albopic-
tus, particular dengue prevention measures should be
implemented. When the temperatures rise above the
optimum levels for the development and activity of
adult mosquitoes, their survival will be adversely
affected and risk of the disease is expected to decrease.

We did not find any significant relationship be-
tween humidity or rainfall and DF incidence at lags
of 0–3 days in the present study, which was consist-
ent with the findings of previous studies [22]. Kovats
has suggested that rainfall could affect the breeding
of mosquitoes but this might be less important in
urban areas, as the vectors often breed in small con-
tainers, such as plant pots, which may contain water
in the absence of rain [31]. The distribution of DF
in Guangdong Province was mainly concentrated in
the developed urban areas, where public health facili-
ties and drainage system were in good condition and
rainfall had little impact on increasing breeding sites
for mosquitoes. Optimal humidity conditions can
increase mosquito survival significantly, although the
lower limit of annual relative humidity (69%) was gen-
erally in winter, when the temperature was too low to
transmit dengue virus. However, in the dengue epi-
demic season, the relative humidity was high enough
to facilitate dengue transmission in Guangdong
Province.

It has been suggested that the geographical expan-
sion of DF throughout the world may be partly
attributable to global climate change. The ENSO is
a systematic pattern of global climate variability,
affecting most countries in the Pacific and Indian
Oceans [32]. Our study found that ENSO was associ-
ated with dengue transmission risk in Guangdong
Province. Furthermore, ENSO has been found to be
related to various health outcomes, including water-
borne infectious diseases, vector-borne disease and
natural disaster-related deaths in other areas [33, 34].
In Thailand, which does not have a strong ENSO
signal, there was no correlation [35]. Alexandre [36]
examined the relationship between dengue epidemics
and ENSO across the Indonesian archipelago and
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northern South America [36], and found that there
was a statistically significant correlation at the 95%
confidence level between El Niño and dengue epi-
demics in French Guiana and Indonesia and at the
90% confidence level in Colombia and Surinam [36].
In Indonesia, which has a strong El Niño effect caus-
ing drought, dengue epidemics consistently occurred
in the year after El Niño [31]. Our study suggests
that warmer temperatures (negative SOI values in
Guangdong Province) were correlated with increased
DF incidence. Hu stated the SOI was a regionally
aggregated measure of climate variability, which
associated with dengue risk [23]. Further studies are
needed to improve the understanding of the mech-
anisms underlying these associations, and to assess
the extent to which relationships between ENSO and
dengue may be useful as a basis for an early warning
system.

Our findings illustrate that spatial and temporal
analysis of DF is useful for improving our understand-
ing of the characteristics of this disease, and for gener-
ation of new hypotheses. In the meantime, further
epidemiological and ecological studies are required
to investigate the mechanisms of the observed associ-
ation. Climate is not the only factor affecting DF
transmission, environmental and socioeconomic
factors, host–pathogen interactions and population
immunological factors can all influence the dynamics
of virus transmission [37]. Although climate factors
could directly influence the breeding and survival of
the mosquito vectors and thereby affect their abun-
dance and distribution. Climate is therefore an impor-
tant predictor of vector-borne disease epidemics, and
regional climate changes may drive an increase in
transmission in larger, more populated area.

There are certain limitations to this study. First, the
use of passive surveillance data might have introduced
measurement and information biases. For example,
including individuals who were infected with DF but
experienced only sub-clinical symptoms and did not
seek medical treatment might have led to under-
reporting [38]. Second, the incidence of DF has been
rising worldwide in recent decades. This is probably
related to global trends such as population growth,
urbanization, weakening of public health infrastruc-
ture, and climate change not measured here. Third,
more information on the community- and individual-
level risk factors (e.g. mosquito population dynamic,
health education frequency, individual behaviours
and awareness) is required because these might be
confounding factors between socio-ecological charac-

teristics and DF transmission [39]. Therefore, future
attempts to study the relationship between dengue
and meteorological factors should consider collect-
ing and analysing more data on entomological and
eco-health variables. Finally, some studies have sug-
gested that the time-stratified case-crossover study
design could suffer severe bias from residual seasonal-
ity [14], in this study, we did perform a sensitivity
analysis using a generalized additive model, which
yields a generally similar estimation, suggesting that
the seasonal residual bias in this analysis was not a
serious drawback.

The findings of this study may have significant
implications for the development of strategic plans
to control and prevent DF outbreaks in Guangdong
Province.

ACKNOWLEDGEMENTS

This study was supported by the National Basic
Research Programme of China (973 Programme)
(Grant no.: 2012CB955504), the Special Research
Programme for Health (Grant no.: 201202006) and
the National Science Foundation of China (NSFC)
(Grant no.: 81273139, 30972563).

DECLARATION OF INTEREST

None.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit http://dx.doi.org/10.1017/S0950268813001519.

REFERENCES

1. Gubler DJ. Dengue and dengue hemorrhagic fever.
Clinical Microbiology Reviews 1998; 11: 480–496.

2. Brady OJ, et al. Refining the global spatial limits of
dengue virus transmission by evidence-based consensus.
PLoS Neglected Tropical Diseases 2012; 6: e1760.

3. Lu L, et al. Time series analysis of dengue fever and
weather in Guangzhou, China. BMC Public Health
2009; 9: 395.

4. Liu C, et al. Spatial analysis of fengue fever in
Guangdong Province, China, 2001–2006. Asia-Pacific
Journal of Public Health. Published online: 22 January
2013. doi:10.1177/1010539512472356.

5. Descloux E, et al. Climate-based models for understand-
ing and forecasting dengue epidemics. PLoS Neglected
Tropical Diseases 2012; 6: e1470.

642 J. Fan and others



6. Lin HL, et al. Analysis of the geographic distribution
of HFRS in Liaoning Province between 2000 and
2005. BMC Public Health 2007; 7: 207.

7. Lin HL, et al. Spatial and temporal distribution of
falciparum malaria in China. Malaria Journal 2009;
8: 130.

8. Lin HL, et al. Lung cancer mortality among women in
Xuan Wei, China: a comparison of spatial clustering
detection methods. Asia-Pacific Journal of Public
Health. Published online: 1 May 2012. doi:10.1177/
1010539512444778.

9. Lu L, Lin HL, Liu QY. Risk map for dengue fever out-
breaks based on meteorological factors. Advances In
Climate Change Research 2010; 6: 254–258.

10. Yi BT, et al. Study on the distribution of dengue
fever and vector in Guangdong province combined
application of SRS/GIS/PCA. Chinese Journal of
Disease Control & Prevention 2003; 7: 509–514.

11. Maclure M. The case-crossover design: a method
for studying transient effects on the risk of acute
events. American Journal of Epidemiology 1991; 133:
144–153.

12. Maclure M. Taxonomic axes of epidemiologic study
designs: a refutationist perspective. Journal of Clinical
Epidemiology 1991; 44: 1045–1053.

13. Guo Y, et al. Gaseous air pollution and emergency
hospital visits for hypertension in Beijing, China: a time-
stratified case-crossover study. Environmental Health
2010; 9: 57–63.

14. Whitaker H, Hocine M, Farrington C. On case-
crossover methods for environmental time series data.
Environmetrics 2007; 18: 157–171.

15. Bateson T, Schwartz J. Who is sensitive to the effects of
particulate air pollution on mortality? A case-crossover
analysis of effect modifiers. Epidemiology 2004; 15:
143–149.

16. Forastiere F, et al. A case-crossover analysis of
out-of-hospital coronary deaths and air pollution in
Rome, Italy. American Journal of Respiratory and
Critical Care Medicine 2005; 172: 1549–1555.

17. Guo Y, et al. The short-term effect of air pollution
on cardiovascular mortality in Tianjin, China: Com-
parison of time series and case-crossover analyses.
Science of The Total Environment 2011; 409: 300–306.

18. Yi BT, et al. Relationship of dengue fever epidemic
to Aedes density changed by climate factors in Guang-
dong Province. Journal of Hygiene Research 2003; 2:
152–154.

19. Wu PC, et al. Higher temperature and urbanization
affect the spatial patterns of dengue fever transmission
in subtropical Taiwan. Science of the Total Environment
2009; 407: 2224–2233.

20. Gubler DJ. Dengue, urbanization and globalization:
The unholy trinity of the 21st century. Tropical
Medicine & International Health 2011; 39: 3–11.

21. World Health Organization. Global strategic framework
for integrated vector management. (http://whqlibdoc.
who.int/hq/2004/WHO_CDS_CPE_PVC_2004_10.pdf.)
Accessed October 2004.

22. Lu L, et al. Time series analysis of dengue fever and
weather in Guangzhou, China. BMC Public Health
2009; 9: 395.

23. Hu WB, et al. Dengue fever and El Nino/Southern
Oscillation in Queensland, Australia: a time series
predictive model. Occupational and Environmental
Medicine 2010; 67: 307–311.

24. Depradine C, Lovell E. Climatological variables and
the incidence of dengue fever in Barbados. International
Journal of Environmental Health Research 2004; 14:
429–441.

25. Hales S, et al. Potential effect of population and climate
changes on global distribution of dengue fever: an
empirical model. Lancet 2002; 360: 830–834.

26. Lin HL, et al. Time series analysis of Japanese encepha-
litis and weather in Linyi City, China. International
Journal of Public Health 2012; 57: 289–296.

27. Watts DM, et al. Effect of temperature on the vector
efficiency of Aedes aegypti for dengue 2 virus.
American Journal of Tropical Medicine and Hygiene
1987; 36: 143–152.

28. Wu F, et al. Distribution of Aedes albopictus (Diptera:
Culicidae) in northwestern China. Vector-borne and
Zoonotic Diseases 2011; 11: 1181–1186.

29. Hawley WA. The biology of Aedes albopictus. Journal
of the American Mosquito Control Association 1988; 1:
1–39.

30. Delatte H, et al. Influence of temperature on immature
development, survival, longevity, fecundity, and gono-
trophic cycles ofAedes albopictus, vector of chikungunya
and dengue in the Indian Ocean. Journal of Medical
Entomology 2009; 46: 33–41.

31. Kovats RS. El Nino and human health. Bulletin of the
World Health Organization 2000; 78: 1127–1135.

32. Kovats RS, et al. El Nino and health. Lancet 2003; 362:
1481–1489.

33. Hu WB, et al. Dengue fever and El Nino/Southern
Oscillation in Queensland, Australia: a time series
predictive model.Occupational and Environmental Medi-
cine 2010; 67: 307–311.

34. Lin HL, et al. Short term effects of El Nino-Southern
Oscillation on hand, foot, and mouth disease in
Shenzhen, China. PLoS One. Published online:
27 April 2013. doi:10.1371/journal.pone.0065585.

35. Hay SI, et al. Etiology of interepidemic periods of
mosquito-borne disease. Proceedings of the National
Academy of Sciences USA 2000; 97: 9335–9339.

36. Alexandre S, et al. Dengue epidemics and the El Nino
southern oscillation. Climate Research 2001; 19: 35–43.

37. WorldHealthOrganization.Dengue: Guidelines forDiag-
nosis, Treatment, Prevention and Control – New Edition.
Geneva, Switzerland: WHO Press, 2009, pp. 111–136.

38. Mackenzie JS, et al. Arboviruses in the Australian
region, 1990 to 1998. Communicable Diseases Intelli-
gence 1998; 22: 93–100.

39. Hu WB, et al. Spatial patterns and socioecological
drivers of dengue fever transmission in Queensland,
Australia. Environmental Health Perspectives 2012; 120:
260–266.

Meteorological factors and dengue transmission 643


