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ABSTRACT

This paper presents a new LiDAR segmentation technique for

automatic extraction of building roofs. First, it uses a height

threshold, based on the digital elevation model to divide the

LiDAR point cloud into ‘ground’ and ‘non-ground’ points.

Then starting from the maximum LiDAR height, and decreas-

ing the height at each iteration, it looks for coplanar points to

form planar roof segments. At each height level, it clusters

the points based on the distance and finds straight lines us-

ing the points. The nearest coplanar point to the midpoint of

each line is used as a seed and the plane is grown in a region

growing fashion. Finally, a rule based procedure is followed

to remove planar segments in trees. The experimental results

show that the proposed technique offers a high building de-

tection and roof plane extraction rates while compared to a

recently proposed technique.

Index Terms— Building extraction, detection, height lev-

els, LiDAR.

1. INTRODUCTION

Building detection and 3D roof reconstruction has been an

active research topic for more than two decades. Accurate

detection of building boundary and roof planes can be a vi-

tal source of information for various applications, including

urban planning, virtual reality, disaster management, detec-

tion of unlawful extension of properties. The possible areas

of applications are increasing day by day. Hence, many au-

tomated algorithms have been reported over the last couple

of decades. Those algorithms can be categorized into three

main groups [1]: image only, LiDAR only and combination

of image and LiDAR information.

Many researchers have applied 2D or 3D information

from the photogrammetric imagery for detection and extrac-

tion of buildings. There are many strong reasons not to use

image only method. In [2] the authors showed that, a high res-

olution image contains more detail information, so the com-

plexity of detecting buildings from the non-buildings objects

increases as the resolution of the image increases. Regardless

of this problem, shadows and occlusions have also negative

effect for building detection. The 3D information derivation

from stereo images, like depth information is even more chal-

lenging. Moreover, nearby trees of similar height make the

use of such range data difficult [3].

In LiDAR only, LiDAR (Light Detection And Ranging)

point cloud is used for building detection and extraction. The

current LiDAR point cloud is dense, it has high accuracy in

height and can be used to directly extract the three dimen-

sional objects on the earth. Unlike image based method, Li-

DAR data is active system, so it can be gathered during the

day or night. LiDAR data has other advantages like, fast

data acquisition, high point density, canopy penetration and

the minimum of ground truth [4].

Currently many researchers are trying to combine high

resolution imagery and LiDAR data for the purpose of detec-

tion and extraction of buildings [1]. By using dense LiDAR

data it is possible to avoid problems involving imagery alone.

In this paper we have focused on the building detection

and extraction process based on LiDAR data only. LiDAR

data is chosen for its highly accurate three dimensional infor-

mation and less complexity in information processing. The

rest of the paper is designed as follows: Section 2 discusses

related research works for building detection and extraction

using LiDAR data. Section 3 describes the proposed method,

followed by the experimental results, analysis and compari-

son in section 4. Concluding remarks are then provided in

section 5.

2. RELATED WORKS

Awrangjeb and Fraser [5] presented a rule-based approach us-

ing LiDAR point cloud. They classified the raw LiDAR point

cloud into ground points and non-ground points. A building

mask was generated using the ground points and individual

buildings and trees were obtained as clusters of black pixels

from the mask. The co-planarity of each non-ground point

was tested using Delaunay neighborhood. After that, planner

segments were extracted from the non-ground LiDAR points.

To refine the results rule-based approach was introduced. Fi-

nally, false planes were removed to get the final set of roof

planes. Sampath and Shan [6] presented a solution framework

for building roof extraction. They determined the planarity of

each LiDAR point based on eigenvalue analysis. Non-planar



points were not consider for further processing. After that,

they clustered the planar points by using fuzzy k-means ap-

proach based on their surface normals. Good evaluation re-

sults for both segmentation and reconstruction were achieved.

However, the method exhibited high reconstruction error due

to removal of LiDAR points near the plane boundaries. More-

over, the fuzzy k-means clustering algorithm is computation-

ally expensive. Sohn et al. [7] proposed a Binary Space Parti-

tioning (BSP) tree model for polyhedral building reconstruc-

tion. Buildings were detected by classifying the LiDAR data

into building and non-building points. These classified build-

ings were clustered based on height and planar similarity.

Then they extracted lines and generated building model by us-

ing BSP tree. Perera et at. [8] proposed an automated method

for 3D roof outline generation. They introduced cycle graph

for the best use of topological information. There method

segmented LiDAR data into planar patches and by using it

roof planes were extracted. Lines were extracted and subse-

quently used to construct a roof topology graph. Inner and

outer boundaries were reconstructed by using this topology

graph. Experimental results showed that, the process failed to

detect some flat and shaded buildings while it included vege-

tation as part of the extracted buildings.

3. PROPOSED APPROACH

The proposed method starts with LiDAR data as input. It uses

raw LiDAR data without any modification. LiDAR is a series

of points stored as X, Y and Z. The X and Y values are easting

and northing and Z is the elevation in metre.

Figure 1 outlines the proposed work. The algorithm has

six major steps. Firstly, LiDAR point cloud is divided into

two groups: namely ‘ground’ points and ‘non-ground’ points.

As the method focuses on buildings, only the ‘non-ground’

points from the LiDAR point cloud are sufficient. Secondly,

each of the LiDAR point is marked as coplanar or non-

coplanar based on coplanarity analysis of each point and its

neighborhood. Thirdly, lines are extracted from the LiDAR

point cloud at different height levels. Considering the nearest

coplanar point to the middle of a line as a seed point, a planar

segment is grown in a region growing fashion. In the next step

planes on trees and other non-building structures are removed

using a rule-based procedure. Finally, the planar segments are

combined on a neighborhood basis to obtain individual build-

ing boundary.

3.1. Finding non-ground points

The test area may have variation in elevation, so the ground

height from the digital elevation model (DEM) is used for

each LiDAR point. A DEM has been generated from the in-

put LiDAR data by using commercial software like: MARS

7 [9]. To group the LiDAR point cloud as ‘ground’ points and

‘non-ground’ points, the ground height value from the DEM

Fig. 1. Flow diagram of the proposed approach.

along with a threshold is used. The threshold value is consid-

ered here 1m [5]. So for each LiDAR point Th = Hg + 1m
is calculated where Hg is the ground height. We consider

any thing which is 1m higher than the ground height as build-

ing. So the algorithm is capable to detect small height build-

ings. If the ground height (Hg) is not defined in the DEM,

the mean height from the surrounding neighborhood is used

as the ground height. All the points that are above Th are

‘non-ground’ points and the rest are ‘ground’ points. From

now on, LiDAR data refers in this paper contains only the

‘non-ground’ points.

3.2. Coplanar and non-coplanar points

The eigenvalues of the covariance matrix is used to evaluate

a point as coplanar or non-coplanar with respect to its neigh-

boring points. At first, the LiDAR points are used to create a

Delaunay triangulation. For each LiDAR point, the neighbor-

hood triangles of it are determined. Each LiDAR point and its

neighborhood triangles are considered to coplanarity analysis.

If l is a LiDAR point and dnbr(l) defines the neighborhood

triangles of l (the triangles which contain l as one of its vertex)

then these points are used for coplanarity analysis. Theoret-

ically the eigenvalues from these points must be zero if l is

a planar point regarding its neighborhood. But due to inher-

ent noise associated with the LiDAR data, it is unlikely that,

the eigenvalues will be zero, even for planar neighborhood.

So normalized eigenvalue is used instead of using individ-

ual eigenvalue. If the normalized eigenvalue is no more than



(a) A test area

(b) Planar and non-planar points

Fig. 2. Coplanar and non-coplanar points for figure (a).

0.005 [6] the LiDAR point is considered as coplanar with

respect to its neighborhood. Figure 2(b) shows the coplanar

and non-coplanar points for a data set. The points which are

marked by yellow colour are coplanar points and the remain-

ing magenta coloured points are non-coplanar. As can be seen

the majority of points on trees are non-coplanar and those on

buildings are coplanar.

3.3. Line extraction

This step starts with maximum LiDAR point height. Accu-

mulate all of the points at this particular height with a toler-

ance height threshold. This can be represented as M = {p ∈
P |H − τ <= ph <= H + τ}, here P represents the Li-

DAR point cloud where ph represents the height of point p
and H represents the current height level. Points satisfying

the above equation are selected where τ indicates the toler-

ance height threshold, which is set here 10 cm. As LiDAR

data has inherent noise, it is unlikely to get all the points on a

particular height level. τ enables to accumulate more points

on a height level where the elevation error of LiDAR data is

more than 10cm. All of the points in M may not belong to

the same building or plane. The points in M are clustered

based on two dimensional (X,Y) distance. Each of the cluster

is used to extract lines. The extracted lines are used to select

the seed point for a plane as discussed below. This step runs

iteratively and in each iteration H is reduced by 0.5m until it

reaches the minimum LiDAR point height. This value (0.5m)

is set empirically. If the density of the LiDAR point cloud is

low (<= 1point/m2), then the chance of getting new seed

point for plane extraction will be eventually low. However,

for higher density the possibility increases. Setting the value

as 0.5m allows us not to loose any significant plane.

3.4. Initial plane extraction

The findings of all of the previous steps are used here to ex-

tract planar segments. We describe the procedure for a single

plane extraction. All of the planar segments can be found

by running the procedure iteratively. A coplanar point which

is the nearest to the middle of a straight line is selected as

the seed point. The seed point and its neighboring points are

used to generate the plane equation. Now the initial plane

is grown until new points can be added. To grow the initial

plane those points are chosen which are the neighborhood of

the current plane and not belong to it. Before updating the

plane equation, the new points are filtered based on plane fit-

ting error and height difference between the estimated height

and the LiDAR height of the points. Two different thresh-

old are chosen for this purpose. The values are set 15 cm

and 10 cm respectively [10]. All the new points which sat-

isfy one of the two threshold values are added to the initial

plane and the plane equation is updated. In this region grow-

ing fashion all of the planes are extracted. By using raw Li-

DAR data the possibility of growing non-building planes are

higher. To reduce the number of unwanted planes the aver-

age standard deviation of height of all of the LiDAR points is

used as a reference to determine a plane to be useful or un-

wanted. Comparatively, planes on trees have higher standard

deviation than planes on building. If the standard deviation of

height of a plane is higher than the average standard deviation

the plane is discarded. By using this criteria some of the un-

wanted planes (planes on trees) can be discarded before final

pruning. Figure 3 illustrates all of the initial planes after this

step for a test data set.

3.5. Tree and non-building plane removal

All of the planes extracted in the previous step are not re-

quired for building detection. Some of the planes are ex-

tracted on trees and other non-building structures. To remove

these unwanted planes a rule-based approach is applied to the

initial set of planar segments.



Fig. 3. Extracted planar segments after initial plane extraction

step.

3.5.1. Used point ratio

The ratio of used points and actual number of points in a plane

is considered as a parameter for tree removal. To calculate

the actual number of points, the planar segment is bounded

by a rectangular region. All the LiDAR points inside it is

considered as actual points. If the ratio is less than 60% the

plane is removed.

3.5.2. Area and width calculation

For each plane the surrounding area and width is calculated. If

a plane has negligible width (<= 1m) regardless of other pa-

rameters the plane is removed. In plane extraction step some

planes are extracted on fence around the building, which are

not considering as part of the building. The length of the plane

may be large but it has small width. This test removes those

planes. The area of a plane is also considered to remove un-

wanted planes. For an isolated plane (single plane building)

if it has small area (<= 3m2) the plane is not considered as a

building plane and for non-isolated planes the area parameter

is reduced to 1m2.

3.5.3. Height gap

The above two rules are able to remove most of the planes

on trees and non-building structures. To remove the remain-

ing ones, the height gap within a plane is evaluated. In this

measurement, the main concern is for finding any significant

height difference in a plane. All of the points in a plane are

clustered based on height. If there are several clusters in a

plane, the average height difference for all clusters are calcu-

lated. If there has a significant difference in height, the plane

is considered as tree plane. The motivation of this approach

is, for building plane, there are lass height gap as the LiDAR

points are not penetrating the roof. But for the trees, as the

LiDAR points are coming from various parts of the tree there

may have vertical height gap in the plane. This observation is

used here to remove planes on trees. Figure 4 shows a portion

of data set where the left image presents the initial situation

before applying tree removal process and the right one shows

the effect after tree removal.

(a) Before tree removal (b) After tree removal

Fig. 4. A portion of a data set showing the situation before

and after tree removal step.

(a) Building detection (b) Roof plane extraction

Fig. 5. Final detected buildings and extracted roof planes.

3.6. Building outline detection and plane extraction

This is the final step of the algorithm, where the outline of

the building is generated. The remaining planes are grouped

into several clusters based on distance. Each of the cluster

represents a building. By combining all the points in a cluster

the building outline is obtained. After that the boundary of

each building and each plane is calculated. The final detected

buildings and extracted roof planes are shown in figure 5 for a

test data set. Images are used only for visualization purpose.

The image data is not used in the algorithm.



Table 1. Evaluation results for building detection: Completeness (Cm), Correctness (Cr) and Quality (Q) for per-area, per-

object and object over 50m2 in percentage.

Scene Cma Cra Qa Cmo Cro Qo Cmo,50 Cro,50 Qo,50

Area 1 92.3% 88.4% 82.3% 86.5% 94.1% 82.1% 100.00% 100.00% 100.00%

Area 2 93.2% 90.1% 84.6% 85.7% 85.7% 75.0% 100.00% 91.7% 91.7%

Area 3 94.4% 85.0% 80.9% 80.4% 91.5% 74.8% 97.4% 97.5% 95.1&

Average 93.3% 87.9% 82.6% 84.2% 86.8% 77.3% 99.1% 96.4% 95.6%

Table 2. Evaluation results for roof plane extraction: Completeness (Cm), Correctness (Cr) and Quality (Q) for per-area,

per-roof plane and roof plane over 10m2 in percentage.

Scene Cma Cra Qa Cmr Crr Qr Cmr,10 Crr,10 Qr,10

Area 1 88.8% 93.0% 83.2% 74.3% 93.1% 70.4% 86.4% 94.3% 82.1%

Area 2 87.9% 93.8% 83.1% 72.5% 96.2% 70.4% 91.7% 97.9% 89.9%

Area 3 91.6% 89.6% 82.8% 83.0% 94.3% 79.0% 94.4% 95.0% 89.9&

Average 89.4% 92.1% 83.0% 76.6% 94.5% 73.2% 90.8% 95.7% 87.3%

4. EXPERIMENTAL RESULT ANALYSIS

Experiments run on ISPRS (International Society for Pho-

togrammetry and Remote Sensing) benchmark data set, pro-

vided by ISPRS WG III/4. The data set was captured over

Vaihingen in Germany which has three different test areas.

Area 1 is situated in the center of the city of Vaihingen. It

is characterized by dense development consisting of historic

buildings having rather complex shapes, but also has some

trees. The size of the area is 217m×161m with point density

3.5/m2. Area 2 is characterized by a few high-rising resi-

dential buildings that are surrounded by trees and has an area

of 231m × 203m with point density of 3.9/m2. Area 3 is a

purely residential area with small detached houses. It has area

of 235m × 168m with point density of 3.7/m2. Figure 6, 7

and 8 shows the building detection and roof planes extraction

results. Correctly classified buildings and planes are marked

with yellow colour (true positive), misclassified buildings and

planes are marked with red (false positive) and missing build-

ings and planes are marked by blue (false negative).

Table 1 shows the experimental results of building detec-

tion on these test areas. It shows completeness, correctness

and quality for per-area and per-object level. The first three

columns represent the completeness, correctness and quality

for pixel based evaluation. The pixel size is consider 0.5m.

The outcome shows a consistent result with an average of

93% correctness. The next three columns show the result of

object-based evaluation and the remaining shows evaluation

result for object-based for more than 50m2 area.

Roof plane extraction results are shown in Table 2. The

pixel-based (area-based) experiment is carried out with 0.1m
pixel size. The result shows that it misses some of the build-

ing points, some parts of buildings may have height lower

(a) Area 1 detection (b) Area 1 roof extraction

Fig. 6. Buildings detection and roof extraction of area 1.

than 1m from the ground height, so the average complete-

ness is about 89%. But it includes less trees, hence the av-

erage correctness is above 92%. As it misses some LiDAR

points on roof planes so per-roof completeness is reduced and

the average completeness is about 76%, but as the same na-

ture of pixel-based it includes few trees points, so the average

correctness is higher than 94%. For large planes (10m2) it ex-

hibits sound result with around 91.0% completeness and more

than 95% correctness.

4.1. Comparison result

The results are compared with a recent work of Awrangjeb

et al. [5] For building detection, the object-based complete-

ness is higher or equal for all test areas with greater average

completeness. Two from the three test areas have higher com-

pleteness in pixel-based. For roof plane extraction, the object-



(a) Area 2 detection (b) Area 2 roof extraction

Fig. 7. Buildings detection and roof extraction of area 2.

(a) Area 3 detection (b) Area 3 roof extraction

Fig. 8. Buildings detection and roof extraction of area 3.

based average completeness is approximately equal however

the average correctness increases from 89.7% to 94.5%. Con-

sistent results are found for large roof planes (> 10m2) where

the average correctness boost up by 4.3%.

5. CONCLUSION

In this paper, a complete method for building detection and

roof plane extraction using LiDAR point cloud is presented.

By using LiDAR data only, the complexity of the algorithm

is reduced and we get rid of using image. The experimental

results show that the algorithm works fine with different test

cases. The algorithm is also tested with non benchmark data

set and it shows consistent result. In most of the situation

the comparison results are in favor of the proposed method.

However, we need to make the algorithm more robust so it can

identify small height buildings and include less vegetation.
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