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MicroRNA-34 is involved in pathogenesis in cancer by targeting different tumor-related genes. It could be a
biomarker for predicting the prognosis of patients with cancer. In addition, miR-34 is involved in the tumor
angiogenesis. Understanding themechanism of themiR-34 in cancer and tumor angiogenesis will open horizons
for development of anti-cancer and anti-angiogenesis drugs.
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Since the discovery of miRNA in Caenorhabditis elegans (Lau et al.,
2001; Lee and Ambros, 2001), many researchers have focused their at-
tention into elucidating the aspects of miRNA biology and function.
Classed as the new generation of epigenetic gene regulators (Benetti
et al., 2008; Cai et al., 2009; Szulwach et al., 2010), miRNAs are 20–25
nucleotides non-coding RNAs which is estimated that about 30% of
gene expression is regulated using miRNA (Winter et al., 2009). Their
main goal is repression of gene expression. After transcription by RNA
polymerase II, the pri-miRNA is processed with Drosha (RNase III) and
subsequently in the cytoplasm with Dicer to yield a double strand
RNA. This form is then cleaved into a single strand RNA as a mature
59
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miRNA which is then incorporated into miRNA–protein (miRNP)
complex. The miRNA in the miRNP complex identifies the seed se-
quence in the 3′ untranslated region of the targetmRNA and then either
suppresses the translation or degrades themRNA. Both processes result
in downregulated expression of protein (Bartel and Chen, 2004; Huang
et al., 2011; Krol et al., 2010). Additionally, it has been shown that they
are able to directly bind proteins (Hafner et al., 2010; van Kouwenhove
et al., 2011). Therefore, on a hypothetical assumption and considering
the account of mRNA genes, their varied expression patterns and conse-
quently the vast potential of miRNA targets suggest that miRNAs are
likely to be involved in an extended spectrum of cellular processes.
More than 60% of human protein-coding genes are conserved targets
of miRNA (Siomi and Siomi, 2010). The functional roles of miRNAs
have been reported in many biological events including developmental
timing (Ambros, 2011; Li et al., 2011), signal transduction (Inui et al.,
2010) and tissue differentiation (Chen and Hu, 2012; Ge and Chen,
2011; Huang et al., 2011). Thus, miRNAs play variety of functions in
in cancer with particular reference to cancer angiogenesis, Exp. Mol.
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the biology of human. Also, it has been shown that an alteration in
miRNA expression is related to various diseases including cancer
(Ebrahimi et al., 2014; Gopalan et al., 2014; Sayed and Abdellatif, 2011).

2. miR-34 family

The miR-34 microRNA precursor family was computationally dis-
covered and later verified experimentally. The two distinct precursors
are processed into three mature miRNAs: miR-34a, miR-b and miR-c.
The mature miR-34a is a part of the p53 tumor suppressor network
(Concepcion et al., 2012; Liu et al., 2012); therefore, it is hypothesized
that miR-34 dysregulation is involved in the development of some can-
cers (Gopalan et al., 2014). This family is transcribed from two different
sets of genes located on chromosomes 1 and 11. Higher expression of
miR-34a was detected in brain and higher expression of miR-34b and
miR-34c was noted in lungs (Lagos-Quintana et al., 2002). The presence
of miR-34 products has also been confirmed in embryonic stem
cells (Houbaviy et al., 2003). Their promoter region has p53 binding
site therefore they are induced by p53 and thus involved in cell pro-
liferation, survival, apoptosis (Yamakuchi et al., 2008), migration,
invasion (Siemens et al., 2011) and angiogenesis (Chang et al., 2007;
Yamakuchi and Lowenstein, 2009). Many controlling genes are regulat-
ed through the actions of this family. For example, ectopic expression of
this family of miRNAs results in an increase in factors involved in cell
cycle regulation and DNA damage response and suppression of cell
cycle promoting genes (Wan et al., 2011). Each member of this family
is able to induce similar gene expression and repression (Hermeking,
2010). Given their similar structure, such pattern was predictable e.
On the other hand, it seems that each member has an extra affinity
to a specific mRNA, which is the result of perfect complementary
sequences. For instance, miR34b and miR34c have higher tendency to
suppress c-myc.

miR-34a, miR-34b and miR-34c are responsible for cell-cycle arrest
in the G1 phase. In addition, miR-34b/c inhibited proliferation and colo-
ny formation in soft agar. Interestingly, the introduction of miR-34a,
miR-34b and miR-34c into primary human diploid fibroblasts induced
cellular senescence. Microarray analyses after ectopic introduction of
different members of the miR-34 family into various cell lines revealed
hundreds of putative, downregulated miR-34 targets. Cyclin D1, cyclin
E2, cyclin-dependent kinases 4 and 6, mitogen-activated protein kinase
1 (MEK1), R-Ras, platelet-derived growth factor receptor A (PDGFRA),
and hepatocyte growth factor receptor are among the direct targets
that have been experimentally validated (Li et al., 2009). As a member
of p53 pathway, additionally mir34 regulates the genes involved in
apoptosis (Bommer et al., 2007; Chang et al., 2007). Survivin and BCL2
(B-cell lymphoma 2) are anti-apoptotic proteins regulated by miR-34a.
On the other hand, miR-34 targets the regulatory molecules of p53
which include SIRT1 (silent mating type information regulation 2 homo-
log1) and YY1 (yin yang 1). SIRT1 is a NAD+ dependent class III histone
deacetylase that protects cells against oxidative and genotoxic stress
(Brooks and Gu, 2009). This downregulation creates a positive feedback
loop for p53, enhancing its half-life and function. As p53 increases miR-
34a transcription, increased amounts of p53 eventually lead to higher
levels of miR-34a (Bommer et al., 2007; Yamakuchi et al., 2008).

3. Cancer and miR-34

Many miRNAs are deregulated in cancers via various mechanisms
(Sevignani et al., 2007). Genomic abnormalities such as deletion
(Sevignani et al., 2007), amplification (Hayashita et al., 2005; Rinaldi
et al., 2007; Tagawa et al., 2007), and translocation (Dorsett et al.,
2008) are common in tumorigenesis. miR-15a and miR-16-1 are
examples which are clustered at chromosome 13q14, a frequently de-
leted region in B cell chronic lymphocytic leukemia and other cancers
(Calin et al., 2002). Epigenetic factors are heritable transcriptional
silencing which can also influence miRNA expression. CpG island
Please cite this article as: Maroof, H., et al., Role of microRNA-34 family
Pathol. (2014), http://dx.doi.org/10.1016/j.yexmp.2014.08.002
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hypermethylation and histone modification in promoter regions result
in silencing of tumor-suppressor genes. Microarray analyses have indi-
cated some miRNAs that are repressed by CpG hypermethylation in
cancers relative to normal tissue (Lehmann et al., 2008). For instance,
miR-9-1 in breast cancer and miR-34a in hematological malignancies
are among the hypermethylated (Chim et al., 2010). Transcriptional
and post-transcriptional regulations can also affect the expression of
miRNAs. pri-miRNAs are induced by transcription factors, and many of
which are oncogenes or tumor suppressors. ManymiRNA–transcription
factor relationships have been discovered in cancers such as in p53,
c-Myc, and E2F (E2 transcription factor) (Tazawa et al., 2007).

mi-RNA processing and stability are also important factors that de-
termine mi-RNA expression level. In addition, the expression levels of
mi-RNA processingmachinery, Dicer or Drosha, are altered in a number
of cancers, likely due to the copy number gain (Blenkiron et al., 2007;
Chiosea et al., 2007; Karube et al., 2005; Muralidhar et al., 2007).

Known to regulate cell cycle, apoptosis, and differentiation, miR-34
is one of the best-characterized tumor suppressor miRNAs to date. It is
lost or expressed at reduced levels in many cancers. miR-34 functions
downstreamof p53 by regulating genes to induce cell cycle arrest, cellu-
lar senescence and apoptosis and re-introduction of miR-34 mimics
growth inhibition in vitro and in vivo (Ji et al., 2008). Although p53
has direct activating effects, studies have shown that miR-34b is
hypermethylated and therefore silenced inmany types of cancer includ-
ing colorectal carcinoma (Toyota et al., 2008), gastric carcinoma (Ji et al.,
2008), mesothelioma (Kubo et al., 2011), breast carcinoma (Vogt et al.,
2011), ovarian carcinoma (Corney et al., 2010; Segura et al., 2009), renal
cell carcinoma, urothelial carcinoma (Catto et al., 2011), pancreatic car-
cinoma (Chang et al., 2007), prostatic carcinoma (Fujita et al., 2008),
lung carcinoma (Bommer et al., 2007; Lodygin et al., 2008;
Wiggins et al., 2010) and melanoma (Lodygin et al., 2008; Segura
et al., 2009). This phenomenon is present despite the presence of
wild type p53 (Christoffersen et al., 2010). In this regard, treatment
with demethylating agents was able to activate its expression and
inhibit malignant growth in vitro (Kong et al., 2012; Nalls et al.,
2011; Roy et al., 2012). Thus, genetic and epigenetic mechanisms
contribute to a loss of miR-34 expression.

The side effects and chemo-resistance tendencies of conventional
chemotherapies are giving way to more selective non-toxic treatments,
which target a defined a specific tumor related gene (Tsao et al., 2005;
Welch and Moore, 2007). As modulators of gene expression and con-
trollers of many cellular pathways, miRNAs play important role in the
regulation of tumor suppression. Some of important miRNAs are let-7,
miR-34 and miR-200 (Kasinski and Slack, 2011).

miRNA replacement treatment has resulted in anti-proliferative,
pro-apoptotic, and death in cancer cell (Bader et al., 2010). miR-34 is a
well-known tumor suppressor, and extensive aberrant expression
profile has been observed in many cancers which reintroduction of
miR-34a inhibits cancer cell growth and shows its important role in tu-
morigenesis. Additionally, studies have shown that an important ability
of miR-34 is inhibition of cancer stem cells. CD44 or CD133 positive
prostate and breast cancer cells express lower levels of miR-34a. Also,
ectopic expression of miR-34 hampers sphere formation in soft agar
and tumorigenicity in vivo (de Antonellis et al., 2011; Ji et al., 2009;
Liu et al., 2011a; Yu et al., 2012).

This impact can be attributed to the inhibitory effects miR34 has
on pluripotency genes NANOG (Nanog homeobox), SOX2 (SRY (sex
determining region Y)-box 2), and MYCN (v-myc myelocytomatosis
viral related oncogene, neuroblastoma derived [avian]) (Choi et al.,
2011; de Antonellis et al., 2011). Other pathways regulated by
miR34 include Wnt signaling (Cha et al., 2012; Siemens et al.,
2011), AKT (protein kinase B) pathway (Lal et al., 2011) and notch
(Fujita et al., 2008) which regulate growth, epithelial–mesenchymal
transition (EMT) and metastasis.

Given that more than 50% of all human cancers show defects in
the p53 pathway, miR-34 replacement therapy is likely to become a
in cancer with particular reference to cancer angiogenesis, Exp. Mol.
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powerful therapeutic approach. The ability ofmir-34 to influence sever-
al pathwaysmay be synergistically beneficialwhen combinedwith con-
ventional therapies. As experiments have shown, mir-34a alleviates
chemo-resistance in various cancer cell models (Fujita et al., 2008).
This attenuation has been partly attributed to the modulatory role of
miR-r-34 on HuR, Bcl-2, Sirt1 MAGE-A and p53 expressions (Kojima
et al., 2010;Weeraratne et al., 2011). As cell models have shown the ef-
ficacy of miR-34 treatment, there are few animal studies which have
shown that vector-based delivery of miR-34 has therapeutic potential
(Hu et al., 2010; Kato et al., 2009; Kota et al., 2009; Kumar et al., 2008;
Wiggins et al., 2010; Yan et al., 2011). However, the ultimate therapeu-
tic benefits of miR-34 in vivo depend largely on the delivery system. As
promising the animals are, development of a safe clinically relevant sys-
temneeds further enhancement to achieve the standards of clinical trial
drugs. In this regard, micro-RNA therapeutics initiated a screening pro-
cess on various delivery systems with the aim of finding the most suit-
able system. The criteria included were (a) efficacy in mouse models of
cancer, (b) miRNA bio-distribution, and (c) initial safety.

miRNAs have been the focus ofmany studies in cancer prognosis and
diagnosis (Cho, 2010). Studies have shown that miRNAs are secreted as
exosomes and can be used as early biomarkers in body fluids for disease
diagnosis, prognosis, and response to treatment. As one of the tumori-
genesis-related miRNAs, miR-34 has been studied extensively in can-
cers. miR-34a expression has been linked to metastases in prostate
(Watahiki et al., 2011), breast (Javeri et al., 2013), and colorectal
(Siemens et al., 2013) cancers suggesting that it could be a potential bio-
marker. Additionally, patient with non-small cell lung carcinoma that
has undergone resecting surgery was noted to have a longer survival if
the cancer shows up-regulated miR-34a expression (Mudduluru et al.,
2011). In a study by Koufaris et al., it has been shown that hepatocellular
carcinoma cells exposed to DNA damage or oxidative stress blocked ab-
normal cell proliferation when treated with miR-34a (Koufaris et al.,
2012). This suggests that miR-34a can be utilized in the detection of he-
patocellular carcinoma. Furthermore, it has been reported that de-
creased expression of miR-34a is linked with pathogenesis, adverse
outcome (Koufaris et al., 2012) and poorer overall survival (Hu et al.,
2013).

4. Angiogenesis and miR-34

Due to their highmetabolic rate, cancer cells are dependent on extra
amount of blood supply. Angiogenesis is one of the hallmarks of cancer.
Angiogenesis is a normal physiological processes utilized in situations
which higher levels of nutrients are needed, for example in wound
healing and developing embryo (Breier, 2000). However, the growing
tumor cells take advantage of this process. Several processes are involved
in formation of newmicrovasculature. Detachment of pericytes, extra cel-
lularmatrix degradation and reformation by stromal cells and guidedmi-
gration and proliferation of endothelial cells by molecular mediators,
sequentially govern the formation of new blood vessels (Carmeliet,
2005; Flamme et al., 1997; Otrock et al., 2007).

There are many factors that regulate cancer angiogenesis. The most
important is vascular endothelial growth factor (VEGF). VEGF was
noted by regulating the pathogenesis and predicting the prognosis of
human cancers (Ferrara et al., 2003; Harhaj et al., 2006; Salajegheh
et al., 2011, 2013; Weekes et al., 2010; Yu et al., 2008a,b). It is the
main target for treatment in human cancers. Other angiogenic factors in-
clude endothelins and their receptors (Irani et al., 2014a,b), angiopoietins
and their respective Tie receptors (Loughna and Sato, 2001), fibroblast
growth factor (Presta et al., 2005), and platelet-derived growth factor
(Hellstrom et al., 1999).

Likewise, there are many studies showing the manifold impacts of
mi-RNAs in the biology of endothelial cells. mi-RNAs have emerged as
an important factor regulating cellular function and responses. The im-
portance of mi-RNAs in endothelial cell function was demonstrated by
the silencing of the Dicer enzyme, which resulted in the reduction of
Please cite this article as: Maroof, H., et al., Role of microRNA-34 family
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the mature mi-RNA profile. Increased activation of the eNOS pathway
(Bonauer et al., 2009), reduced endothelial proliferation, migration
and cord formation was the consequence of dicer knock down (Suárez
et al.). The above results show that mi-RNAs are important in the phys-
iological function of endothelial cells.

As a network,mi-RNAs regulate the process of angiogenesis in endo-
thelial cells, balancing the pro- and anti-angiogenic responses. Twenty
seven highly expressedmi-RNAs have been identified to play role in en-
dothelial biology, 15 of whichwere predicted to regulate the expression
of receptors for angiogenic factors. For example, the expression of
VEGFR2, endothelial nitric oxide synthesis (eNOS) (Yang et al., 2005)
and interleukin-8 (IL-8) (Bhaumik et al., 2009) is shown to be regulated
via mi-RNAs. Other exemplary pro-angiogenic miRNAs include mi-
R130a, mi-R210, mi-R424, let-7 family, miR-27b and the miR-17–92
cluster. Also, mir-221 and mir-222 are e anti-angiogenic miRNAs. The
names and function of involved angio-miRs were summarized in
Table 1.

A growing tumor, demands extra amount of oxygen and unlike
physiological conditions, induces its own blood vessels via sprouting
of existing capillaries or recruitment of circulating endothelial progenitor
cells (Miles, 1999). Tumors are able to produce the above-mentioned an-
giogenic factors in copious amounts. It has been shown that a relatively
high amount of VEGF and its receptor is expressed on tumor cells and
the respective endothelial and stromal cells (Ferrara, 2002). To
demonstrate the important role of VEGF, administration of anti-
VEGF or anti-Flk-1 (VEGF receptor) antibodies in vivo was able to
decrease tumor vessel density and inhibit tumor growth (Brekken et al.,
2000). These evidences show that inhibition of VEGF activity in vivo
results in reduced tumor angiogenesis and tumor growth.

On cellular level, tumor-induced vessels have abnormal structure.
High amounts of VEGF along with Ang2 expression induce a rather
“leaky vessel” structure with increased permeability, incomplete cellu-
lar junction and a lack of basement membrane (Manley et al., 2004).
The vascular bed is sufficient to provide the tumor cells with adequate
nutrient supply and the opportunity to enter the circulation and form
distant metastases. In the tumor microenvironment, local oxygen con-
centrations regulate VEGF production. Hypoxia stimulates the binding
of hypoxia-inducible factor (HIF) to the VEGF promoter, promoting
VEGF gene transcription and mRNA stability (Arany et al., 2008). The
pressure of hypoxic environment not only induces the production of
VEGF, but also aids the selection of apoptosis resistant tumor cells.
These cells are the P53mutant-type cells and that explains the phenom-
enon of increased amount of cells harboring this phenotype in higher
stages of cancer (Semenza, 2000, 2002).

IL-8 is anothermediatorwhich has shown angiogenic abilities. In the
tumormicroenvironment, IL-8 is produced frommacrophages in a state
of chronic inflammation (Chen et al., 2005; Koch et al., 1992). It has been
shown that IL-8 is mitogenic and chemotactic for HUVECs and angio-
genic in rat cornea (Waugh and Wilson, 2008). It also has the effect of
increasing the expression and activity of matrix metalloproteinase 2
(MMP2) (Reis et al., 2012). Considering the important role of angiogen-
esis in the growth of tumor cells, inhibition of this process has been one
of the major focuses in anti-cancer biology and therapeutic research
(Ferrara and Kerbel, 2005; Shojaei, 2012; Sitohy et al., 2012; Welti
et al., 2013). For example, bevacizumab, a FDA-approved monoclo-
nal antibody against VEGF, has been successfully used in combina-
tion with chemotherapy agents in clinical trials (Aghajanian et al.,
2014; Ferrara et al., 2004; Kopetz et al., 2010; Perren et al., 2011).
Bevacizumab was able to inhibit endothelial sprouting and normal-
ize the architecture of vessels, enhancing drug uptake of the tumor
(Arjaans et al., 2013; Carmeliet and Jain, 2011; Ma et al., 2011).
Since then, targeting the VEGF pathway was the focus of anti-
angiogenesis developments. However, several groups described
that these drugs may actually accelerate metastases formation.
Therefore, other targets also need to be considered (Bagri et al.,
2010).
in cancer with particular reference to cancer angiogenesis, Exp. Mol.
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t1:1 Table 1
t1:2Q1 List of miRNAs which have role in endothelial physiology and in tumor angiogenesis.

t1:3 Name Target Function References

t1:4 miR-126 SPRED1, PIK3R2, VCAM1 Maintaining vascular integrity, endothelial cell proliferation, migration,
tube formation and sprouting

Wang et al. (2008)

t1:5 miR-221 and miR-222 p27, c-kit mRNA Regulates cell cycle progression, decreased cell migration and
downregulation of endothelial nitric oxide synthase expression

Nicoli et al. (2012)

t1:6 miR-17–92 cluster HIF-1 alpha, E2F1, ITGA5 Endothelial cell sprouting, tube formation, pro-angiogenesis phenotype
and reduce p53

Doebele et al. (2010)

t1:7 miR-130a GAX, HOXA5 Proliferation, migration, and tube formation Volpe et al. (2012), Zhang
et al. (2011)

t1:8 miR-21 and miR-31 HIF-1alpha expression, PTEN suppression Inducing matrix metalloproteinase expression Liu et al. (2011b)
t1:9 miR-320 VEGFR2, IGF-1, IGF-1R Anti-angiogenesis Wang et al. (2014), Wu

et al. (2014)
t1:10 let-7 family and miR-27b Tsp-1 Sprout formation Bao et al. (2013)
t1:11 miR-155 Angiotensin II type I receptor Anti-angiogenesis Kong et al. (2013)
t1:12 miR-210 Ephrin-A3 (EFNA3), Neuronal pentraxin-1

(NPTX1)
Pro-angiogenesis, tubulogenesis and VEGF induced migration of endothelial
cell growth

Alaiti et al. (2012)

t1:13 miR-296 Hepatocyte growth factor-regulated
tyrosine kinase substrate, PDGFRβ

Elevated in tumor endothelial cells, tubule length and branching of
endothelial cells

(Savi et al. (2014); Vaira
et al. (2012))

t1:14 miR-378 SUFU, FUS-1b Promotes tumorigenesis and angiogenesis in vivo Chen et al. (2012)
t1:15 miR-20a and miR-20b
t1:16 miR-15 and miR16

VEGF, BCL2 Induces apoptosis block cell cycle progression Sun et al. (2013)

t1:17 miR-34a SIRT1, Survivin, E2F3, CDK4 Endothelial senescence Yamakuchi et al. (2008)
t1:18 miR-34b CREB Restoration of cell cycle abnormality reduce anchorage-independent

growth
Mazar et al. (2011)

t1:19 miR-217 SIRT1, FOXO3A Endothelial senescence Zhang et al. (2013)
t1:20 miR-424 CHK1 Migration and proliferation of endothelial cells Ghosh et al. (2010),

Nakashima et al. (2010)
t1:21 miR-200c ZEB1 Senescence in response to proto-oncogene tyrosine-protein kinase (ROS)

and increase p53 level
Rebustini et al. (2012)

t1:22 miR-9 E-cadherin Increased migration and angiogenesis Zhuang et al. (2012)
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mi-RNAs can control endothelial cell function as angioregulatory
switches in tumor angiogenesis. Since a single mi-RNA has the ability
to regulate a variety of endothelial functions by targeting multiple
mRNAs, miRNA targeted therapy could greatly influence endothelial
cell behavior. In this regard, miRNAs, especially those that are involved
in endothelial cell biology, have attracted attention for targeted anti-
angiogenesis therapy. Of note, in anti-cancer therapies, cellular senes-
cence has an important role.

Numerous miRNAs are engaged in the regulation of cellular se-
nescence of endothelial cells. A study evaluated the expression of
miR-34a in primary endothelial cells and demonstrated that baseline ex-
pression increases during cell senescence (Ito et al., 2010). miR-34a regu-
lates proliferation anddifferentiation ofmany cell types. Similarly,miR-34
controls the cycle in endothelial cells. It decreases SIRT1 levels and in-
creases acetylation of p53 (Yamakuchi et al., 2008). Mammalian SIRT1
functions as a metabolic regulator by deacetylation of histones and large
numbers of proteins including protein 53 (p53), Ku70 protein, nuclear
factor κβ (NF-κβ), and peroxisome proliferator activated receptor γ
(Brooks and Gu, 2009). It has been shown that miR-34a expression is
downregulated in highly angiogenic endothelial cells (endothelial cells
overexpressing Bcl-2) as compared to normal human endothelial cells
(Zhao et al., 2010).

miR-34a expression was analyzed in head and neck squamous cell
carcinoma cell line and 15 cancer r samples of oral cavity, oropharynx
and larynx. Bhavna and the teamdemonstrated thatmiR-34a could regu-
late tumor angiogenesis through down-regulation of key proteins includ-
ing E2F3, SIRT1, survivin and CDK4 whereby the function of endothelial
cell was directly inhibited. E2F3a and E2F3b are important family of tran-
scriptional factors that play pivotal role in cell proliferation and differenti-
ation and cell cycle regulation. They also studied the correlation of VEGF
expression to miR-34a as the main player in angiogenesis process and
demonstrated that overexpression of miR-34a down-regulated the up-
stream proteins of VEGF expression such as E2F3, Myc and c-met in
both of head andneck squamous cell carcinoma cell line and cancer tissue
Please cite this article as: Maroof, H., et al., Role of microRNA-34 family
Pathol. (2014), http://dx.doi.org/10.1016/j.yexmp.2014.08.002
E

samples The expression of VEGF was significantly reduced in cell lines
over-expressingmiR-34a. In addition, themiR-34awas shown to have di-
rect effects on the proliferation andmigration of endothelial cells and tube
formation was inhibited in vitro (Kumar et al., 2012).

5. Conclusion

Increased number of studies is vital to identify endothelial miRNAs
and characterize their potential for anti-angiogenesis therapeutics in
cancer. Investigations have shown that the altered expression of
miRNAs in the endothelial cells is under VEGF-stimulation, hypoxia, or
tumor signaling. However, utilization of miRNAs in therapy has the po-
tential side effect of off target effects, which are likely due to the partial
complementarity between a miRNA and target mRNA and depending
on the cell type. Therefore, specific delivery strategies to the site of
ongoing tumor angiogenesis are vital. Besides there can be different
approaches: anti-angiogenesismiRNAs to sites of tumorwhich could di-
rectly ‘switch off’ the angiogenesis process or inhibit the activity of pro-
angiogenesis miRNAs (antagomiRs).

Evaluation of the rolesmiRNAs play in endothelial biology and its re-
lation in various ailments is a relatively new field of research, with high
expectations for research and therapy applications. However, this field
is in its first steps, and many pitfalls have to be overcome before suc-
cessful miRNA targeted anti-angiogenesis therapy will reach the clinic.
A better understanding of miRNA regulation in endothelial cell is essen-
tial. Moreover, a comprehensive mapped miRNA profile is necessary to
identify the specific miRNAs involved in tumor angiogenesis. Hopefully,
this new emerged research field will open prospect full horizons for the
development of anti-angiogenesis drugs involving miRNAs.
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