I. INTRODUCTION

An open quantum system undergoes a continuous interaction with its environment and typically becomes entangled with it. Although the state of total system—composed of physical system and its bath—may be pure, the state of system itself becomes mixed. In this paper we restrict to Markovian systems, by which we mean ones where the interaction with the environment is well modelled by quantum white noise. In this model, the system continuously leaks quantum information into the bath, which is why the system state loses purity. This loss of purity can, however, be compensated for by monitoring the environment, over time scales sufficiently short in comparison to the system evolution time, from which one gains information about the system. In this process, assuming perfect detection, the state of system continuously collapses into pure states conditioned on measurement results so that on average the unconditional mixed state is retrieved. This so-called quantum trajectory theory, describes both quantum jumps and quantum diffusion. These are examples of different types of “unravelling” of the master equation describing the evolution of ρ.

In this work we are concerned with Markovian open quantum systems that are finite-dimensional and have ergodic evolution. Any such system ultimately relaxes to its unique steady state ρ_{ss} which can be expressed as a statistical mixture of a finite ensemble of pure states. For any given ρ_{ss}, there are an infinite number of such decompositions, because the states therein may be nonorthogonal. However, there is a crucial distinction to be made here: only some of these ensembles will be physically realizable as the possible conditioned states of the system under some unravelling. It was shown how to construct physically realizable ensembles (PREs), but the question of how to physically realize them (i.e. what type of unravelling) was not addressed in general. For finite dimensional systems it was subsequently shown that achieving a particular finite PRE will, in general, require an adaptive monitoring.

The concept of an adaptive measurement is a form of quantum control that is related to, but distinct from, feedback control. Feedback control to change the dynamics of open quantum systems is an ongoing research topic of with applications in noise reduction, state purification, and state protection. Adaptive measurements, by contrast, do not change the dynamics but rather change the quality of the information obtained about the system, with application in metrology and measurement-based quantum computation. The central question to be examined in this study is whether the introduction of feedback control in a Markovian open quantum system can result in conditional dynamics that realize a PRE that is finite, and is nonclassical, in the sense of comprising nonorthogonal states. We address this by organising the structure of the paper as follows. First, Sec. II reviews how it is possible to track the dynamics of a finite dimensional open quantum system to produce a finite PRE. In particular, we reproduce the result that for a qubit there always exists a two-element PRE; that is, a bit is sufficient to keep track of a qubit’s dynamics. Next, in Sec. III we present the proposed idea of implementing feedback control on quantum transport in mesoscopic systems to purify the state of the system. These two are united in Sec. IV where we show that the conditional dynamics for this mesoscopic system, with feedback, can be used to realize some of the PREs that are theoretically possible, but not all of them. Sec. V discusses the experimental signature of our scheme: the cumulants for the counting statistics of quantum transport. Finally, the conclusions are presented.
II. TRACKING THE STATE OF A QUBIT USING A BIT

In this paper we consider Markovian open quantum systems, so that the state of system is determined, in a suitable interaction frame, by a Lindbladian master equation

\[
\dot{\rho} = -i[\hat{H},\rho] + \sum_{l} \mathcal{D}[\hat{c}_l] \rho \equiv \mathcal{L}\rho, \tag{1}
\]

where \(\mathcal{D}([\hat{O}]\bullet = \hat{O} \bullet \hat{O}^\dagger - 1/2(\hat{O}^\dagger \hat{O} \bullet) \) is the usual irreversible superoperator. In the above, \(\hat{H} \) is the system Hamiltonian, and the collection of Lindblad operators \(\{\hat{c}_l\} \) is determined by the coupling of the system to the bath. The Lindbladian superoperator \(\mathcal{L} \) can also be expressed as

\[
\mathcal{L} = \mathcal{S}[\hat{H}] + \sum_{l=1}^{L} \mathcal{J}[\hat{c}_l] \tag{2}
\]

where \(\mathcal{S}[\hat{H}]\bullet = (-i\hat{H}^\dagger)\bullet + \bullet (i\hat{H}^\dagger) \) and \(\mathcal{J}[\hat{c}]\bullet = \hat{c} \bullet \hat{c}^\dagger \) are superoperators which describe smooth evolution and dynamical jumps, respectively (see below). Here

\[
\hat{H}' = \hat{H} - \frac{i}{2} \sum_{l=1}^{L} \hat{c}_l^\dagger \hat{c}_l \tag{3}
\]

is a so-called non-Hermitian Hamiltonian. The superoperator \(\mathcal{L} \) in Eq. (2) is the generator of the completely positive map \(\mathcal{M} \), that is

\[
\rho(t) = \mathcal{M}(t)\rho(0) = e^{\mathcal{L}t}\rho(0). \tag{4}
\]

For the case of a single jump operator \(\hat{c} \) the map can be evaluated as \(\mathcal{M}(t) = \sum_{n=0}^{\infty} \mathcal{M}^{(n)}(t) \) where

\[
\mathcal{M}^{(n)}(t) = \int_{0}^{t} dt_n \int_{0}^{t_n} dt_{n-1} \cdots \int_{0}^{t_2} dt_1 \mathcal{Q}(t-t_n, t-t_{n-1}) \mathcal{J} \times \mathcal{Q}(t_t - t_{n-1}) \mathcal{J} \cdots \mathcal{Q}(t_2 - t_1) \mathcal{Q}(t_1), \tag{5}
\]

where \(\mathcal{Q}(t) = e^{t\mathcal{S}[\hat{H}]} \) is the propagator of \(\mathcal{S} \). This mapping indicates that, there exists, in principle, a way to monitor the bath such that the conditional state of the system undergoes periods of smooth evolution, represented by \(\mathcal{S} \), which is interrupted by instantaneous jumps, described by \(\mathcal{J} \equiv \mathcal{J}[\hat{c}] \).

Note that this separation into smooth non-unitary evolution and jumps is not unique. Rather, the master equation Eq. (2) is invariant under the transformation

\[
\hat{c}_l \rightarrow \hat{c}_m = \sum_{l=1}^{L} \tilde{U}_{ml} \hat{c}_l + \beta_m, \tag{6}
\]

\[
\hat{H} \rightarrow \hat{H}' = \frac{i}{2} \sum_{m=1}^{M} (\beta_m^* \hat{c}_m - \beta_m \hat{c}_m^\dagger), \tag{7}
\]

where \(\beta_m \) is a c-number and \(\tilde{U}_{ml} \in \mathbb{C}^{M \times L} \) is an arbitrary semi-unitary matrix. In the context of quantum optics, where the bath is bosonic, this mathematical transformation has a physical meaning. It corresponds to coherent mixing of the system outputs prior to detection (via \(\overline{U} \)) and adding a weak local oscillator (WLO) of amplitude \(\beta_l \) to the l-th output field channel prior to detection. Although they give the same master equation, different choices of the parameters \(\{\beta_l\}, \{M_k\} \) give rise to different types of conditional evolution, different unravellings according to Eqs. (6) and (7). In principle, a sufficiently skilled experimenter could build an apparatus to monitor the bath in a way corresponding to any of the unravellings above. In practice, some unravellings may be possible with present experimental techniques and others not at all possible. This will have important implications for which physically realizable ensembles are practically realizable.

We now impose the further condition of ergodicity. This ensures that in the long-time limit the system converges to a unique steady state satisfying \(\mathcal{L}\rho_{ss} = 0 \). If \(\rho_{ss} \) is of finite rank which is always the case for a finite-dimensional system, the stationary state can be expressed in terms of statistical mixture of pure states of a finite set \(\{(p_k, |\psi_k\rangle)\}_{k=1}^{N} \) with \(p_k \) being the probability of occupying \(k \)-th state. Since these states need not be orthogonal in general, there is no upper bound on the number of ways one could do such decompositions. However, it is important to distinguish carefully between ensembles that are physically realizable (PREs) and those that are not. The concept which rules out physically unrealizable ensembles is referred to as the preferred ensemble fact. The PREs are those that result from some unravelling of the master equation. It turns out that, in general, adaptive monitoring of the environment is necessary to realize a given PRE. That is, it will be necessary to control the above parameters \(\{\beta_m\}, \{\tilde{U}_{ml}\} \) based on prior results (jumps).

One of the essential outcomes of Ref.10, which the present paper leans on, is that, for a two-dimensional ergodic quantum system, there is always a two-state PRE, which we will call a TSE for brevity. That is, one can keep track of a qubit using a single-bit memory. We note that the explicit derivation presented in Ref.10 for a qubit does not require a restriction to cyclic jumps, although that is not mentioned. That is, the system may undergo a ‘jump’ (in the sense of the application of one of the superoperators \(\mathcal{J}[\hat{c}] \)) which leaves it in the same state \(|\psi_k\rangle \).

The TSE solution(s) in Ref.10 may be expressed most easily by rewriting Eq. (2) in the Bloch representation. It becomes

\[
\mathbf{\dot{r}} = A\mathbf{r} + \mathbf{b}, \tag{8}
\]

where \(A \) is a \(3 \times 3 \) matrix, \(\mathbf{b} \) is a vector with three entries, and \(\mathbf{r} = \langle (\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z)^T \rangle \) is a Bloch vector whose steady state satisfies \(A\sigma_{ss} = -\mathbf{b} \). This steady state is unique if and only if the real part of all eigenvalues of \(A \) are negative. In this notation the TSE is given by \(\{p_k, r_{s,k}\}_{k=\pm} \).
\[\vec{r}_k = \vec{r}_{ss} - k\alpha_k \vec{e}_v,\]
\[p_k = \frac{1}{2} \left[1 - \frac{k\vec{r}_{ss} \cdot \vec{e}_v}{\sqrt{1 - \|\vec{r}_{ss}\|^2 + (\vec{r}_{ss} \cdot \vec{e}_v)^2}} \right].\]

Here, \(\vec{e}_v\) is a unit-norm real eigenvector of \(A\), and \(\alpha_k = k\vec{r}_{ss} \cdot \vec{e}_v + \sqrt{1 - \|\vec{r}_{ss}\|^2 + (\vec{r}_{ss} \cdot \vec{e}_v)^2}\). Note that because the Bloch vectors \(\vec{r}_+\) and \(\vec{r}_-\) have to be real, only those eigenvectors of \(A\) that are real yield to the solution. Any real matrix \(A\) is guaranteed to have at least one real eigenvector, and may have more than one.

III. STATE STABILIZATION OF A QUBIT USING FEEDBACK CONTROL

In the preceding section we summarized how, conditioned on information obtained by monitoring the environment, the state of the system differs from the solution of the master equation (3). Nevertheless, on average, the evolution is unchanged from that master equation solution. However, there is a way to make the information obtained from monitoring affect the average solution. To achieve this, we introduce feedback control. A typical objective of quantum feedback is to stabilize the system into a particular pure state (or close to pure state). Recently, a novel way to achieve this in a double quantum dot (DQD) system was proposed. A DQD is an example of nonequilibrium quantum transport, with two coupled quantum dots connected to leads. For the analysis in Ref., Fig. 1, two assumptions were made to simplify the problem. Firstly, a strong Coulomb blockade regime guarantees that at any instant of time there would be at most one electron on the dot. Secondly, in the high-bias limit (\(\mu_L \to \infty, \mu_R \to -\infty\)), the resonant energies \(\epsilon_L\) and \(\epsilon_R\) lie within the window between the left and the right lead chemical potential so that the quantum transport becomes unidirectional, i.e., electrons can only enter the DQD from left and leave it to right. The former would imply that the state space of the physical system is spanned by three states. The first is the so-called null state \(|0\rangle\equiv |N_L, N_R\rangle\) where \(N_d\) is the base number of electrons in dot \(d \in \{R, L\}\). The other two are called single-electron states: \(|L\rangle \equiv |N_L + 1, N_R\rangle\), and \(|R\rangle \equiv |N_L, N_R + 1\rangle\), with an additional transport electron in the corresponding dot. Under these conditions the system undergoes the transitions \(|0\rangle \to |L\rangle\) and \(|R\rangle \to |0\rangle\) with tunneling rates \(\gamma_L\) and \(\gamma_R\), respectively.

We can describe the evolution of the system using a Lindblad-form ME as expressed in Eq. (3); see Ref. The system Hamiltonian is

\[\dot{H} = \frac{1}{2} \Delta \hat{\sigma}_z + T_c \hat{\sigma}_x,\]

where \(\Delta \equiv \epsilon_L - \epsilon_R\) is detuning, \(T_c\) is the coupling constant between the two quantum dots, \(\hat{\sigma}_z = |L\rangle\langle L| - |R\rangle\langle R|\), and \(\hat{\sigma}_x = |L\rangle\langle R| + |R\rangle\langle L|\). In this work for the sake of simplicity we make the assumption that \(\Delta = 0\). This means that an electron can be transferred between the two dots at no cost. The two Lindblad operators are

\[
\hat{c}_1 = \sqrt{\gamma_L} |L\rangle\langle 0|, \quad \hat{c}_2 = \sqrt{\gamma_R} |0\rangle\langle R|.
\]

Substituting Eqs. (3) and (3) back into the non-Hermitian Hamiltonian Eq. (3) it is straightforward to show that in the eigenbasis it takes the following form

\[\dot{H} = -i\frac{\gamma_L}{2} |0\rangle\langle 0| + \sum_{\ell = \pm} \varepsilon_{\ell} |\phi_{\ell}\rangle\langle \phi_{\ell}|,\]

where

\[|\phi_{\ell}\rangle = \frac{(i\gamma_R + \ell\kappa) |L\rangle + 4T_c |R\rangle}{\sqrt{16T^2 + (i\gamma_R + \ell\kappa)^2}},\]

\[\varepsilon_{\ell} = -\frac{1}{4} (i\gamma_R + \ell\kappa), \quad \kappa = \sqrt{16T^2 - \gamma^2}.\]

Note that the right eigenstates \(|\phi_{\ell}\rangle\) and the left eigenstates \(|\tilde{\phi}_{\ell}\rangle\) of \(H'\) must be distinguished from each other since they are not adjoint of each other \(|\tilde{\phi}_{\ell}\rangle \neq |\phi_{\ell}\rangle\) Also, the null state has been separated from the other states of the non-Hermitian Hamiltonian due to the orthogonality condition where \(|\langle 0|\phi_{\ell}\rangle| = 0\). Note that the other states are not orthogonal \(|\langle \phi_{\ell}|\phi_{-\ell}\rangle| \neq 0\).

In Ref. the authors proposed modifying the above dynamics by introducing feedback control, as we know sketch. It is assumed that there is a measurement device, such as a quantum point contact (QPC), in
the vicinity of the junction of the left dot to its lead, which can detect single-electron tunneling through this junction. This allows access to the full counting statistics (FCS) of single-electron quantum jumps. It is also assumed that the experimenter has the ability to feedback the signal obtained from the integrated detector very fast (effectively instantaneously) to change the state of the system. Immediately after a tunneling event, the state will be $|L\rangle$, as the following equation shows:

$$\mathcal{J}|\hat{c}_1|\langle 0|\langle 0| = \gamma_L|L\rangle\langle L|.$$ \hspace{1cm} (16)

The aim of the control is to rotate (in Hilbert space) this into the desired state vector of \hat{H}', that is, $|\phi_{\ell}\rangle$. The control operations can be experimentally implemented e.g., with the gate voltages V_G, Fig. 1. That is, it is assumed that the following unitary operation can be performed effectively instantaneously:

$$\hat{U}_\ell|L\rangle = |\phi_{\ell}\rangle.$$ \hspace{1cm} (17)

An explicit expression for the unitary operator is given in Appendix A. Note that the state $\rho_{\ell} = |\phi_{\ell}\rangle\langle \phi_{\ell}|$ is the eigenoperator of the smooth evolution superoperator:

$$S[\hat{H}']\rho_{\ell} = 2\Im(\varepsilon_{\ell})\rho_{\ell}.$$ \hspace{1cm} (18)

The system remains in this state as long as the no-jump dynamics continues. However, it will eventually jump back to the null state due to the electron tunneling to the right reservior:

$$\mathcal{J}|\hat{c}_2|\rho_{\ell} = \gamma_R'|\langle 0|\langle 0|,$$ \hspace{1cm} (19)

where $\gamma_R' = -2\Im(\varepsilon_{\ell})$. In Fig. 2 we summarize this process in the form of a schematic diagram showing the evolution of the conditional state of the system under the control operation.

The evolution of the system can be described in the Hilbert space $\mathcal{H}^3 \equiv \text{span}(\langle 0|, |\phi_-,\rangle, |\phi_+\rangle)$. This indicates that for a given fixed ℓ (+ or −) the system is equivalent to a single resonant level with tunneling rates γ_L and γ_R' as shown in Eqs. (15) and (17). The stationary state of the system is

$$\rho_{ss} = \frac{1}{2\gamma_L + \gamma_R'} \left(\gamma_R'|\langle 0|\langle 0| + 2\gamma_L \rho_{\ell} \right).$$ \hspace{1cm} (20)

From this, and Eq. (15), it is apparent that under the condition $\gamma_L \gg \gamma_R$, T_e, the steady-state probability of finding the system in the null state becomes negligible. From the viewpoint of the dynamics, in Fig. 2 the time the system spends in the state $|0\rangle\langle 0|$ in between ρ_{ℓ} and $|L\rangle\langle L|$ is negligible compared to the time it stays as ρ_{ℓ}. (So is, as we have already assumed, the time it takes to perform the operation \hat{U}_ℓ.) This implies that there is always one transport electron in the system and its state is simply given by $\rho_{\ell} = |\phi_{\ell}\rangle\langle \phi_{\ell}|$, depending on which \hat{U}_ℓ was last chosen. This $|\phi_{\ell}\rangle$ is a pure superposition of the single-electron states defined above.

![FIG. 2. A schematic representation of the state evolution of the DQD.](image_url)
to apply the theory presented in Sec. 11 one would need a master equation with a non-trivial (rank > 1) mixture as its steady state. Hence, our intention is not to purify the system into merely one of these states. However, we must not alternate between the two as this would imply non-Markovianity of the system: it requires the memory of the last chosen state for processing the next step. The solution, as shown in Fig. 2, is that prior to every control operation we toss a coin (figuratively), to determine which operation \(\hat{U}_\pm \) is applied to the system. This means that the system is memoryless and should have a description in terms of a Markovian master equation. If \(0 \leq \varphi_\ell \leq 1 \) is the probability of choosing \(\hat{U}_\ell \), with \(\varphi_- + \varphi_+ = 1 \), the master equation is

\[
\dot{\rho} = -i[H, \rho] + \sum_{\ell = \pm} \varphi_\ell \mathcal{D}[\hat{c}_\ell] \rho,
\]

and has the solution

\[
\rho_{ss} = \sum_{\ell = \pm} \varphi_\ell \rho_\ell.
\]

Note that the probabilities \(p_\ell \) are not, in general, the same as the \(\varphi_\ell \) in Eq. (26). We will determine \(p_\ell \) when we consider two different regimes of tunneling below.

From Eq. (26) one can work out and find the equations of motion in the Bloch representation as in Eq. (27). Details of matrices \(A \) and \(b \) are given in Appendix A. Therefore, after calculating the real eigenvectors of \(A \) and obtaining the steady state \(\vec{r}_{ss} = 0 \) we can plug them in Eqs. (29) and (30) to construct corresponding TSEs. Since the resulting analytical expressions are too intricate to be usefully analyzed we present numerical outcomes. Depending on the ratio of the tunneling rate out of the DQD and the coupling constant, there are two different regimes which we call coherent and incoherent in the following.

A. Coherent tunneling (\(\gamma_R < 4T_c \))

For the coherent tunneling regime the steady state is oriented in the equatorial plane. This indicates that the system relaxes to a coherent superposition of single-electron states \(|L\rangle \) and \(|R\rangle \) where the transport electron occupies both quantum dots with some probabilities. The loci of the two states of the TSE also lie in the same plane. For the trivial case where \(\varphi_- = 0 \) and \(\varphi_+ = 1 \) or vice versa, the steady state reduces to \(\vec{r}_+ \) and \(\vec{r}_- \), respectively, the two eigenvectors of \(H' \) which can be represented as Bloch vectors by

\[
\vec{r}_\ell = \left(-\ell, \frac{\kappa}{4T_c}, \frac{\gamma_R}{4T_c}, 0 \right), \quad \gamma_R < 4T_c.
\]

The top row of Fig. 3 illustrates TSEs for different purification probabilities for this regime. Since matrix \(A \) has only one real eigenvector, therefore there is one TSE. A proportion \(p_\ell \) of time that the system spends in a particular state \(\rho_\ell \) is shown by a little sphere at the end of each arrow. The red arrow shows the locus of the steady state that varies with values of \(\varphi_\ell \). It is noticeable that no matter what values these probabilities are assigned to, as long as \(\sum_\ell \varphi_\ell = 1 \), they are equal to the corresponding \(p_\ell \). In order to understand why this is the case we consider the lifetime of states in the right quantum dot given by

\[
\tau_\ell = (\gamma_R \varrho_\ell^{RR})^{-1},
\]

where

\[
\varrho_\ell^{RR} = \langle R|\rho|R\rangle_\ell = \frac{1 - (\hat{\sigma}_z)_\ell}{2}.
\]

Since the states in Eq. (27) are on the equator we have \(\langle \hat{\sigma}_z \rangle_\ell = 0 \), and this further would result in an equal lifetime \(\tau_\ell = 2/\gamma_R \) for being in the right quantum dot for either of these two states. Hence, the choice of probability \(\varphi_\ell \) for creating state \(\rho_\ell \) simply determines the probability \(p_\ell \) of the system being in the state:

\[
p_\ell = \varphi_\ell.
\]

B. Incoherent tunneling (\(\gamma_R > 4T_c \))

For the transport electron tunneling incoherently more elaborate analysis is required as there are some subtleties. First of all \(\kappa = i\kappa \) replaces \(\kappa \) in Eq. (15) from which one can easily show that the Bloch vectors corresponding to Eq. (14) become

\[
\vec{r}_\ell = \left(0, -\frac{4T_c}{\gamma_R}, -\ell \frac{\kappa}{\gamma_R} \right), \quad \gamma_R > 4T_c.
\]

In contrast to the coherent tunneling regime, it turns out that, in addition to the TSE defined by Eq. (27), there are an infinite number of other TSEs. As we pointed out at the end of Sec. 11 for any real eigenvector of the matrix \(A \) in Eq. (17) there is one TSE. In the regime being considered here, there are at least three such eigenvectors so that each contributes towards formulating a TSE. In addition to the real eigenvector giving the states in Eq. (27), there are two other, degenerate, real eigenvectors of \(A \). A real linear combination of these other two eigenvectors is also a real eigenvector of \(A \). Hence, one can assign a TSE to any such linear combination. In Fig. 3, two such TSEs are shown in light brown (in the azimuthal plane) and cyan (light arrows in the polar plane), respectively. Since there is a one-parameter continuum of such linear combinations, here is a one-parameter family of TSEs. This forms the green circle on all the balls in the bottom row of Fig. 3. Note that these ensembles are not necessarily diametrically opposite points on the circle, nor are they equally weighted in general. Independent of which TSE is being considered, the weighted average of the two unit Bloch vectors is the same steady state Bloch vector.
For the special case of $\varphi_\ell = \varphi_{-\ell} = 0.5$, all three eigenvectors are degenerate. In this case, the stabilized states of Eq. (??) lie in the green circle as shown in Fig. 3e. We note that the stabilized states of Eq. (??), shown in blue arrows, are strictly independent of φ, while it is evident that the locus of pure states on the ball from which the green circle is made up of, does depend on φ.

Another important point is that no longer are $\{p_\ell\}$ equal to $\{\varphi_\ell\}$. This is because the states in Eq. (??) would have different lifetimes in the right quantum dot $\tau_\ell = 2/[\gamma_R + \ell \kappa]$. That is, in contrast to the coherent tunneling regime the probability p_ℓ is dependent upon τ_ℓ and can be expressed as

$$p_\ell = \frac{\varphi_\ell \tau_\ell}{\sum_{j=\pm} \varphi_j \tau_j},$$

where the probability for preparing the ℓ-th state p_ℓ is weighted by the relevant lifetime of the states in the right quantum dot. This is clearly evident from Figs. 3e–3f. Note that should the lifetimes were equal $\tau_1 = \tau_2$, this relation would reduce to Eq. (??) as expected.

At the critical parameter value, $\gamma_R = 4T_c$, the steady state is a pure state that the system ultimately relaxes into $\vec{r}_{ss} = \vec{r}_{\pm} = (0, -1, 0)$. It can be imagined that as one approaches this setting from either side, for a fixed
chosen values of ψ_V’s, the Bloch vectors shown in blue in Fig. 3 start to get closer to each other and ultimately they become the same up to the point that the green circle shrinks to a point.

Physical meaning of the other TSEs

We have already seen that there is a measurement and feedback control scheme to realize the ME given in Eq. (26) such that the conditional states of the system are described by Eq. (27). This raises the question: if this protocol does not realize the other infinite number of TSEs, then in what sense are they physically realizable? It may be that the hypothetical ensembles are in principle physically realizable but through the instantiation of the aforementioned ME, Eq. (26), they are not practically realizable. If one were to induce the evolution described by this ME in a completely different way, then the other TSEs might be realized in practice. In what follows we present our speculation on the possibility of realizing these ensembles in the system as described.

It is necessary to consider a grand system composed of two subsystems: the DQD and the whole measurement and feedback control process (MFCP) with state vectors $|\phi_\ell\rangle$ and $|\xi\rangle$, respectively, in the spirit of autonomous (passive) feedback control. One would have to imagine that the state of the grand system is in a pure entangled form as the coherent superposition of these state vectors

$$|\Psi\rangle \propto \sum_r |\phi_\ell[r]\rangle|\xi_r\rangle. \quad (34)$$

Here the measurement record r determines the state of the DQD. This implies that the entire MFCP itself is being treated as a quantum system which could be monitored. However, an important point is that if this monitoring reveals the record r used in the feedback loop, then the system would simply collapse into one of the two states $|\phi_\pm\rangle$ given in Eq. (27). It is conceivable that it would be possible to obtain the other ensembles in Sec. IVB by employing a quantum eraser method for the whole MFCP. However, when it comes to consider the fermionic systems, the superselection rules also should be taken into account as additional constraints. For instance, the transformation in Eq. (6) does not hold for fermionic systems; fermionic fields cannot have a non-zero mean value, unlike bosonic fields. Thus, we tend towards a negative opinion on the possibility of realizing these other ensembles in Sec. IVB in the controlled quantum dot system.

V. COUNTING STATISTICS OF QUANTUM TRANSPORT

Just as the mean current through the DQD gives information about the dynamics of the system, its fluctuation, variance and maybe higher order cumulants provide yet further information. One can determine these from the probability distribution, $P(n,t) = \text{Tr}[\rho^{(n)}(t)]$. Here $P(n,t)$ is the probability that n electrons tunnel into the right lead in time t (assuming that transport is unidirectional from the source to the drain), and $\rho^{(n)}(t)$ represents the system state matrix at time t with n quantum jumps from which electrons have been transferred to the drain. This process of electron counting may be realized experimentally e.g. by using a QPC as a detection apparatus. It is easy to show that using the microscopic field-detector theory for a state with n excitations the n-resolved form of the ME given in Eq. (26), where $\rho(t) = \sum_{n=0}^{\infty} \rho^{(n)}(t)$, for the DQD with feedback control is the following:

$$\dot{\rho}^{(n)} = \mathcal{S} \rho^{(n)} + \sum_{\ell = \pm} \varphi_\ell J[\hat{c}_\ell] \rho^{(n-1)} \rho^{(n-1)}. \quad (35)$$

Since this equation can be solved in n-space only for a finite n which subsequently requires diagonalization of a tridiagonal matrix, it is thus more convenient to use the Fourier transform $\dot{\rho}(\chi) = \sum_n e^{in\chi} \rho^{(n)}$ with the counting field χ as the conjugate variable of n. Then Eq. (27) in χ-space becomes

$$\dot{\rho}(\chi) = (\mathcal{S} + \sum_{\ell = \pm} \varphi_\ell J[\hat{c}_\ell] e^{i\chi}) \rho(\chi) \equiv \mathcal{L}(\chi) \rho(\chi). \quad (36)$$

The cumulant generating function $\mathcal{F}(\chi,t)$ is defined as

$$e^{\mathcal{F}(\chi,t)} = \sum_{N=0}^{\infty} P(n,t) e^{in\chi}, \quad (37)$$

where by the definitions of the Fourier transform and the probability distribution mentioned above it is transformed into

$$\mathcal{F}(\chi,t) = \ln(\text{Tr}[e^{\mathcal{L}(\chi)(t-t_0)} \rho(t_0)]). \quad (38)$$

Since in the long time limit $t \rightarrow \infty$ the system is essentially in the steady state, it is thus possible to use the eigendecomposition of $\mathcal{L}(\chi)$ to further simplify Eq. (37) to

$$\mathcal{F}(\chi,t) = \lambda_0(\chi)t + \text{constant}, \quad (39)$$

where λ_0 is the largest eigenvalue of the spectrum of $\mathcal{L}(\chi)$. Therefore, the nth-order zero frequency current correlation is given by

$$\langle S^{(n)} \rangle = \frac{d}{dt} \frac{\partial^n}{\partial \lambda(\chi)^n} \mathcal{F}(\chi,t) |_{\chi=0, t \rightarrow \infty} \rho(\chi) |_{\chi=0}.$$
the higher order current correlation functions to this to obtain the zero-frequency Fano factor

$$F^{(n)} = \frac{\langle S^{(n)} \rangle}{\langle S^{(1)} \rangle}. \quad (41)$$

In Fig. 4 we plot the Fano factor up to order $n = 4$ as a function of γ_R/T_c to study both coherent and incoherent tunneling regimes. For each regime a different set of control parameters (θ, θ_c) are chosen, see Appendix A for details. It is evident that assigning different values to the probabilities φ_{\pm} in Eq. (??) does not affect the statistics of the current when the system is in the coherent tunneling case, $\gamma_R \leq 4T_c$. In fact, the Fano factor remains unchanged at $F^{(n)} = 1$ revealing the Poissonian behavior of the system (left panel of Fig. 4). However, as γ_R exceeds $4T_c$, that is in incoherent tunneling regime, Fano factors start to deviate from Poisson statistics (right panel of Fig. 4). Again, this behavior can be rooted in the fact that the lifetimes of the two states are different, Eq. (??). Note that for the trivial case where the feedback control is not stochastic, that is, $\varphi_+ = 1$ and $\varphi_- = 0$, or vice versa, all Fano factors become unity. As expected, this is in complete agreement with the results of Ref.12 where the system is merely stabilized into one of the two feasible states.

VI. CONCLUSION

In summary, we have shown that using a particular stochastic feedback control scheme for a double quantum dot, it is possible to engineer Markovian open quantum system dynamics such that the conditioned state of the single-electron qubit is (essentially) always one of two non-orthogonal pure states. Here ‘conditioned’ means conditioned on the measurement signal derived from the tunneling into or out of the system and used in the control loop. Previous schemes to realize conditionally such a dual-state finite ensemble of pure states relied upon an adaptive measurement. Adaptive measurement is a distinct type of control from feedback control in that the unconditioned state of the system is unaffected by the control in the former case, but is affected in the latter. In the context of quantum optics, a suitable adaptive measurement can be performed by controlling the amplitude of a weak local oscillator to the system output field.

Because of the complexity of performing adaptive measurements, and the inefficiency of photon collection and detection, no such adaptive measurement experiment to realise a non-orthogonal pure-state ensemble has been realized. In contrast, for the solid-state feedback scheme we have considered here, one condition on the detections that are natural for the system. Another factor that may motivate one to implement this scheme is the access to a sensitive electrometer such as a QPC which can be highly efficient in detecting quantum jumps. Thus the system we have studied is a promising can-
candidate for practically approximating an interesting (nonorthogonal) highly-pure TSE.

The double dot system has two regimes, depending on the strength of the inter-dot tunneling to the rate of tunneling out of the system. In the incoherent (weak) tunneling regime system has dynamics distinct compared to the case of coherent (strong) tunneling regime. This transition corresponds to an exceptional point\(^{11}\) of the non-Hermitian Hamiltonian \(H\), eq. (13), and thus bears some analogy with simple models of quantum bifurcations or phase transitions. Physically, this is a manifestation of the spectral line effect discovered by Dicke in 1954\(^{12}\). The combination of feedback with a stochastic choice of the control operation provides a tool to probe this transition via current fluctuations: First, the full counting statistics analysis demonstrates that as long as the control operation chooses randomly between the states of the TSE, the system statistics shows non-Poissonian behavior. Secondly, due to the fact the two nonorthogonal states have different lifetimes, the occupation probabilities \(p_\ell\) are not set purely by the probabilities \(\wp_\ell\) in the stochastic control. And finally, infinitely many two-element non-orthogonal pure-state ensembles exist that the system could, in principle, be purified to. However, the feedback control scheme just realizes one. That is, even though all of them are in principle physically realizable only one is practically realizable by the feedback loop.

There remains some future work to be done for addressing some of the practical issues that would happen in a real experiment. These may include efficiency, time-delays in the feedback loop, how fast the control operation could be performed, how to implement the control unitary and what imperfections could arise in this. From the fundamental side, there is an open question to be explored which addresses the last point mentioned above: is there any physical way to realize the ensembles that are theoretically possible but which do not arise from the feedback loop we construct? This issue might be connected to an autonomous formulation of the stochastic feedback loop, including a better understanding of the thermodynamics of this form of control\(^{13}\).

ACKNOWLEDGEMENT

This research was supported by the ARC Centre of Excellence Grant No. CE110001027 and DFG SFB 910.

Appendix A: Supplemental Material

1. Adiabatic elimination of the null state

In the limit in which the damping rate of the null state is much more quicker than the decay rate of the qubit system, the null state can be projected out by employing an adiabatic elimination technique\(^{14}\). In the following we concisely describe how this is done. The state of the qutrit system can be expressed as

\[
\rho = \varrho + \delta |\psi\rangle \langle \psi |
\] (A.1)

where \(\varrho\) is spanned by \(|L\rangle, |R\rangle\) in the qubit subspace and \(\delta = O(\gamma_R/\gamma_L)\). It is easy to show that the evolution of \(\delta\) is obtained according to

\[
\dot{\delta} = \langle \psi | \dot{\varrho} | \psi \rangle = -\gamma_L \delta + \gamma_R \langle \varrho | \psi \rangle | \psi \rangle,
\] (A.2)

where we have used Eq. (??). In the limit of \(\gamma_L \gg \gamma_R\) where the decay rate of the null state is much faster than the rate at which the qubit system damps, one can employ the adiabatic elimination which yields to

\[
\delta \approx \frac{\gamma_R}{\gamma_L} \langle \varrho | \psi \rangle | \psi \rangle.
\] (A.3)

The dynamics of the qubit state is also obtained by

\[
\dot{\varrho} = \Pi_{\text{qb}} \dot{\varrho} \Pi_{\text{qb}}
\] (A.4)

with \(\Pi_{\text{qb}} = |L\rangle \langle L| + |R\rangle \langle R|\) being the projector to the qubit subspace. Thus, using Eqs. (??) and (??) it is straightforward to show that Eq. (??) is transformed into

\[
\dot{\varrho} = -i[H, \varrho] + \gamma_R \langle \psi | \varrho | \psi \rangle \langle \psi | \psi \rangle - \frac{\gamma_R}{2} (| L \rangle \langle L| + | R \rangle \langle R|)
\]

\[
= -i[H, \varrho] + \mathcal{D}(\dot{\varrho}) \varrho.
\] (A.5)

2. Bloch equations and control parameters

Given the ME in Eq. (26) matrices \(A\) and \(b\) of the equation of motion read

\[
A_{11} = -2\gamma_R \sum_{\ell = \pm} \wp_\ell \left(|u_{y,\ell}^+|^2 + |u_{z,\ell}^+|^2 \right),
\] (A.6)

\[
A_{12} = \gamma_R \sum_{\ell = \pm} \wp_\ell \left(u_{x,\ell}^+ u_{y,\ell}^* + u_{x,\ell}^* u_{y,\ell}^+ \right) - i \left(u_{x,\ell}^w u_{y,\ell}^* - u_{x,\ell}^* u_{y,\ell} w^\ell \right) - \Delta,
\] (A.7)

\[
A_{13} = \gamma_R \sum_{\ell = \pm} \wp_\ell \left(u_{x,\ell}^+ u_{z,\ell}^* + u_{x,\ell}^* u_{z,\ell}^+ \right) + i \left(u_{x,\ell}^w u_{z,\ell}^* - u_{x,\ell}^* u_{z,\ell} w^\ell \right),
\] (A.8)

\[
A_{21} = \gamma_R \sum_{\ell = \pm} \wp_\ell \left(u_{x,\ell}^w u_{y,\ell}^* + u_{x,\ell}^* u_{y,\ell}^w \right) + i \left(u_{y,\ell}^w u_{x,\ell}^* - u_{y,\ell}^w u_{x,\ell} \right) + \Delta,
\] (A.9)

\[
A_{22} = -2\gamma_R \sum_{\ell = \pm} \wp_\ell \left(|u_{y,\ell}^+|^2 + |u_{z,\ell}^+|^2 \right),
\] (A.10)

\[
A_{23} = \gamma_R \sum_{\ell = \pm} \wp_\ell \left(u_{x,\ell}^w u_{y,\ell}^+ + u_{x,\ell}^* u_{y,\ell}^w \right) - i \left(u_{x,\ell}^w u_{y,\ell}^* - u_{x,\ell}^* u_{y,\ell} w^\ell \right) - 2T_c,
\] (A.11)
The complex 4-vector \(\vec{y}^\ell = (u^\ell_x, u^\ell_y, u^\ell_z, w^\ell) \) has the following components

\[
\begin{align*}
u^\ell_x &= \frac{1}{2} \left[\cos (\theta^\ell_c/2) - i \sin (\theta^\ell_c/2) \cos (\theta^\ell) \right], \\
u^\ell_y &= i u^\ell_x, \\
u^\ell_z &= \frac{i}{2} \sin (\theta^\ell_c/2) \sin (\theta^\ell), \\
w^\ell &= -u^\ell_z.
\end{align*}
\]

See below for definition of \(\theta^\ell \) and \(\theta^\ell_c \) separately for each tunneling regime. The control operator then can be expressed as a function of these parameters

\[
\hat{U}_\ell = e^{-i\theta^\ell_c \hat{n}_\ell \cdot \hat{\sigma}/2},
\]

which rotates a state around the unit vector \(\vec{n}_\ell = (\sin \theta^\ell, 0, \cos \theta^\ell) \) by \(\theta^\ell_c \). Note that \(\theta^\ell_c \) in this paper is as twice as the control parameter \(\theta^\ell_c \) in Ref.\(^{13}\)

For the coherent tunneling regime where \(\gamma_R < 4T_c \), the control parameters are given by

\[
\begin{align*}
\theta^\ell &= \arccos \left(\frac{\ell \kappa}{\sqrt{32T_c^2 - \gamma_R^2}} \right), \\
\theta^\ell_c &= 2 \arccos \left(\frac{\gamma_R}{\sqrt{32T_c^2}} \right),
\end{align*}
\]

and for \(\gamma_R > 4T_c \) where an electron tunnels incoherently are given by

\[
\begin{align*}
\theta^\ell &= \pi/2, \\
\theta^\ell_c &= 2 \arctan \left(\frac{4T_c}{\gamma_R + \ell \kappa} \right).
\end{align*}
\]

For the case where \(\gamma_R = 4T_c \) they are equal to \(\theta^\ell = \theta^\ell_c = \pi/2 \).

R. H. Dicke, Phys. Rev. 89, 472 (1953)
