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Metabolomics is the “omics” that studies the whole metabolome. It has a wide range of 
applications, inter alia chemotaxonomy, environmental influences, agriculture, etc. Here we review 
the application of metabolomics in natural product research. The importance of physicochemical 
properties to drug delivery are discussed in relation to turning metabolomic studies towards drug 
discovery. We believe that coupling metabolomic studies with standards of known physicochemical 
properties in order to calibrate the chromatographic columns can be beneficial in identifying 
compounds of candidate drug quality.
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1. Introduction

Metabolomics is the characterization and quantification 
of the large number of metabolites that occur in biological 
systems. Metabolomics approaches are more and more used 
in quality control,1 chemical ecology,2 chemotaxonomy3 
and identification of novel natural products.4 Focusing 
on problems such as the characterization of primary and 
secondary metabolites in order to establish a link between 
the constituents of an organism and its environment 
(geographical origin, genetic, climates or seasonal changes, 
etc.) requires complete metabolite fingerprints to detect any 
differences between the samples and generate hypotheses 
to explain these differences.

Primary and secondary metabolites refer to small 
molecules (MW < 1000 Da)5 made by living organisms 
via interaction with biosynthetic enzymes.6 Primary 
metabolites are essential for the survival of the organism, 
and they include amino acids, carbohydrates and lipids, on 
the other hand, the secondary metabolites are non-essential 
for the organism’s life but necessary for its survival, and are 
used as defenses or to communicate with their environment. 
They include: terpenes, alkaloids, polyketides, hormones 
and polyphenols.5

Metabolomics is also used for dereplication of 
microorganisms to identify productions of novel 
compounds.7 Multivariate statistical analyses such 
as principal components analysis (PCA) are used in 
metabolomics to simplify multi-parametric data into a 

correlation pattern. PCA is an unsupervised method that 
can show a correlation between different samples and 
highlight either differences or similarities between datasets. 
In addition to PCA, which compares the variance between 
different samples, partial least squares (PLS)-discriminant 
analysis (DA) and other targeted analytical profiling are 
used in order to establish a degree of “biological similarity” 
between samples. Multivariate analysis using statistical 
tools such as unsupervised principal component analysis, 
supervised discriminant function analysis and Z-score 
analysis can be used for pattern recognition which may 
predict that biological activity results from particular 
features of compounds.8

Various chromatographic and spectroscopic techniques, 
mostly hyphenated techniques (liquid chromatography 
(LC)-mass spectrometry (MS), LC-nuclear magnetic 
resonance (NMR), etc.)9 are used for metabolomics but high 
performance liquid chromatography (HPLC) is still the first 
choice in metabolomics to study the chemical composition 
of natural crude extracts and the rapid detection of known 
compounds.10

In this mini-review article, we discuss the application 
of metabolomics using chromatographic analysis to study 
the whole metabolome and how to adapt this information 
to drug discovery.

2. Applications of Metabolomics

Brazil covers an area of 8,511,996 km2 with several 
ecosystems and important biodiversity11 that has attracted 
Brazilian studies around natural product metabolomics.
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Dereplication was used to identify and quantify 
tocopherol from Brazil oil nut from different geographic 
locations in Brazil using HPLC, revealing little changes 
in the amount of tocopherol (between 144.80 and 
234.26  mg  g-1). This study showed also the presence 
of the two main tocopherols (α- and β-tocopherol) in 
all of the authentic oil samples with differences in their 
amounts, however, some commercial Brazil nut oils 
did not show the presence of tocopherols at all.12 In 
order to select superior banana genotypes for breeding, 
dereplication of 29 samples from different genomic 
groups were studied to determine the phenolic contents 
and carotenoid profiles. This study aimed to identify 
samples with high concentrations in carotenoids, which 
are known as pro-vitamin A. The HPLC analysis showed 
an appreciable amount of pro-vitamin A carotenoids in 
the active germosplasm samples comparing with the main 
cultivars that are currently marketed.13 Dereplication 
of natural products has also been used to study marine 
organisms; the use of LC-photodiode array detector 
(PDA)-MS analysis of 14 Brazilian sponge specimens 
of the genus Aplysina, in order to detect bromotyrosine-
derived metabolites based on their UV absorption (on the 
basis of the three most typical chromophores known for 
Verongida dibromityrosine-derived metabolites),14 did 
not show a significant difference in the chemical profile 
of the samples. In order to differentiate between the 
chemical composition of six different Lippia species, an 
ultra HPLC (UHPLC) metabolomics analysis combined 
with extraction of molecular formulae based on time-
of-flight (TOF)-MS data together with the use of filters 
(including log P) were used.10 The fast separation capacity 
of UHPLC and the high quality of the obtained chemical 
profiles allowed the discrimination of the samples and 
gave a precise picture of the chemical relationship. 
In addition, the authors used hierarchical clustering 
analyses to provide an efficient approach to discover 
cluster relationships between the samples.10 Dereplication 
of 57 leaf extracts from Brazilian Asteraceae species 
were analyzed by HPLC-MS and subjected to machine 
learning algorithms in order to determine biomarkers 
with anti-inflammatory potential. Using a genetic 
algorithm, 1241 chromatographic peaks out of 6052 were 
selected according to their anti-inflammatory activities, 
allowing the determination of 11 biomarkers.15 In order 
to distinguish coffee genotypes grown in three different 
regions in Brazil, gas chromatography-single quad 
(GC‑Q)/MS coupled with statistical analysis showed 
that some of the 44 metabolites identified can be used as 
chemomarkers for origin and genotype differentiation.16 
In order to identify analogues of isopimarane diterpenes 

in complex crude extracts of Velloziaceae, electrospray 
ionization tandem MS (ESI-MS/MS) was applied to a 
series of isolated diterpenes from the same family. The 
compounds have different number of hydroxyls that 
were observed in the mass spectrum by the multiple 
loss of water. The authors suggested that the intensity 
of protonated and cationized compounds could be used 
to differentiate these compounds in complex mixtures. 
The MS/MS fragmentation did not show a difference 
between the isopimarane diterpenes, but could be used 
to distinguish them from their isomers.17 Because of 
the challenges encountered in the identification and 
characterization of all metabolites during metabolomic 
studies, a rational and sequential method was investigated, 
14 different solvents were evaluated for their extraction 
efficiency on Jatropha gossypifolia. Design of experiments 
(DoE) and partial least squares (PLS) were used to 
correlate the physicochemical properties of the different 
solvents with the chromatographic profiles. It has been 
shown that the physicochemical properties of the solvent 
can influence significantly the extraction capacity.18 
Targeted and untargeted metabolomics were used in 
order to discover biomarkers and to search for novel 
active compounds against neglected diseases in Brazil 
(Chagas disease, dengue, leishmaniasis, leprosy, malaria, 
schistosomiasis and tuberculosis).19 It was shown that 
most of the metabolites identified were amino acids, 
carbohydrates, lipids, organic acids, nucleosides and fatty 
acids.19 Green and brown Brazilian propolis were collected 
from different regions in Brazil, analyzed by GC-MS and 
analyzed by multivariate analysis in order to evaluate 
their chemical profiles and identify active compounds. 
Green and brown propolis showed different chemical 
compositions: brown propolis was rich in triterpenoids, 
however, green propolis was rich in sesquiterpenes and 
steroids.20

3. Chemometric Analysis: PCA

Because of the huge amount of data acquired during 
metabolomic studies, the use of chemometric and 
statistical analysis is indispensable for data mining and 
visual interpretation.21 PCA is one of the most widely used 
multivariate statistical analysis tools used in metabolomics 
analysis.16,22 It is a reliable and easy tool to compare 
metabolomics profiling. It has been shown that the use of 
1H NMR metabolomics with PCA analysis can be very 
effective in the discrimination of samples: (i) this technique 
allowed the differentiation of 12 Cannabis sativa cultivars 
and was shown to be very promising for the authentication 
and quality control of C. sativa;23 and (ii) the same method 
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allowed the discrimination of 11 Ilex species, and allowed 
the identification of arbutin, which has not been reported 
before as a constituent of Ilex species and was found to be 
a biomarker of 8 of the studied species.24

PCA combined with molecular networking and 
dereplication have been shown to be valuable tools for 
researchers focusing on microbial extract; molecular 
networking allows rapid comparison of metabolites 
profiles from complex crude fermentation extracts, for 
effective chemical dereplication and discovery of novel 
compounds.25,26 The influence of bacterial isolation 
location (from Scottish and Antarctic sediments) on 
bioactive secondary metabolite production within 
the marine environment was studied using molecular 
networks for the first time. This study showed a high 
degree of biogeographic influence upon secondary 
metabolite production and comparative metabolomics 
aided in the metabolite dereplication of over 3500 parent 
ions from these marine sources and has provided targets 
for further purification.25

4. Metabolomics and Drug Discovery: What 
Makes a Drug? (Importance of Physicochemi-
cal Properties)

Metabolomic studies aim to study the whole metabolome, 
to identify known compounds or to characterize a class of 
compounds, sometimes without isolating the metabolites. 
On the other hand, a drug is a single compound that has 
to be delivered to the patient and reach a suitable site to 
treat disease. Progressing from metabolomics analysis to 
drug discovery requires knowledge of physicochemical 
properties. A drug should have certain physicochemical 
properties, defined by Lipinski et al.27 as a rule-of-five; 
this rule is a set of four simple physicochemical properties 
for oral bioavailability: MW ≤ 500 Da, log P ≤ 5, H-bond 
donors ≤ 5, and H-bond acceptors ≤ 10. Recently, data 
concerning the cause of attrition, toxicology and safety of 
812 oral small-molecule drug candidates from AstraZeneca, 
Eli Lilly, GlaxoSmithKline (GSK) and Pfizer between 
2000-2010 were pooled. A set of physicochemical 
descriptors was also calculated for those drug candidates 
in order to establish links between the physicochemical 
properties and compound attrition. It has been shown that 
there is a greater attrition for more lipophilic compounds. 
In addition, the majority of compounds had shown desirable 
ranges, with 75% of compounds having a MW < 499 Da 
and 75% having log P < 4.4.28

Turning metabolomics to drug discovery might be 
achieved in a very simple way, our hypothesis is to use 
a mixture of compounds with known physicochemical 

properties to calibrate the HPLC column and limit the area 
of the metabolome to be considered in order to progress 
down a drug discovery pathway.

5. Retention Time (tR) and log P

HPLC as used for metabolomics can be used as a 
surrogate for log P upon suitable calibration. Prediction 
of retention parameters have been obtained29 using 
chemoinformatic, principally quantitative structure-
retention relationship (QSRR) studies, to obtain statistical 
correlation between chromatographic retention time and 
theoretical properties of the metabolites.29 tR is correlated 
to the physicochemical parameters of a given compound, 
specifically to log P. Retention time estimation based on the 
calculated log P is increasingly used, for example, allowing 
the differentiation between isomeric flavonoid aglycones 
that eluted at different retention times and possessed 
different log P values without the need for isolation.10 
However, for more hydrophobic molecules, GSK showed 
that measuring the chromatographic hydrophobicity index 
(CHI) might be more reliable than measuring log P as the 
standard model in drug discovery, and also, CHI has been 
shown to be linear, non-solubility dependent, predictable 
and relevant.30

6. Conclusions

Figure 1 shows the relationship between metabolome 
space, drug space and the two most important 
physicochemical properties (log P and MW), and illustrates 
how using these properties with retention time can help to 
limit metabolome space to that portion relevant to drug 
space.

Figure 1. Scheme representing the distribution of drugs (green), low-drug 
attrition (orange),31 molecular mass (Da) (grey columns),28 calculated 
log P (grey bars)28 and retention time (tR)32 in metabolome space.
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The physicochemical properties of a given compound 
are critical to drug delivery and metabolism. Metabolomics 
characterizes a wider range of metabolites; using standards 
with known physicochemical properties (log P or CHI) 
in order to calibrate the chromatographic columns can 
be beneficial in identifying compounds of candidate drug 
quality (Figure 1).
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