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ABSTRACT
Hyperspectral unmixing is an important technique for identi-
fying the constituent spectra and estimating their correspond-
ing fractions in an image. Nonnegative Matrix Factoriza-
tion (NMF) has recently been widely used for hyperspectral
unmixing. However, due to the complex distribution of
hyperspectral data, most existing NMF algorithms cannot
adequately reflect the intrinsic relationship of the data. In this
paper, we propose a novel method, Structured Discriminative
Nonnegative Matrix Factorization (SDNMF), to preserve the
structural information of hyperspectral data. This is achieved
by introducing structured discriminative regularization terms
to model both local affinity and distant repulsion of observed
spectral responses. Moreover, considering that the abun-
dances of most materials are sparse, a sparseness constraint
is also introduced into SDNMF. Experimental results on both
synthetic and real data have validated the effectiveness of
the proposed method which achieves better unmixing perfor-
mance than several alternative approaches.

Index Terms— Hyperspectral unmixing, nonnegative
matrix factorization, sparse, local affinity, distant repulsion

1. INTRODUCTION

Hyperspectral images contain rich spatial and spectral infor-
mation that are very useful for material identification. Due
to the low spatial resolution of hyperspectral remote sens-
ing images, a pixel may contain several disparate substances.
Hyperspectral unmixing decomposes a mixed pixel into end-
members which are the spectral responses of a collection of
constituent materials, and abundances which are the propor-
tions of endmembers at each location [1]. It is a crucial pre-
processing step in many remote sensing applications [2, 3].

Most hyperspectral unmixing approaches are based on
Linear Mixture Model (LMM) due to its computational
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tractability and flexibility. They are normally performed
in a either sequential or simultaneous manner. Several classic
methods extract endmember first, then estimate their abun-
dance by fully constrained least squares [4]. These include
pixel purity index [5], N-FINDR [6], Vertex Component
Analysis (VCA) [7], simplex growing algorithm [8], et al.
On the contrary, some methods simultaneously estimate the
endmembers and abundances. Typical algorithms are in-
dependent component analysis [9] and Nonnegative Matrix
Factorization (NMF) [10].

NMF is favored in hyperspectral unmixing because it
makes the matrix decomposition intuitive and interpretable.
Nevertheless, due to the nonconvex objective function, lo-
cal minima frequently occur and the solution of NMF is
not unique. Therefore, a variety of constraints have been
introduced to overcome the drawback of standard NMF.
Typical examples include L1/2-NMF that uses sparsity con-
straint [11] and Graph Regularized L1/2-NMF (GLNMF)
that uses manifold constraint [12]. Structured constraints
have also been introduced to model the complex relation-
ship among data. These methods either combine different
manifold structures [13], or explore multilayer factorization
techniques [14, 15].

In graph-based methods, the local geometric structure of
data is normally modelled based on a local consistency as-
sumption and implemented using the nearest neighbors [16].
There is no constraint on distant data points, which often leads
to distorted embedding maps [17, 18]. In order to improve the
performance of NMF algorithms, in this paper, we propose a
novel method for hyperspectral unmixing, called Structured
Discriminative Nonnegative Matrix Factorization (SDNMF).
This method preserves the structure of hyperspectral data by
incorporating local affinity and distant repulsion constraints.
On one hand, local affinity structure forces the local neigh-
borhood relationship be maintained, that is, if xi and xj are
close in the feature space, their abundance si and sj should
also be similar. On the other hand, inspired by the observa-
tion that far apart points are generally semantically different,
distant repulsion guarantees distant pixels in the feature space



have dissimilar abundance after unmixing. Additionally, be-
cause the sparse contribution of ground substance at various
locations in a hyperspectral image, pixels in the same mani-
fold structure are sparsely mixed by a common set of relevant
endmembers. Therefore, we also impose a L1/2 sparse regu-
larizer on the abundance matrix.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief introduction of the LMM and NMF algo-
rithms. The proposed SDNMF method is presented in Sec-
tion 3. Experimental results and analysis on both synthetic
and real remote sensing data are described in Section 4. Fi-
nally, conclusions are drawn in Section 5.

2. RELATED WORK

LMM and NMF are two important models for hyperspectral
unmixing. A hyperspectral image with L bands can be de-
scribed by a matrix X ∈ RL×N , where N is the total number
of pixels. LMM is expressed as

X = AS + E (1)

where A ∈ RL×P and S ∈ RP×N refer to an endmem-
ber signature matrix and an abundance matrix, respectively.
E ∈ RL×N denotes the noises and P is the number of end-
members.

NMF aims at finding two nonnegative matrices A and S
simultaneously to approximately represent the nonnegative
matrix X . To minimize the reconstruction error, the objec-
tive function of NMF can be expressed as

min
A,S

O(A,S) =
1

2
‖X −AS‖2F , s.t. A ≥ 0, S ≥ 0 (2)

where ‖·‖denotes the Frobenius norm. This can be solved by
multiplicative update rules [10] as follows

A← A. ∗XST ./ASST ; S ← S. ∗ATX./ATAS (3)

3. APPROACH

In this section, we first explain the framework of structured
discrimination, which is helpful to discover the intrinsic ge-
ometric relationship of the mixed pixels. Then the objective
function of the proposed method and the corresponding itera-
tive updating rules are described.

3.1. Structured Discrimination: Local Affinity and Dis-
tant Repulsion

Our method aims to properly preserve the local affinity struc-
ture without distorting the distant repulsion property. There-
fore, we enforce both local affinity and distant repulsion as
explicit constraints on the material abundance.

(a) original data (b) local affinity

(c) distant repulsion (d) structured discrimination

Fig. 1. Illustration of structured discrimination.

Local affinity requires close pixels in the feature space
have similar unmixing results. To measure the affinity be-
tween xi and xj in the original feature space, we adopt a
heat kernel [12] to define the affinity matrix, that is, W l

ij =

exp(
−‖xi−xj‖

2σ2 ), where W l
ij is relatively large if xi and xj are

similar. In light of its effectiveness, we utilize graph regular-
ization to preserve the local affinity structure

min
s

1

2

N∑
i=1

N∑
j=1

W l
ij‖si − sj‖ (4)

Through several steps of inference, Eq. (4) can be rewritten
as

min
s
Tr(SLlST ) (5)

where Ll = Dl −W l is the graph Laplacian matrix, Dl is a
diagonal matrix whose entries are Dl

ii = ΣjW
l
ij .

The proposal of distant repulsion property is inspired by
elastic embedding [19] which guarantees the mapping of data
from its original feature space to a lower dimensional space
remains undistorted. In the case of hyperspectral unmixing,
distant repulsion enforces the abundance of distant pixels in
the original spectral feature space to be dissimilar. We define
a repulsive weight matrixW r

ij = ‖xi−xj‖ to measure the re-
pulsion between xi and xj . Then distant repulsion constraint
can be defined as

min
s

1

2

N∑
i=1

N∑
j=1

W r
ij exp(− ‖ si − sj ‖2) (6)



The effect of structured discrimination is illustrated in
Fig. 1. Fig. 1(a) shows the distribution of two materials,
Fig. 1(b) is the an example of the distribution of estimated
abundance of only considering the local affinity property.
This reduce to the aforementioned GLNMF method. It can
be clearly seen that the local affinity may result in overlaps
(data in the red rectangle) between different materials. Con-
versely, Fig. 1(c) indicates that only modelling the repulsion
correlations without paying attention to the local affinity
property leads to loose clusters, i.e., the data is highly dis-
persed. Fig. 1(d) shows that the performance of structured
discrimination leads to non-overlapping between two classes
of data while achieving compact distribution.

3.2. Structured Discriminative NMF

Combining both local affinity and distant repulsion con-
straints defined in Eqs. (5) and (6), and further imposing an
L1/2-sparsity constraint, the objective function of SDNMF
can be written as follows

min
A,S

O =
1

2
‖ X −AS ‖2F +

α

2
Tr(SLlST )+

β

4

N∑
i,j=1

W r
ij exp(− ‖ si − sj ‖2) + γ ‖ S ‖ 1

2

(7)

where the first term is used to measure the reconstruction er-
ror of the standard NMF; the second and the third terms are
local affinity and distant repulsion constraints, respectively;
and the last term is designed to enforce the sparseness of the
abundance matrix. α, β, γ are three parameters to balance the
weights of the corresponding components.

The objective function of SDNMF in Eq. (7) is not convex
when both A and S are to be optimized. Therefore, it is diffi-
cult for the optimization algorithm to find the global minima.
We introduce Lagrangian multipliers ψim and φmj for con-
straints Aim ≥ 0 and Smj ≥ 0, respectively. Let Φ = [ψim]
and Φ = [φmj ], then the Lagrange L is

L =
1

2
Tr(XTX)− Tr(XTAS) +

1

2
Tr(STATAS)

+
α

2
Tr(SLlST ) +

β

4

N∑
i,j=1

W r
ij exp(− ‖ si − sj ‖2)

+γ ‖ S ‖ 1
2

+Tr(ΨAT ) + Tr(ΨST )

(8)

The partial derivatives of L with respect to A and S are

∂L
∂A

= −XST +ASST + Ψ (9)

∂L
∂S

= −ATX +ATAS + αSL+
γ

2
S−

1
2 + Φ (10)

where L = Ll−λL̃r. We define the W̃ r
ij = W r

ij exp(−‖vi−
vj‖2), Wij = W l

ij − λW̃ r
ij and their graph Laplacians L̃r =

D̃r−W̃ r and L = D−W in the usual way, where λ = β/α.
According to the Karush-Kuhn-Tucker conditions ψimAim =
0 and φmjSmj = 0. Introducing L = L+ − L−, where
L+
ij = (|Lij |+ Lij)/2 and L−ij = (|Lij | − Lij)/2, we obtain

the following updating rules

A← A. ∗XST ./ASST (11)

S ← S.∗(ATX+αSL−)./(ATAS+αSL++
γ

2
S−

1
2 ) (12)

4. EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed
method. SDNMF is compared with VCA [7], NMF [10],
L1/2-NMF [11] and GLNMF [12] on both synthetic and real
hyperspectral data. In the experiments, Spectral Angle Dis-
tance (SAD) and Root Mean Square Error (RMSE) are adopt-
ed to measure the accuracy of the extracted endmembers and
their abundances. The detailed definitions of both criteria can
be found in [12].

4.1. Experiments on Synthetic Data

We randomly select six spectral signatures from the USGS
digital spectral library [20] as candidates to generate the syn-
thetic data. The procedure described in [21] is used to create
synthetic images of size 64 × 64 pixels containing no pure
pixels. Then, each image is divided into 8 × 8 blocks and all
pixels in each block are filled up by one type of endmember
signature randomly selected from the candidates. To create
linear mixture, a spatial low-pass filter of size 9× 9 is used to
generate the mixed pixels. To remove the probable pure pix-
els, pixels with abundances greater than 80% are replaced by
evenly mixed six endmembers. Finally, zero-mean Gaussian
noise is added to the synthetic data to estimate the robustness
of the proposed method. The signal-to-noise ratio (SNR) is
used to measure the strength of the signal [11].

We first evaluate the performance of different unmixing
methods. We set SNR = 25dB and the total number of
endmembers P = 6. In practice, local affinity and distant
repulsion can be calculated from the k-nearest and k-furthest
neighbors of each pixel. In our experiments, the number of
nearest and farthest neighbors of each pixel are both set to
5. We run each method for 10 times and then calculate the
mean values and standard deviations of SADs and RMSEs,
respectively. Fig. 2 shows the experimental results, where the
bar and error line stand for the mean SAD and RMSE and
their standard deviations, respectively. According to Fig. 2,
it can be found that the proposed SDNMF method is superior
to other methods. The performances of NMF and L1/2-NMF
are limited because they pay no attention to the intrinsic re-
lationship of the hyperspectral data. Furthermore, although
both GLNMF and SDNMF consider the structure information
of the pixels, the experimental results indicate that SDNMF



(a) (b)

Fig. 2. Performance of different methods. (a) SAD; (b)
RMSE.

Table 1. Comparison of methods with different SNRs
(a) SAD

SNR VCA NMF L1/2-NMF GLNMF SDNMF
15 0.1523 0.1135 0.1086 0.0758 0.0724
25 0.1255 0.1127 0.0919 0.0739 0.0678
35 0.1243 0.1098 0.0924 0.0663 0.0671
45 0.1224 0.1013 0.0967 0.0753 0.0664
∞ 0.1191 0.1067 0.0931 0.0758 0.0644

Mean 0.1287 0.1088 0.0965 0.0734 0.0676

(b) RMSE

SNR VCA NMF L1/2-NMF GLNMF SDNMF
15 0.1185 0.1132 0.1049 0.0903 0.0811
25 0.1126 0.1078 0.1012 0.0895 0.0785
35 0.0943 0.0984 0.0954 0.0808 0.0742
45 0.0954 0.0945 0.0927 0.0696 0.0713
∞ 0.1007 0.0917 0.0931 0.0705 0.0674

Mean 0.1287 0.1011 0.0975 0.0801 0.0745

consistently outperforms GLNMF. This is mainly due to the
fact that when GLNMF encodes the structure information, it
only considers the local affinity by the nearest graph regular-
ization, but SDNMF effectively takes both local affinity and
distant repulsion constraints into account.

The second experiment evaluates the performance of all
five methods under the influence of noise. Table 1 shows the
results when SNR varies from 15dB to infinity. It is noticeable
that when noise increases, the performances of all methods
are worse. Meanwhile, SDNMF achieves the best average
performance among all methods. The advantage of SDNMF
lies in that it provides a better way to encode the structural
information.

4.2. Experiments on Real Hyperspectral Data

In this experiment, SDNMF is applied to an urban hyperspec-
tral data of size of 307×307 captured by Hyperspectral Dig-
ital Imagery Collection Experiment (HYDICE). The image
contains 210 bands in the 400nm to 2500nm range with spec-
tral resolution of 10nm. After some noisy bands are removed,
162 bands are used for experiments.

In the experiment, four classes of materials are estimat-

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Abundance maps of different endmembers

ed: Asphalt, Grass, Road and Roof. Figs. 3(a)∼(d) show the
ground truth reference for the abundance fractions of the end-
members. Figs. 3(e)∼(h) give the estimation of endmember
abundance maps using our method, in which a dark pixel de-
notes low abundance of the corresponding endmember and
vice versa. It can be seen that the results by our method are
consistent with the reference very well. It proves that SDN-
MF can exhibit more discriminative power by simultaneous-
ly taking into account the local affinity and distant repulsion
properties, which effectively capture the geometrical structure
of the local and distant pixels.

5. CONCLUSION

In this paper, we have presented a new hyperspectral unmix-
ing algorithm called Structured Discriminative Nonnegative
Matrix Factorization (SDNMF). With the combination of lo-
cal affinity, distant repulsion, and sparsity constrains imposed
on NMF, SDNMF can discover the intrinsic geometric infor-
mation of the pixels and use it to discriminate the mixed spec-
tral. SDNMF takes advantage of local affinity property of data
to guarantee similar raw data having similar abundance, and
simultaneously ensure that dissimilar data have different es-
timated abundance. As a result, the SDNMF achieves better
performance compared with several state-of-the-art methods
on both synthetic and real datasets.
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