Age effects on postural reaction time and coordination during voluntary sway movements

Author
Tucker, Murray, Kavanagh, Justin, Morrison, Steven

Published
2006

Conference Title
Gold Coast Health and Medical Research Conference 2006

Copyright Statement
Copyright remains with the authors 2006 Griffith University. This is the author-manuscript version of the paper. It is posted here with permission of the copyright owner for your personal use only. No further distributions permitted. For information about this conference, please refer to the publisher's website or contact the author. First published in Proceedings of the Gold Coast Health and Medical Conference 2006.

Downloaded from
http://hdl.handle.net/10072/11966

Link to published version
Age effects on postural reaction time and coordination during voluntary sway movements

Tucker, M¹, Kavanagh, J¹, Morrison, S¹,²

¹ School of Physiotherapy and Exercise Science, Griffith University, Gold Coast, Australia
² Applied Cognitive Neuroscience Research Centre, Griffith University, Gold Coast, Australia

The aim of this study was to examine age-related changes in reaction time and the pattern of coordination between the centre of pressure (COP) and accelerations of the head and trunk during a challenging postural task. Ten young (24 ± 5 yr), and eight healthy older men (75 ± 2 yr) stood on a force plate with 3D accelerometers fastened to the head and trunk. The task goal was to voluntarily execute an orthogonal switch of standing body sway between AP and ML directions as rapidly as possible in response to an auditory cue. The results were that older subjects exhibited increased reaction time, meaning that older subjects were slower to initiate a rapid switch of postural sway between the AP and ML directions. Older individuals also exhibited stronger in-phase relations between the COP, trunk and head compared to the young during the postural responses. The stronger coupling between the COP, trunk and head in older subjects indicates that they adopted a more rigid posture than the young. This freezing of degrees of freedom in addition to the slower reaction time suggests that the elderly sacrificed speed of response to maintain an increased perception of postural stability. For the elderly, the loss of functional degrees of freedom through increasing body stiffness coupled with the slower response times would seem to be detrimental to maintaining optimal postural stability and may have implications for falls risk in this cohort.