MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: a critical review

Katherine Ting-Wei Lee¹,², MSc.
Juan-King Tan³, MBChB
Alfred King-yin Lam¹*, MBBS, MD, PhD, FRCPA.
Sook-Yee Gan⁴* PhD

¹Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
²School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
³School of Medicine, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
⁴School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia

*Co-corresponding authors: Alfred King-yin Lam & Sook-Yee Gan
a.lam@griffith.edu.au & sookyee_gan@imu.edu.my

Running head: microRNAs in nasopharyngeal carcinoma

Address for correspondence:

Professor Alfred Lam
Head of Pathology, Griffith Medical School, Gold Coast Campus, Gold Coast QLD 4222, Australia.
E-mail: a.lam@griffith.edu.au
Telephone +61 7 56780718

Sook-Yee Gan
Head of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
E-mail: sookyee_gan@imu.edu.my
Telephone +60327317518
Abstract

Despite significant medical advancement, nasopharyngeal carcinoma (NPC) remains one of the most difficult cancers to detect and treat where it continues to prevail especially among the Asian population. miRNAs could act as tumour suppressor gene or oncogene in NPC. They played important roles in the pathogenesis of NPC by regulating specific target genes which are involved in various cellular processes and pathways. In particular, studies on miRNAs related to the Epstein Barr virus (EBV)-encoded latent membrane protein one (LMP1) and EBV miRNA- BART miRNA confirmed the link between EBV and NPC. Both miRNA and its target genes could potentially be exploited for prognostic and therapeutic strategies. They are also important in predicting the sensitivity of NPC to radiotherapy and chemotherapy. The detection of stable circulating miRNAs in plasma of NPC patients has raised the potential of miRNAs as novel diagnostic and prognostic markers. To conclude, understanding the roles of miRNA in NPC will identify ways to improve the management of patients with NPC.

Key words

MicroRNA; Nasopharyngeal carcinoma; Cancer; Epstein-Barr virus; BART-miRNAs; Biomarkers; Therapeutic; Prognostic
1. **Introduction**

MicroRNAs play important roles in carcinogenesis and have significant impact on cancer research. Numerous microRNAs have been identified as potential cancer biomarkers and are involved as oncogenes, tumour suppressors as well as regulators of cancer stem cells. The discovery of microRNA targets and pathways has led to possible applications of microRNA-derived therapeutics in cancers including nasopharyngeal carcinoma (NPC). NPC is a neoplastic disorder that arises from the lining of the nasopharynx. It is commonly found in geographical areas such as Southern China and South-East Asia, with men: women prevalence ratio of 2-3 to 1. Despite improvements in the management of patients with NPC over the years, it still remained as one of the most difficult malignancies to treat with 80,000 newly diagnosed cases every year and 50,000 annual deaths globally [1]. Its highly invasive nature is continuously being considered as a significant health problem in parts of the world where it is endemic. Hence, there is an urgent need to identify new diagnostic and potential therapeutic targets to help in the management of NPC.

2. **Roles of miRNA in NPC**

Over the years, many reports indicated that a high proportion of miRNAs are localised within fragile sites or cancer-associated regions, indicating that miRNAs play a significant role in the pathogenesis of cancer formation [2-6]. Indeed, many human miRNAs have been reported to alter biological activities such as cell proliferation and progression, apoptosis as well as metastasis in NPC and other cancers [6-9]. Several biological pathways that are crucial in carcinogenesis showed significant down-regulation of miRNAs [2, 4, 9, 10]. Despite this, most of these deregulated miRNAs are yet to be fully studied or understood [11].
Expression levels of miRNAs which were altered in nasopharyngeal carcinoma could potentially be involved in the pathogenesis of NPC by affecting the cell cycles at different levels by targeting different genetic pathways (Table 1).

2.1 miRNAs as tumour suppressor genes

Tumour suppressors function to inhibit cell proliferation, colony formation, migration and invasion in vitro, as well as tumour growth and metastasis in vivo [12-16]. miR-124 directly targeted Homo sapiens forkhead box Q1 (Foxq1) and the level of miR-124 increased with clinical stage and T stage of patients with NPC [12]. In addition, miR-125a-5p increased the expression of p53 and repressed the expression of human epidermal growth factor receptor 2 (Her2) (Figure 1), two important factors in apoptosis [13]. Similarly, miR-31 induced apoptosis by targeting factor inhibiting HIF-1 (FIH1) and MCM2 genes (Figure 2). Inhibition of FIH1 was able to increase expression of p53 and p21. miR-31 also showed ability to attenuate in vitro anchorage-independent growth and in vivo tumourigenicity [16]. However, how miR-31 exercised its effect on them is still uncertain.

Similarly, miR-200a and miR-200b acted as tumour suppressors by inhibiting NPC cell growth, migration and invasion via down-regulation of zinc finger E-box binding homeobox 2 (ZEB2; also known as SIP1) and β-catenin (CTNNB1) and Notch1 respectively (Figure 3) [17, 18]. Two studies reported that miR-216b suppressed cell proliferation, invasion and metastasis by inhibiting the expression of protein kinase C alpha (PKCa) and Kirsten rat sarcoma viral oncogene homolog (KRAS) protein [19, 20]. On the other hand, overexpression of tumour suppressor miR-320a repressed NPC cell growth, migration, invasion and tumour growth in a xenograft mouse model by targeting BMI-1 [15] (Figure 3). In addition, ectopic expression of miR-451 was observed to suppress cell viability, colony formation, and cell migration and invasion by targeting macrophage migration inhibitory factor (MIF) gene (Figure 3) [21].
2.2 miRNAs as oncogenes

Oncogene miR-378 dramatically promoted cell proliferation, colony formation, migration and invasion \textit{in vitro}, as well as tumour growth \textit{in vivo}. When miR-378 was overexpressed, it was able to down-regulate the expression of transducer of HER2 (Figure 1) [22]. Likewise, tumour promoter miR-141 affected cell cycle, apoptosis, cell growth, migration and invasion in NPC cells by targeting bromodomain containing 3 (BRD3), ubiquitin associated protein 1 (UBAP1) and phosphatase and tensin homolog (PTEN) (Figure 1). BRD3 is involved in the regulation of the Rb/E2F pathway, a pathway which plays an important role in controlling cell growth leading to the induction of DNA replication and S phase in cell cycle [23] whilst PTEN is a crucial tumour suppressor in many tumour types [24, 25].

Studies revealed that miR-205 also repressed the expression of PTEN and up-regulated the expression of protein kinase B (AKT) (Figure 1) [26]. miR-144 shared a similar target as it suppressed the expression of PTEN to increase the expression of AKT and cyclin D1 (CCND1) proteins (Figure 2) to promote G1-phase transition and decreased cell apoptosis [27, 26]. While miR-144 increased expression of CCND1 miR-138 directly targeted CCND1 (Figure 2). It was observed that overexpression of miR-138 lead to inhibition of cell growth and cell cycle progression in NPC cells [14].

In several scenarios, miRNAs that were able to inhibit certain target genes were in turn inhibited by the same gene targeted, showing a complex negative feedback mechanism. For example, miR-18b down-regulated connective tissue growth factor (CCN2 or CTGF) which subsequently lead to enhanced proliferation \textit{in vitro} and \textit{in vivo} via PI3K-AKT-C-Jun and C-Myc pathway (Figure 1). However, overexpression of CTGF in turn repressed the expression of miR-18b via PI3K-AKT-C-Jun and C-Myc pathway [21].
2.3 Roles of miRNA in cell cycle progression

Because any mutation towards cell cycle could possibly lead to uncontrolled proliferation, studies have also focused on miRNAs effect on cell cycle analysis. For example, miR-663 targeted \(p21WAF1/CIP1 \) to promote cellular G1/S transition leading to increased proliferation of NPC cells [28]. Similarly, by down-regulating multiple G1/S related cyclin/CDK/Rb/E2F signalling pathway, miR-188 was able to inhibit cell proliferation, tumour colony formation and G1/S cell cycle transition [29].

Tumour suppressor miR-26a inhibited cell proliferation and colony formation by inducing G1-phase cell-cycle arrest through repression of \(c-myc \), \(cyclin D2 \), \(cyclin D3 \), \(cyclin E2 \), and cyclin-dependent kinase \(CDK4 \) and \(CDK6 \) expression whilst enhancing the expression of CDK inhibitors such as \(p14ARF \) and \(p21CIP1 \) [30] (Figure 2). In another report, it was shown that miR-372 played a tumour suppressing role by inhibiting cell proliferation through down-regulation of \(CDK2 \) and cyclin A1 (\(CCNA1 \)) as well as the up-regulation of cyclin-dependent kinase inhibitor 1A (\(CDKN1A \)) and inhibitor of CDK, cyclin A1 interacting protein 1 \(INCA1 \) [7]. miR-26a was also found to hamper migratory and invasive capacities of NPC cells \(\textit{in vitro} \) and hindered metastatic behaviour of NPC cells \(\textit{in vivo} \) possibly through the action of suppressing enhancer of zeste homolog 2 (\(EZH2 \)) [31, 32]. A similar role was observed in miR-98 and miR-101 which attenuated \(EZH2 \) expression [32] (Figure 4). This study showed that it is possible for multiple miRNAs to influence a single gene target.

Although knowledge on specific roles of miRNAs in NPC are still lacking, evidences strongly suggest that miRNAs can either act as oncogenes (miR-93, miR-149 and miR-214) and/or tumour suppressors (miR-100, miR-143, miR-148a and Let-7) by regulating several biological processes including cell proliferation, migration, invasion and metastasis [33-39] (Table 2). In addition, the varsity of miRNAs, their multiple targets and their effects on
various pathways show an extreme intricate web of connections in their ability to affect NPC progression (Figure 5).

3. miRNA implicated in EBV positive NPC

3.1 Latent membrane protein 1

Studies have shown that the aetiology of NPC is multifactorial, taking into account environmental factors, Epstein-Barr virus (EBV) infection, age and genetic background. However, it is unclear why certain individual with all the risk factors never develop NPC, whilst others who have no apparent risk factors do. Recently, an increasing amount of data has shown that EBV was able to regulate certain miRNAs which lead to NPC progression and invasion. EBV-encoded latent membrane protein one (LMP1) is one of the recognised oncogene that has been well studied and documented in the pathogenesis of NPC [8, 40]. LMP1 simulates CD40 receptor and activate multiple cell signalling pathways such as inhibitor of differentiation, nuclear factor-κB (NF-κB), activator protein-1 (AP-1), signal transducers and activators of transcription (STAT), and tumour necrosis factor receptor-associated factors (TRAFs). Up-regulation of miR-146a by LMP1 suggested the possible oncogenic implication of miR-146a in the pathogenesis of NPC [41]. Additionally, increased LMP1 copies in NPC cell lines was correlated with an increase in miR-155 which stimulated NPC cell proliferation, colony formation, cell migration and invasion [42]. However, no studies were done on how miR-155 was able to exhibit its oncogene effect in NPC. Similarly, miR-10b was overexpressed in LMP1 expressing cell lines [33] and it in-turn up-regulated E-cadherin and enhanced the expression of matrix metallopeptidase 9 (MMP-9) (Figure 4) signifying the importance of miRNA in cancer invasion and metastasis [43].

Whilst some miRNAs stimulated NPC progression, others functioned as tumour suppressors. miR-203 was able to attenuate EBV-induced S-phase entry and transformation
in vivo leading to suppression of NPC cell growth [44]. Also, mir-204 was able to inhibit EBV positive C666-1 cell invasion and metastasis partly through targeting cdc42 [45].

3.2 BART miRNA

Incredibly, EBV was able to produce its own miRNA called the BART miRNAs and BHRF1 miRNAs. They are encoded by two sets of transcripts, with one from the BART region and the other near the BHRF1 cluster. BART miRNAs and BHRF1 miRNAs were first identified as abundant viral transcripts generated from NPC in the early nineteen nineties [46, 47]. In usual miRNA biogenesis, one strand of the miRNA hairpins is selected to be the mature miRNA whilst the other strand is degraded [48]. However, both strands of the BART miRNA original hairpin can often persist and be functionally relevant [49]. To distinguish between these two potential miRNAs, the suffixes “-5p” and “-3p” have been used to designate the 5’ end of the hairpin and 3’ end of the hairpin [50]. Nowadays, BART gene accounts for 22 miRNA precursors which produces 44 mature BART miRNAs which are all suggested to be implicated in the pathogenesis of NPC [51].

The expression profile of EBV miRNAs has been comprehensively studied in NPC. Multiple reports confirmed the abundant expression of the BART miRNAs in NPC tissues in the absence of BHRF1 miRNAs. A recent study revealed that all 44 BART miRNAs were expressed in NPC tumours, at broadly similar levels [52]. Interestingly, approximately one-sixth of the total miRNA content in NPC cells attributed to BART miRNAs, suggesting that BART miRNAs provided a considerable portion of the total regulatory influence of both viral and cellular genes in NPC tumour cells [53]. Edwards and colleagues established that the expression of these BART miRNAs was the highest in stage III but reduced in stage IV NPC samples, and were not noted in non-cancer biopsies and EBV-negative cell lines [54].
Several BART miRNAs have been subjected to further experiments and were shown to be implicated in the pathogenesis of NPC with their targets suggested or identified. Apoptosis was triggered by depleting miR-BART5 or inducing the expression of \textit{p53} upregulated modulator of apoptosis (\textit{PUMA}) (Figure 6) in NPC cells [55], which is a pro-apoptotic member of the B-cell lymphoma 2 (\textit{BCL-2}) protein family [56]. \textit{PUMA} is involved in \textit{p53} dependent and independent apoptosis induced by a variety of signals which after activation, interacts with anti-apoptotic \textit{BCL-2} family members \textit{BAX} and \textit{BAK} to signal apoptosis to the mitochondria. Following mitochondrial dysfunction, the caspase cascade is activated ultimately leading to cell death [57].

On the other hand, phosphoglycerate dehydrogenase (\textit{PHGDH}) expression levels were significantly up-regulated in the presence of high levels of miR-BART1 in NPC specimens. \textit{PHGDH} diverted glucose-derived carbon into a specific biosynthetic pathway, contributing to carcinogenesis [58]. Another report showed that deleted in cancer 1 (\textit{DICE1}), a tumour suppressor, was the cellular target of EBV miR-BART3 miRNA and expression of miR-BART3 overpowered the growth suppressive activity of \textit{DICE1} and stimulated cell proliferation [59].

Studies have reported that plasma miR-BART7 and miR-BART13 levels were significantly higher in patients with NPC when compared to healthy individuals. Their expressions enhanced proliferation, migration, and invasion of NPC cells and conferred tumour resistance to cisplatin [60, 61]. The expression of miR-BART7 in NPC cells caused a large-scaled aberrant gene expressions, with genes related to the calcium signalling pathway being affected the most (p=0.003) [60]. It is worth noting that calcium signalling pathway has been implicated in the pathogenesis of several malignancies [62-64].

miR-BART9 was observed to target E-cadherin which enhanced migratory ability and invasiveness of NPC cells contributing to the aggressiveness of tumour cells [65]. It was also
reported that miR-BART22 targeted mitogen-activated protein kinase kinase kinase 5 (MAP3K5) and LMP2A, inhibiting NPC cell apoptosis and, preventing their differentiation as well as permitting escape of EBV-infected cells from host immune surveillance [66, 67].

4. Combining miRNA Treatment with Current NPC Treatments

Long and colleagues showed that hypo-fractionated radiotherapy increased the expression of miR-34a, and stimulated p53 promoter activity and down-regulated the expression of c-Myc protein in NPC cells. When miR-34a was suppressed, hypo-fractionated radiotherapy seemed less effective in inhibiting NPC cell growth [68]. Their findings suggested that the effectiveness of current treatment of NPC may be a result of their modulation in miRNA expressions. Future therapy could place more emphasis in identifying potential miRNAs as molecular targeted therapy which could have fewer side effects in comparison with current NPC treatments. Undeniably, the combination of current chemotherapeutic drugs for NPC with miRNA has produced some promising results. miR-1 was shown to induce earlier apoptosis via targeting prothymosin alpha, ProTalpha (PTMA) when combined with chemotherapeutic agents such as actinomycin D, camptothecin and etoposide [69]. Similarly, miR-29c which showed anti-metastasis property by targeting T cell lymphoma invasion and metastasis 1 (TIAM1) gene [70] (Figure 4) was found to sensitize NPC cells to ionizing radiation and cisplatin treatment via inhibition of anti-apoptotic factors myeloid cell leukaemia 1 (MCL-1) and BCL-2 (Figure 3), promoting apoptosis [31]. These evidences have opened up a new gateway of research to identify potential therapeutic targets for NPC.
5. **miRNA as New Therapeutic Targets in NPC**

In view of the few strikingly altered differential miRNA expressions in NPC, the activation of tumour-suppressive miRNAs and/or inhibition of oncogenic miRNAs may have the potential to provide a fundamentally new approach for the development of therapeutics for NPC. Probably the most important advantage of miRNA gene therapy in comparison with current approaches of targeting single genes is its ability to modulate many different pathways or targets all at once, thus improving its effectiveness greatly [71]. Table 4 shows a summary on current evidences of miRNAs affected during radiotherapy. It is hoped that manipulating these miRNAs (miR-7, miR-23a, miR-29c, miR-205 and miR-451) could give similar anti-cancer effects towards NPC as radiotherapy but with less adverse side effects.

6. **miRNA as diagnostic and prognostic biomarker in NPC**

The main hindrance in combating NPC is the difficulty in early detection and accurate prognosis of the disease. This is partly a result of inadequate knowledge in the molecular pathogenesis of NPC. In addition, the lack of effective biomarkers and poor response to current therapies accounts for the large proportion of NPC patients (~70 %) being diagnosed at later stages [72-74]. An in-depth understanding of miRNA expression profiles might help identify potential reliable and robust biomarkers for early NPC detection. In the recent years, a number of miRNAs have been identified as potential diagnostic and prognostic markers in NPC (Table 3). Stable circulating miRNAs detected in plasma and serum present reliable and novel biomarkers for NPC diagnosis due to high sensitivity and medium specificity [89]. Liu and colleagues reported the diagnostic potentials (p<0.01) of five plasma miRNAs including miR-16, miR-21, miR-24 and miR -155. As a group, these miRNAs provided 87.7% of sensitivity and 82.0% of specificity for the diagnosis of NPC [90]. Hence, with enhanced
knowledge and evidence about plasma miRNAs, it might facilitate the development of a non-invasive next-generation NPC screening approach.

7. **Conclusion**

Undoubtedly, the greatest challenge faced in application of miRNA biology in the clinical management of patients with NPC is the identification of the genes that each miRNA targets as reported in many cases.

Future miRNA investigation may focus on further elucidating the function of the miRNAs in this review. For example, miR-1 which shown positivity as an apoptotic miRNA can be tested on its efficiency as a therapeutic drug. On the other hand, a number of studies have been focusing on miR-29c. This tumour suppressor miRNA was targeted as a potential biomarker and studied for its anti-metastatic as well as pro-apoptotic effects towards NPC. However, studies on its effect towards laminin and collagen (often associated with solid tumour metastasis) have only been proven via bioinformatics studies. Future investigations may focus on identifying if miR-29c indeed target genes. In addition, it would also be interesting to find out the target gene(s) of miR-31 that reduces *in vitro* anchorage-independent growth and *in vivo* tumourigenicity of NPC.

Overall, further validations should be done on the miRNAs that are potentially useful for the diagnosis, prognosis or assessment of sensitivity to radiotherapy or chemotherapy in patients with nasopharyngeal carcinoma. New gene targeting therapies may be found when the targeting genes of the miRNAs are identified and studied.
Conflict of interest statements
The authors have no conflict of interest in publishing this manuscript.

Funding
None

Reviewers
Suggested
References

Nakano K, Vousden KH. PUMA, a Novel Proapoptotic Gene, Is Induced by p53. Mol Cell. 7:683-94.

Biographies

Prof. Alfred K.Y. Lam is an internationally recognized authority in diagnostic and molecular pathology of endocrine cancer with 25 years of activity in this field. He has published more than 280 articles in peer-reviewed journals and has written book chapters in World Health Organization’s classification of tumours. His publications have attracted high citations in the research field with the citation index (Scopus H-index) for his publications at 44 for 2016. He also serves on editorial boards for a few international peer-reviewed journals.

Dr. Sook-Yee Gan is the Head of the Life Sciences department at the School of Pharmacy, International Medical University in Malaysia. She has a leading role in the development and implementation of the IMU Master of Science in Molecular Medicine Programme. Her research interests include miRNA research in cancers (particularly nasopharyngeal carcinoma) and gene expression profiling. In addition, she is also involved in other studies including genetic engineering of algae and exploring the potential application of algae in the treatment of neurodegenerative disorders.

Miss. Katherine Ting-Wei Lee has eight years of experience in cancer research from drug discovery to studying the molecular aspects of cancer. One of her previous research was focused on miRNA and gene expression profiling in nasopharyngeal carcinoma. She is currently a PhD candidate currently investigating the molecular role of GAEC1 in colorectal cancer pathogenesis to further understand the role of this novel gene in colorectal cancer.

Dr. Juan-King Tan initially underwent his medical training at the International Medical University in Malaysia where he also spent a year intercalating a Bachelor of Medical Sciences prior to transferring to the University of Warwick in the UK to complete his clinical training. During his intercalation year he discovered great interests for research for which he remained an active researcher in the field of cancer cell molecular biology following his graduation. Tan is currently a Foundation House Officer at Aberdeen Royal Infirmary.
Table 1: Aberrantly expressed human miRNAs in nasopharyngeal carcinoma

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Number of Studies</th>
<th>miRNAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>2</td>
<td>miR-15b [2, 52], miR-18a [2, 75], miR-205 [2, 52], miR-25 [2, 52], miR-106a [2], miR-1268a [52], miR1268b [52], miR-1303 [52], miR-1304 [52], miR-1305 [52], miR-138 [2], miR-142-3p [2], miR-151 [76], miR-155 [2], miR-17 [2], miR-184 [52], miR-192 [76], miR-196b [2], miR-21 [52], miR-27a [52], miR-378 [22], miR-4677 [52], miR-4791 [52], miR548n [52], miR-6510 [52], miR-92a [52], miR-944 [52]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>miR-106a [2], miR-1268a [52], miR-1304 [52], miR-1305 [52], miR-138 [2], miR-142-3p [2], miR-151 [76], miR-155 [2], miR-17 [2], miR-184 [52], miR-192 [76], miR-196b [2], miR-21 [52], miR-27a [52], miR-378 [22], miR-4677 [52], miR-4791 [52], miR548n [52], miR-6510 [52], miR-92a [52], miR-944 [52]</td>
</tr>
<tr>
<td>Down</td>
<td>3</td>
<td>miR-34b [76, 2, 75], miR-100 [2, 52, 75], miR-152 [2, 52, 75], miR-195 [2, 52, 75], miR-497 [2, 52, 75]</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>miR-10b [52, 75], miR-29c [76, 2], miR-34c [76, 75], miR-130a [2, 52], miR-143 [2, 52], miR-145 [2, 52], miR-148a [2, 52]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>HS_204.1 [75], HS_210 [75], HS_38.1 [75], let-7a [75], let-7c [75], let-7d [75], let-7e [75], let-7g [75], miR-10a [52], miR-1251 [52], miR-126 [52], miR-1269 [52], miR-133a [52], miR-133b [52], miR-135a [2], miR-136 [52], miR-139 [52], miR-139-5p [2], miR-150 [75], miR-151a [52], miR-155 [75], miR-182 [52], miR-187 [2], miR-199a [52], miR-199b-5p [2], miR-200a [2], miR-200b [2], miR-204 [2, 52], miR-21 [52], miR-212 [76], miR-214 [52], miR-216 [76], miR-217 [76], miR-221 [75], miR-26a [52], miR-26b [75], miR-27b [52], miR-29a [75], miR-29b [75], miR-300 [52], miR-3065 [52], miR-30a [2], miR-30d [75], miR-31 [2], miR-335 [52], miR-342 [75], miR-344-3p [2], miR-344-5p [2], miR-375 [75], miR-376 [52], miR-376-5p [52], miR-425-5p [75], miR-4423 [52], miR-449 [75], miR-449a [2], miR-450a [52], miR-4792 [52], miR-488 [52], miR-504 [52], miR-532-3p [2], miR-542 [52], miR-556 [52], miR-574 [52], miR-576 [75], miR-584 [52], miR-585 [52], miR-625 [75], miR-642 [75], miR-768-3p [75], miR-874 [52], miR-887 [52], miR-891a [52], miR-9 [2], miR-92b [75]</td>
</tr>
</tbody>
</table>
Table 2: Example of miRNAs as tumour suppressors or oncogenes in nasopharyngeal carcinoma (NPC)

<table>
<thead>
<tr>
<th>Tumour Suppressor/Oncogene</th>
<th>Author/Year</th>
<th>miRNA</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour suppressor</td>
<td>Shi/2010 [33]</td>
<td>miR-100</td>
<td>Decreased miR-100 was associated with an increased in PIK1 contributing to NPC progression</td>
</tr>
<tr>
<td></td>
<td>Zhong/ [34]</td>
<td>miR-143</td>
<td>Regulate invasiveness and metastasis of NPC. Overexpression of miR-143 causes a significant reduction of the adhesion ability by targeting GLI3</td>
</tr>
<tr>
<td></td>
<td>Li/2013 [35]</td>
<td>miR-148a</td>
<td>Inhibit cell migration in NPC cells by targeting VAV2, WASL and ROCK1</td>
</tr>
<tr>
<td></td>
<td>Wong/2011 [36]</td>
<td>Let-7</td>
<td>Inhibit NPC cell proliferation by repressing c-myc</td>
</tr>
<tr>
<td>Oncogene</td>
<td>Lyu/2014 [37]</td>
<td>miR-93</td>
<td>Down-regulate transforming growth factor-β receptor II (TGFβR2) and causing attenuation of Smad-dependent TGF-β signalling and the activation of PI3K/Akt pathway which led to cell proliferation, invasion and metastasis of NPC</td>
</tr>
<tr>
<td></td>
<td>Luo/2011 [38]</td>
<td>miR-149</td>
<td>Promote proliferation of NPC cell lines by increasing E-cadherin</td>
</tr>
<tr>
<td></td>
<td>Deng/2013 [39]</td>
<td>miR-214</td>
<td>Mimics significantly repressed lactotransferrin (LTF) mRNA and protein levels in NPC cells to promote NPC cell proliferation and invasion in addition to hastening tumour formation and lung metastasis in mouse xenografts.</td>
</tr>
<tr>
<td>Article/year</td>
<td>miRNA</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Lu/2014 [77]</td>
<td>miR-9</td>
<td>Significantly decreased level of miR-9 in patients with NPC was confirmed through two-stage validation. Low level of plasma miR-9 was significantly correlated with lymphatic invasion and advanced TNM stage. The plasma miR-9 level was significantly elevated in post-treatment plasma compared with those pre-treatment samples.</td>
<td></td>
</tr>
<tr>
<td>Zeng/2012 [78]</td>
<td>miR-17</td>
<td>Microarray-based serum miRNA profiling on the serum of twenty nasopharyngeal carcinoma patients at diagnosis along with 20 non-cancerous individuals as controls was carried out in which miR-17, miR-20a, miR-29c, and miR-223 were found to be expressed differentially in the serum of patients with NPC compared with those of non-cancerous control.</td>
<td></td>
</tr>
<tr>
<td>Liu Y/2014 [13]</td>
<td>miR-125a-5p</td>
<td>Functioned as a regulator and predictor of effect of gefitinib's on NPC</td>
<td></td>
</tr>
<tr>
<td>Liu Y/2013 [79]</td>
<td>miRNA-151</td>
<td>CCNE1’s polymorphisms located at miRNA-151 binding sites are associated with NPC susceptibility and are correlated with pathological stages of NPC.</td>
<td></td>
</tr>
<tr>
<td>Du/2011 [80]</td>
<td>miR-155</td>
<td>Driven by LMP1 and LMP2A and down-regulated JMJD1A. Down-regulation of JMJD1A was significantly correlated with advanced N stage, a lower five-year survival rate and a lower five-year disease-free survival rate in patients with NPC.</td>
<td></td>
</tr>
<tr>
<td>Ma/2014 [45]</td>
<td>miR-204</td>
<td>Low-level expression of miR-204 was significantly associated with a more aggressive and poor prognostic phenotype of NPC.</td>
<td></td>
</tr>
<tr>
<td>Deng/2013 [19]</td>
<td>miR-216b</td>
<td>Decreased expression of miR-216b was directly related to advanced clinical stage and lymph node metastasis whilst miR-216b levels correlated inversely with levels of KRAS protein during nasopharyngeal carcinogenesis</td>
<td></td>
</tr>
<tr>
<td>Li/2013 [81]</td>
<td>miRNA-324-3p</td>
<td>Down-regulation of miRNA-324-3p and up-regulation of WNT2B were significantly correlated with advanced clinical stages of NPC</td>
<td></td>
</tr>
<tr>
<td>Liu/2013 [82]</td>
<td>miR-451</td>
<td>miR-451 was significantly down-regulated in NPC cell lines and clinical tissues (P < 0.01) and patients with low expression of miR-451 had poorer overall survival and disease-free survival.</td>
<td></td>
</tr>
<tr>
<td>Zheng/2014 [83]</td>
<td>miR-483-5p, miR-548q</td>
<td>Most patients with NPC with poor outcome exhibited high expression of miR-548q (70.6%) and miR-483-5p (64.7%) in tissue samples, indicating their prognostic value.</td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Possible miRNAs as future therapeutic targets in NPC

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>miRNA</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen/2010 [84]</td>
<td>miR-7</td>
<td>Radio-sensitivity and radiation dose of X-ray have significant effect on the expression of miR-7 in NPC cells, indicating that miR-7 plays an important role in radio-resistance of NPC cells to X-ray. Suppression of miR-7 expression may elevate the radio-sensitivity of NPC cells.</td>
</tr>
<tr>
<td>Li/2014 [85]</td>
<td>miR-23a</td>
<td>miRNA-23a was involved in radio-resistance of NPC through directly targeting IL-8.</td>
</tr>
<tr>
<td>Zhang/2013 [86]</td>
<td>miR-29c</td>
<td>Low expression of miR-29c was positively associated with therapeutic resistance in NPC. Further in vitro and in vivo studies illustrated ectopic restoration of miR-29c substantially enhanced the sensitivity of NPC cells to ionising radiation and cisplatin treatment by promoting apoptosis, and also repressed expression of anti-apoptotic factors Mcl-1 and Bcl-2 in NPC tissues and cell lines.</td>
</tr>
<tr>
<td>Wang/2013 [87]</td>
<td>miR-205</td>
<td>Anthracycline analogue isolated from the secondary metabolites of the mangrove endophytic fungus no. 1403 collected from the South China Sea (SZ-685C) exhibited pro-apoptotic activity in both radiosensitive and radio-resistant NPC cells and was shown to abrogate the radio-resistance of NPC cells through the miR-205-PTEN-Akt pathway.</td>
</tr>
<tr>
<td>Zhang/2014 [88]</td>
<td>miR-451</td>
<td>High levels of miR-451 expression enhanced radio-sensitivity in NPC cells by inhibiting the repair of irradiation-induced double-strand breaks and increasing apoptosis by down-regulation of RAB14.</td>
</tr>
</tbody>
</table>
Figures Legends

Figure 1: miRNAs involved in NPC cell apoptosis through Smad-dependent TGF-β signalling pathway, PI3K-Akt signalling pathway and EBV infection pathway. Green colour indicates tumour suppressor miRNAs, orange colour indicates oncogene miRNAs, yellow colour indicates gene in the pathways, solid arrow (→) indicates direct target, dash-line arrow (←→) indicates downstream target, blunt ended lines (−→) indicates direct inhibition of target gene and blunt ended dash lines (−→↓) indicates downstream inhibition target gene.

Figure 2: miRNAs involved in NPC cell G1/S cell cycle arrest or cell cycle progression. Green colour indicates tumour suppressor miRNAs, orange colour indicates oncogene miRNAs, yellow colour indicates gene in the pathways, solid arrow (→) indicates direct target, dash-line arrow (←→) indicates downstream target, blunt ended lines (−→) indicates direct inhibition of target gene and blunt ended dash lines (−→↓) indicates downstream inhibition target gene.

Figure 3: Tumour suppressor miRNAs involved in attenuating NPC cell growth, migration, invasion or metastasis through affecting PI3K-Akt signalling pathway and Wnt signalling pathway. Green colour indicates tumour suppressor miRNAs, yellow colour indicates gene in the pathways, solid arrow (→) indicates direct target, dash-line arrow (←→) indicates downstream target and blunt ended lines (−→) indicates direct inhibition of target gene.

Figure 4: miRNAs involved in NPC cell migration, invasion or metastasis through ECM-receptor interaction, Hedgehog Signaling pathway and Wnt signaling pathway. Green colour indicates tumour suppressor miRNAs, orange colour indicates oncogene miRNAs, yellow colour indicates gene in the pathways, solid arrow (→) indicates direct target, dash-line arrow (←→) indicates downstream target and blunt ended lines (−→) indicates direct inhibition of target gene.

Figure 5: Overall miRNAs involved in NPC. Green colour indicates tumour suppressor miRNAs, orange colour indicates oncogene miRNAs, yellow colour indicates gene in the pathways, solid arrow (→) indicates direct target, dash-line arrow (←→) indicates downstream target, blunt ended lines (−→) indicates direct inhibition of target gene and blunt ended dash lines (−→↓) indicates downstream inhibition target gene.

Figure 6: BART-miRNAs involved in NPC cell proliferation, apoptosis, migration, invasion and tumour resistance against chemo-radiotherapy either through direct, glycolytic, or MAPK-signalling pathway. Orange colour indicates oncogene miRNAs, yellow colour indicates gene in the pathways, solid line (−) indicates association, solid arrow (→) indicates direct target, dash-line arrow (←→) indicates downstream target and blunt ended lines (−→) indicates direct inhibition of target gene.