Targeting crime prevention: Identifying communities that generate chronic and costly offenders

Troy Allard
April Chrzanowski
Anna Stewart

AIC Reports
Research and Public Policy Series 123
Targeting crime prevention: Identifying communities that generate chronic and costly offenders

Troy Allard
April Chrzanowski
Anna Stewart

AIC Reports
Research and Public Policy Series

www.aic.gov.au
There has been a great deal of interest among policymakers and criminal justice practitioners in the use of locally targeted strategies to reduce Indigenous overrepresentation in the criminal justice system, particularly in prisons. Approaches such as justice reinvestment, which aims to direct resources away from the prison system towards locally based crime prevention initiatives, have been highlighted a way of reducing this overrepresentation. These approaches are underpinned by research that demonstrates strong links between risks of engagement with the criminal justice system and residential locations.

In an environment of limited resources and competing policy interests, there is a critical need for crime prevention interventions to be cost effective and directed towards those populations and areas with the greatest need. Being able to identify those communities and locations where chronic and persistent offenders are most likely to reside, and understanding the factors that tend to produce the interconnections between place and offending, has enormous potential for the effective targeting of crime prevention initiatives.

This paper provides a valuable contribution to the evidence base supporting effective crime prevention targeting. By showing that chronic offenders, who account for a large proportion of all offences, are not randomly distributed geographically, those locations where interventions and resources can be effectively directed are highlighted. These locations typically have very high levels of social and economic disadvantage, pointing to the need for programs and social interventions that can effect change at the community level. Interventions likely to yield demonstrable outcomes are those that work with families and that operate holistically to address the multiple dimensions of disadvantage. While there is much still to be done to develop and implement interventions with lasting benefits, the methodological approach and findings reported in this paper will go a long way to informing these efforts.

Adam Tomison
Director
Table 12: Offence types committed by trajectory group members

Table 13: Number of criminal justice system events and days supervision based on trajectory group membership

Table 14: Criminal justice system and wider economic and social costs of offender trajectories

Table 15: Postal areas with the highest proportion of chronic offenders

Table 16: Changes of postal area by chronic offenders

Table 17: Postal areas with the highest total costs associated with chronic offenders

Table A1: Postal areas and locations
Acknowledgements

This research was supported by a grant from the Criminology Research Grants, grant number CRG 38/10–11.

The Criminology Research Grants scheme is managed by the Criminology Research Advisory Council. The views expressed in this report are the responsibility of the authors and are not necessarily those of the Council.
Indigenous overrepresentation is the most significant social justice and public policy issue within the Australian criminal justice system. Despite the existence of justice agreements and plans in every jurisdiction over the past decade, the gap has continued to widen in every jurisdiction (ABS 2012a). Indigenous people aged 10 years and over were between 5.6 and 8.4 times more likely than non-Indigenous people to be arrested during 2009–10 (ABS 2012b). Indigenous youth were 13.4 times more likely than non-Indigenous youth to be under community supervision and 23.9 times more likely to be in youth detention during 2009–10 (AIHW 2011). Indigenous adults were 14.3 times more likely than non-Indigenous adults to be incarcerated during 2011 (ABS 2012a).

Two national policy initiatives are driving attempts to reduce Indigenous disadvantage, including Indigenous overrepresentation in the criminal justice system. The Closing the Gap strategy recognises the need for a long-term approach to reduce Indigenous disadvantage (COAG 2009). The strategy aims to achieve simultaneous improvements in seven areas of life—early childhood, schooling, health, economic participation, healthy homes, safe communities, and governance and leadership. The National Indigenous Law & Justice Framework aims to create safer Indigenous communities (SCAG 2009). One of the main mechanisms proposed to reduce Indigenous overrepresentation as offenders in the criminal justice system is through the use of effective and targeted crime prevention programs. Unfortunately, little publicly available information exists regarding how programs might be targeted to reduce offending by Indigenous peoples.

Frameworks driving crime prevention

Two of the main frameworks that shape our understanding of offending and that may be used to target interventions aimed at reducing offending are the criminal careers paradigm, and crime and place. This section provides an overview of each approach, highlighting how they improve our understanding of offending and may be used to target interventions.

Criminal careers framework

The criminal careers framework has been described as one of the most visible areas of scholarship within criminology (DeLisi & Piquero 2011). Within this field, studies that focus on the nature, pattern and correlates of offending over the life course have been conducted in many jurisdictions (see DeLisi & Piquero 2011). These studies aim to improve
understanding about how offending develops and factors that can potentially be manipulated to hinder initiation, hasten desistence and reduce career length (Blumstein et al. 1986; Piquero et al. 2001, 1999). Several major longitudinal studies have been carried out in the United Kingdom (Piquero, Farrington & Blumstein 2007; Jones, Nagin & Roeder 2001), United States (Chung et al. 2002; Piquero et al. 2001), Canada (LaCourse et al. 2003) and New Zealand (Fergusson, Horwood & Nagan 2000). This research has found that:

• offending peaks in the late teenage years;
• the peak onset age of offending is between eight and 14 years;
• the peak desistence age of offending is between 20 and 29 years;
• the process of desistance operates across all offenders;
• early age of onset predicts a relatively long criminal career duration and the commission of relatively many offences;
• there is marked continuity in offending and antisocial behaviour from childhood into adulthood;
• a small proportion of the population commit a large proportion of all crimes; and
• different types of offences are committed at distinctly different ages.

Criminal careers research has been aided by statistical techniques, such as the Semi-Parametric Group-based Method (SPGM; Nagin & Land 1993). The SPGM identifies different groups, each with their own trajectory, to capture the variation in offending in the data (Kreuter & Muthén 2008). In his review of over 80 studies that employed this technique, Piquero (2008) drew four main conclusions. First, research identifies at least two offender groups—an adolescent-peaked pattern and a chronic offender pattern. The chronic offender pattern includes a small proportion of offenders who account for relatively high proportions of offences. This group begins offending early in life, at high rates, and persists at relatively high rates when the norm seems to be desistence from offending. Research also typically identifies a late-onset chronic group, who begins offending during adolescence and continues offending into adulthood. Second, the trajectory method typically identifies between three and five groups, slightly more in studies using self-reports of offending than official records. Third, a sample size of greater than 500 provides robust categorisation of groups. Finally, there tends to be a low-rate group, a high-rate group and a moderate but declining group.

Knowledge derived from criminal careers research is particularly useful for understanding whether certain groups of offenders should be targeted and when interventions are likely to be most effective. While few trajectory studies have been conducted in Australia, findings indicate that there is a small group of early-onset chronic offenders who account for a large proportion of offending. This group comprises between three percent and 11 percent of offenders and accounts for 27 percent to 33 percent of offences (Allard et al. under review; Livingston et al. 2008; Stewart et al. under review). Not surprisingly, Indigenous Australians are more overrepresented in the early-onset chronic offender group than other offender trajectories. Livingston et al. (2008) found that 50.9 percent of the chronic group were Indigenous offenders, while 25.4 percent of the adolescent limited group and 18.4 percent of the adolescent onset group were Indigenous. Stewart et al. (under review) found that Indigenous peoples were 11.3 times more likely to be in the early onset chronic offender group, with 7.3 percent of all Indigenous peoples in Australia in this group compared with 0.6 percent of non-Indigenous people.

Targeting crime prevention towards potential chronic offenders is likely to be a cost-effective approach. Recent criminal careers research has assessed the costs of individuals on different offender trajectories. Cohen, Piquero and Jennings (2010a) explored costs using ‘bottom-up’ and ‘top-down’ costing approaches. The ‘bottom-up’ approach involved assessing the value of specific cost categories that result from crime, including victim costs, criminal justice system costs and the cost of forgone earnings by the offender. The ‘top-down’ approach was based on the public’s willingness to pay to reduce crime, which produces higher estimates because it includes collateral costs relating to fear of crime (ie crime prevention expenditure, avoidance behaviour and insurance costs) and loss of social cohesion. When costs were applied to individuals in the offender trajectories, the high-rate chronic
offender group constituted 3.1 percent of the sample but over 40 percent of costs. Each high-rate chronic offender was found to cost either US$515,382 or US$1.1m by the time they turned 27 years of age, depending on whether intangible costs were included. In their follow-up study, Cohen, Piquero and Jennings (2010b) used a ‘top-down’ costing approach and examined costs separately based on sex and ethnicity. While a different number of trajectories were identified, 2.8 percent of males were found to be high-rate chronic offenders and they accounted for 37 percent of male offending costs, or in excess of $1.5m each. Although 0.5 percent of females were chronic offenders, they accounted for 49 percent of female offending costs or US$754,440 each. Offending by African-Americans was found to be the most expensive out of any ethnic trajectory group and averaged in excess of US$1.6m for each chronic offender.

Two studies conducted outside the United States have also assessed the costs of crime using ‘bottom-up’ costing approaches. In Australia, Allard et al. (under review) found that an early onset chronic offender group comprised three percent of offenders yet accounted for 26.5 percent of costs, with each early onset chronic offender costing $323,645 in criminal justice system and wider social and economic costs. A second chronic offender trajectory group was also identified, with adolescent onset of offending. This group comprised 1.8 percent of offenders and accounted for 15 percent of costs, with each adolescent onset chronic offender costing $302,034. Piquero, Jennings and Farrington (2011) assessed the costs of offender trajectories based on the Cambridge Study in Delinquency Development, which included convictions of 411 South London males aged 10 to 50 years. The high-rate chronic offender group was found to cost over 10 times as much as other groups, with each offender costing $US95,241.

Unfortunately, it is difficult to target potential chronic offenders because there is a lack of research that differentiates offender trajectories based on risk factors, with no Australian studies. Nevertheless, this group would be ideal candidates for developmental/early intervention. Programs based on this approach target at-risk children, aiming to reduce the number of risk factors and increase the number of protective factors (see Table 1). The effects of risk factors on development appear to be cumulative, interactive and sequential (Farrington 2002; Granic & Patterson 2006). However, the accumulation of multiple risk factors appears to be more important than the acquisition of specific risk factors for the development of offending (Farrington 2002; Howell 2003; Stouthamer-Loeber et al. 2002; Tremblay & LeMarquand 2001; Wasserman & Miller 1998; Wasserman & Seracini 2001). Evidence indicates that offending is much more likely among those who are exposed to or experience greater levels of risk, such as many Indigenous peoples (Bonta, LaPrairie & Wallace-Capretta 1997; Day 2003; Ge, Donnellan & Wenk 2001; Loeber & Farrington 2000; Mason & Windle 2001; Tremblay & LeMarquand 2001; Wasserman & Seracini 2001). Specific forms of developmental/early intervention include parental training, home visiting, daycare/preschool and home/community programs (Farrington & Welsh 2003). While family and social factors are not readily amenable to policy intervention, there is ample evidence that these programs can be cost effective and reduce offending by about 15 percent (Aos, Miller & Drake 2006; Farrington & Welsh 2003).

Crime and place

One approach that may assist with targeting interventions towards individuals on different offender trajectories involves examining the locations where offenders resided when they first had contact with the criminal justice system. Geographic Information System technology is increasingly being recognised as a powerful tool that can be used to enhance organisational decision making, better understand the causes of crime, and target and help assess the impact of crime prevention programs (Anselin et al. 2000; Canter 2000; Hirschfield & Bowers 2001; McEwen & Taxman 1995; Paulsen & Robinson 2004; Taxman & McEwen 1997; Weisburd & McEwen 1997). While the spatial dimensions of data have not previously been explored by criminal careers research, there is reason to believe that offenders may not be randomly distributed geographically.

Studies examining the spatial and temporal distribution of crime are essentially descriptive and typically based on cross-sectional data obtained for short periods of time (Chakravorty & Pelfrey 2000;
<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Risk factors</th>
<th>School context</th>
<th>Life events</th>
<th>Community and cultural factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child factors</td>
<td>Family factors</td>
<td>School context</td>
<td>Life events</td>
<td>Community and cultural factors</td>
</tr>
<tr>
<td>Prematurity</td>
<td>Parental characteristics</td>
<td>School failure</td>
<td>Divorce and family break-up</td>
<td>Socioeconomic disadvantage</td>
</tr>
<tr>
<td>Low birth weight</td>
<td>Teenage mothers</td>
<td>Normative beliefs about aggression</td>
<td>War or natural disasters</td>
<td>Population density and housing conditions</td>
</tr>
<tr>
<td>Disability</td>
<td>Single parents</td>
<td>Deviant peer group</td>
<td>Death of a family member</td>
<td>Urban area</td>
</tr>
<tr>
<td>Prenatal brain damage</td>
<td>Psychiatric disorder, especially depression</td>
<td>Bullying</td>
<td></td>
<td>Neighbourhood violence and crime</td>
</tr>
<tr>
<td>Birth injury</td>
<td>Substance abuse</td>
<td>Peer rejection</td>
<td></td>
<td>Cultural norms concerning violence as acceptable response to frustration</td>
</tr>
<tr>
<td>Low intelligence</td>
<td>Criminality</td>
<td>Poor attachment to school</td>
<td></td>
<td>Media portrayal of violence</td>
</tr>
<tr>
<td>Difficult temperament</td>
<td>Antisocial models</td>
<td>Inadequate behaviour management</td>
<td></td>
<td>Lack of support services</td>
</tr>
<tr>
<td>Chronic illness</td>
<td>Family environment</td>
<td></td>
<td></td>
<td>Social or cultural discrimination</td>
</tr>
<tr>
<td>Insecure attachment</td>
<td>Family violence and disharmony</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor problem solving</td>
<td>Marital discord</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beliefs about aggression</td>
<td>Disorganised</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributions</td>
<td>Negative interaction/social isolation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor social skills</td>
<td>Large family size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low self esteem</td>
<td>Father absence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of empathy</td>
<td>Long-term parental unemployment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alienation</td>
<td>Parenting style</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperactivity/disruptive behaviour</td>
<td>Poor supervision and monitoring of child</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsivity</td>
<td>Discipline style (harsh or inconsistent)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rejection of child</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abuse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lack of warmth and affection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low involvement in child’s activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neglect</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence from these studies indicates that, regardless of the unit of analysis, crime is concentrated in hotspots rather than being randomly distributed (Brantingham & Brantingham 1999; Crow & Bull 1975; Pierce, Spaar & Briggs 1986; Roncek 2000; Sherman, Gartin & Buerger 1989; Weisburd et al. 2004; Weisburd & Green 1994; Weisburd, Maher & Sherman 1992). Sherman, Gartin and Buerger (1989) found that three percent of addresses in their study were responsible for half of the calls to police. Sherman (1995: 36–37) argues that future crime is ‘six times more predictable by the address of the occurrence than by the identity of the offender’.

While there is limited research examining how crime is temporally distributed, available evidence suggests that crime hotspots are relatively stable over time (Griffiths & Chaez 2004; Kubrin & Herting 2003; Weisburd et al. 2004).

While there is less evidence about how offenders are spatially distributed, studies conducted in the United States and United Kingdom focused on the journey to crime indicate that most crimes are committed close to the offender’s place of residence. On average, offenders travelled less than five kilometres from their home address to commit offences (Gabor & Gottheil 1984; Phillips 1980; Rhodes & Conly 1981; Townsley & Sidebottom 2010; Wiles & Costello 2000). Young offenders and black offenders have been found to travel less distance to commit offences (Baldwin & Bottoms 1976; Carter & Hill 1979; Davidson 1984; Phillips 1980; Rand 1986; Reiss & Farrington 1991; Rengert & Wasilchick 1985; Reppetto 1974). When the locations of crimes and place of residence are aggregated, evidence suggests that most offenders commit crimes within their own neighbourhoods. Gabor and Gottheil (1984) found that three-quarters of a stratified random sample of offences in Ottawa during 1981 were committed by residents rather than out of towners or transients. Pyle (1976) found that 61 percent of those arrested for crimes against the person and 48 percent of those arrested for property crimes in Cleveland over a two year period resided in the same census tract as where the crime occurred. Others have found that the proportion of crimes committed by local residents varied based on the kind of area, with crimes in the outer city more likely to be committed by local residents than crimes in the inner city (Hesseling 1992; Wikstrom & Dolmen 1990).

Table 1 (continued)

<table>
<thead>
<tr>
<th>Protective factors</th>
<th>Family factors</th>
<th>School context</th>
<th>Life events</th>
<th>Community and cultural factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child factors</td>
<td>Social competence</td>
<td>Social skills</td>
<td>Above average intelligence</td>
<td>Attachment to family</td>
</tr>
<tr>
<td>Family factors</td>
<td>Supportive caring parents</td>
<td>Family harmony</td>
<td>More than two years between siblings</td>
<td>Responsibility for chores or required helpfulness</td>
</tr>
<tr>
<td>School context</td>
<td>Positive school climate</td>
<td>Pro-social peer group</td>
<td>Responsibility and required helpfulness</td>
<td>Sense of belonging/bonding</td>
</tr>
<tr>
<td>Life events</td>
<td>Meeting significant person</td>
<td>Moving to new area</td>
<td>Opportunities at critical turning points or major life transitions</td>
<td></td>
</tr>
<tr>
<td>Community and cultural factors</td>
<td>Access to support services</td>
<td>Community networking</td>
<td>Attachment to the community</td>
<td>Participation in church or other community group</td>
</tr>
</tbody>
</table>

Source: Homel et al. 1999
The notion that offenders are not randomly distributed geographically is also supported by the findings of studies that have adopted an ecological approach. The ecological environments in which individuals are embedded have been found to exert pervasive influences on behaviour independently of individual factors (Kelling 2005; Kubrin & Weitzer 2003; Oberwittler 2004; Triplett, Gainey & Sun 2003). Research that has adopted an ecological approach is based on aggregate level data such as neighbourhoods (Katzman 1981), cities (Harries 1976), or regions (Dienes 1988) and typically involves the use of widely available Census data (Swartz 2000). There is a large body of research indicating that high crime rates are typically concentrated in small geographical areas characterised by structural disadvantage, including low economic status, poverty, segregation, a high proportion of single parent families, residential instability and a large proportion of racial/ethnic minority groups (Bursik 1986; Oberwittler 2004; Sabol, Coulton & Korbin 2004; Shaw & McKay 1969; Silver & Miller 2004; Swartz 2000; Triplett, Gainey & Sun 2003). In their meta-analysis of 214 studies exploring the macro-level predictors of crime, Pratt and Cullen (2005) found that 11 of the 31 predictors had a high independent mean effect size—strength of non-economic institutions, unemployment (length considered), firearm ownership, percent non-white, incarceration effect, collective efficacy, percent black, religion effect, family disruption, poverty and unsupervised local peer groups. Nine of the predictors were reported as having a medium effect—household activity ratio, social support/truism, inequality, racial homogeneity index, urbanism, residential mobility, unemployment (with age restriction), southern effect and arrest ratio.

Findings suggesting that offenders are not randomly distributed geographically hold great promise for the targeting of not only developmental/early intervention programs but also other forms of crime prevention based on geographic location, such as situational crime prevention and community crime prevention. Situational crime prevention focuses on highly specific problems such as types of offending behaviour and the opportunities in specific environments that facilitate offending at particular times and places (Clarke & Felson 1993). The approach identifies 25 techniques that aim to increase the effort, increase the risks, reduce the rewards, reduce provocations or remove excuses (see Table 2). These techniques are based on opportunity theories of crime including rational choice, routine activities and crime pattern theories, which view crime as a product of the interaction between an individual and the characteristics of the setting (Felson & Clarke 1998). While evaluations that have assessed the impact of situational crime prevention on crime are typically short term and methodologically weak, evidence indicates that this approach can result in reductions in crime (Felson 1997; Eck 2006). Within Australia, this approach has been successfully employed to reduce substance misuse among Indigenous Australians in a range of geographic locations (d’Abbs & Shaw 2008; d’Abbs & Togni 2000; Kennedy 1999; Ray & McFarland 2010; Richards, Rosevear & Gilbert 2011).

Community crime prevention aims to confront crime at a ‘grass roots’ level in particular local contexts to address those factors within that context that may be causing or maintaining crime (Hope 2001; Kelly & Caputo 2006; Labonte 1997). The factors that ecological studies have found to be related to offending are viewed as contributing to, creating or maintaining offending (Oberwittler 2004). This has led to a range of theories and mechanisms being proposed to explain the relationship between structural disadvantage and crime, such as how specific social processes lead to crime (Oberwittler 2004; Sabol, Coulton & Korbin 2004). Some of the interventions based on this approach are focused on the entire community, while others are focused on the individual. Many aim to facilitate the development of social resources so that communities can effectively address problems (Laverack 2001). Although interventions based on this approach are appealing, few studies have explored their impact on offending or there are conflicting findings. International evidence indicates that mentoring and vocational and educational training programs may be effective for reducing offending (Burghardt et al. 2001; Tolan et al. 2008). There is some evidence suggesting that community economic development programs reduce property crimes and that recreational programs may reduce crime (McCord, Widom & Crowell 2001; Sherman et al. 1997). There is insufficient evidence to conclude that community policing, community mobilisation (such as
Neighbourhood Watch) or school after-hours programs reduce crime (Gottfredson, Gottfredson & Weisman 2001; Grinc 1994; Kerley & Benson 2000). While community-based programs operate in many Indigenous communities within Australia, few have been adequately evaluated (see Allard 2011). Available evidence does, however, suggest that night patrols may be an effective way to reduce offending (Blagg 2003; Lui & Blanchard 2001).

One final point that must be considered when focusing on the location of offenders is their mobility. A substantial proportion of the Australian population is mobile and change household address. In 2010, 42 percent of Australians aged over 18 years and who lived in private dwellings had moved within the previous five years, with younger age groups, people renting through private landlords (83%) and the unemployed (62%) more likely to move (ABS 2010). While many of these people may have moved within the same postal area (POA) or Statistical Local Area, this information is not available. Moreover, evidence indicates that individuals are more likely to offend if they have a high number of address changes (Gendreau, Goggin & Little 1996; Hoffman 1994; Worthington, Higgs & Edwards 1999). Therefore, it is essential that research examining where offenders reside explores their mobility. It makes little sense to target government resources and crime prevention resources if hotspots randomly fluctuate over time without intervention (Spelman 1995).

Current study

This project draws on methods and findings from research focused on offender trajectories and crime and place. Findings from trajectory studies indicate that a small proportion of offenders account for a large proportion of offending and costs. While this group of offenders has been retrospectively identified by studies employing trajectory modelling techniques, there is difficulty identifying chronic offenders prospectively. For example, there is no research that has adequately differentiated between identified trajectory groups based on risk and protective factors. Despite this, recent findings indicate that Indigenous Australians are most overrepresented in chronic offender groups. Research focused on crime and place has found that the geographic locations of crime and offenders are not randomly distributed.

Given these findings, the project aimed to assess whether communities could be identified that generated chronic offenders and carried substantial cost burdens associated with offending. If such communities could be identified, they would be ideal locations to target early/developmental crime prevention programs. These programs target potential offenders and aim to move them off of a chronic offender trajectory by addressing risk and protective factors. Evidence indicated that these programs are a cost-effective way of reducing offending for non-Indigenous populations. Communities generating chronic and costly offenders would also be ideal locations to target situational and community crime prevention interventions. These interventions aim to reduce crime by altering the immediate or contextual environment in which crime occurs. In assessing whether communities generate chronic offenders, the project focused on the offenders first recorded residential postal area when they had contact with the criminal justice system but acknowledges the importance of, and examines the extent of, offender residential mobility. There were six research questions addressed by this project:

- How many distinct offender trajectories can be identified?
- What are the demographic, offence and criminal justice system event characteristics associated with trajectory group membership?
- What are the costs of offender trajectories?
- Are some communities more likely than others to generate chronic offenders?
- How residentially mobile are chronic offenders?
- Which communities carry the cost burden of the chronic offenders?
Table 2 Twenty-five situational crime prevention techniques

<table>
<thead>
<tr>
<th>Increase the effort</th>
<th>Increase the risks</th>
<th>Reduce the rewards</th>
<th>Reduce provocations</th>
<th>Remove excuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering column locks and immobilisers</td>
<td>Take routine precautions—go out in a group at night, leave signs of occupancy, carry phone ‘Cocoon’ neighbourhood watch</td>
<td>Off-street parking Gender-neutral phone directories Unmarked bullion trucks</td>
<td>Efficient queues and polite service Expanded seating Soothing music/muted lights</td>
<td>Rental agreements Harassment codes Hotel registration</td>
</tr>
<tr>
<td>2. Control access to facilities:</td>
<td>8. Reduce anonymity: Taxi driver IDs ‘How’s my driving?’ decals School uniforms</td>
<td>13. Identify property: Property marking Vehicle licensing and parts marking Cattle branding</td>
<td>Controls on violent pornography Enforce good behaviour on soccer field Prohibit racial slurs</td>
<td>23. Alert conscience: Roadside speed display boards Signatures for customs declarations ‘Shoplifting is stealing’</td>
</tr>
<tr>
<td>3. Screen exits:</td>
<td>4. Deflect offenders:</td>
<td>5. Control tools/Weapons:</td>
<td>6. Control drugs and alcohol:</td>
<td></td>
</tr>
<tr>
<td>Ticket needed for exit</td>
<td>Street closures Separate bathrooms for women Disperse pubs</td>
<td>‘Smart’ guns Disabling stolen cell phones Restrict spray paint sales to juveniles</td>
<td>‘Breathalyzers in pubs Server intervention Alcohol-free events</td>
<td></td>
</tr>
<tr>
<td>7. Assist natural surveillance:</td>
<td>8. Reduce anonymity:</td>
<td>9. Utilise place managers:</td>
<td>10. Strengthen formal surveillance:</td>
<td></td>
</tr>
<tr>
<td>Entry phones Electronic card access Baggage screening</td>
<td>Taxi driver IDs ‘How’s my driving?’ decals School uniforms</td>
<td>CCTV for double decker buses Two clerks for convenience stores Reward vigilance</td>
<td>Red light cameras Burglar alarms Security guards</td>
<td></td>
</tr>
<tr>
<td>10. Strengthen formal surveillance:</td>
<td>11. Identify property:</td>
<td>12. Disrupt markets:</td>
<td>13. Deny benefits:</td>
<td>14. Neutralise peer pressure:</td>
</tr>
<tr>
<td>Red light cameras Burglar alarms</td>
<td>Property marking Vehicle licensing and parts marking Cattle branding</td>
<td>Monitor pawn shops Controls on classified ads License street vendors</td>
<td>Link merchandise tags Graffiti cleaning Speed humps</td>
<td>‘Idiots drink and drive’ ‘It’s OK to say No’ Disperse troublemakers at school</td>
</tr>
<tr>
<td>15. Deny benefits:</td>
<td>16. Reduce frustrations and stress:</td>
<td>17. Avoid disputes:</td>
<td>18. Reduce emotional arousal:</td>
<td>19. Neutralise peer pressure:</td>
</tr>
<tr>
<td>‘Breathalyzers in pubs Server intervention Alcohol-free events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Cornish & Clarke 2003: 90
In this section, an overview of the longitudinal offender cohort that was used in this project will be provided. The five phases involved in the research will then be outlined. First, the process used to establish the offender cohort will be examined. Second, the analytical strategy adopted to assess the number of offender trajectories and their characteristics will be described. Third, the costing approach that was used to assess the cost of individuals in the different offender trajectories will be outlined. Next, the approach that was used to assess whether some communities were more likely to generate chronic offenders and to explore the extent of residential mobility will be reported. Finally, the approach that was adopted to determine whether the communities that generated the most costly chronic offenders could be identified will be outlined.

Longitudinal offender cohort

The longitudinal offender cohort consisted of all individuals born in 1990 who committed an offence (other than traffic and breach offences) in Queensland and were formally cautioned, referred by police to a youth justice conference, had a finalised youth court appearance, or had a finalised adult court appearance when aged 10 to 20 years old. There were 14,171 individuals in the final research sample, of which 9,949 (70.2%) were male and 1,895 (13.4%) were identified as Indigenous. The average age of offending onset was 16.21 years (SD=2.38). These individuals were responsible for 71,413 offences. Most offences committed by cohort members were property or public order related (see Table 3).

For these offences, individuals had 33,455 criminal justice system events (see Table 4). A criminal justice system event involves a caution or police-referred conference taking place or a finalised youth/adult court appearance. Of the 14,171 individuals, 7,215 had at least one caution, 824 had at least one police-referred conference, 2,337 had at least one finalised youth court appearance and 12,097 had at least one finalised adult court appearance. About one-third (34.5%) of individuals only had contact with the youth justice system, with two-fifths (43.2%) only having contact with the adult system and one-fifth (22.3%) having contact with both the youth and adult systems (see Table 5).
Table 3 Offences committed by cohort members

<table>
<thead>
<tr>
<th>Offence types</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theft and related offences</td>
<td>20,651</td>
<td>28.9</td>
</tr>
<tr>
<td>Unlawful entry with intent/burglary, break and enter</td>
<td>10,585</td>
<td>14.8</td>
</tr>
<tr>
<td>Public order offences</td>
<td>10,479</td>
<td>14.7</td>
</tr>
<tr>
<td>Property damage and environmental pollution</td>
<td>8,069</td>
<td>11.3</td>
</tr>
<tr>
<td>Offences against justice procedures, government security and government operations (excluding breaches)</td>
<td>5,763</td>
<td>8.1</td>
</tr>
<tr>
<td>Illicit drug offences</td>
<td>4,870</td>
<td>6.8</td>
</tr>
<tr>
<td>Acts intended to cause injury</td>
<td>3,567</td>
<td>5.0</td>
</tr>
<tr>
<td>Dangerous or negligent acts endangering persons</td>
<td>2,051</td>
<td>2.9</td>
</tr>
<tr>
<td>Deception and related offences</td>
<td>1,984</td>
<td>2.8</td>
</tr>
<tr>
<td>Miscellaneous offences</td>
<td>1,139</td>
<td>1.6</td>
</tr>
<tr>
<td>Weapons and explosives offences</td>
<td>863</td>
<td>1.2</td>
</tr>
<tr>
<td>Sexual assault and related offences</td>
<td>638</td>
<td>0.9</td>
</tr>
<tr>
<td>Robbery, extortion and related offences</td>
<td>553</td>
<td>0.8</td>
</tr>
<tr>
<td>Abduction and related offences</td>
<td>194</td>
<td>0.3</td>
</tr>
<tr>
<td>Homicide and related offences</td>
<td>7</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>71,413</td>
<td></td>
</tr>
</tbody>
</table>

a: Percentages may not total 100 due to rounding

Table 4 Criminal justice system events involving the cohort (n)

<table>
<thead>
<tr>
<th>Event type</th>
<th>Events</th>
<th>Distinct individuals a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution</td>
<td>9,799</td>
<td>7,198</td>
</tr>
<tr>
<td>Police referred conference</td>
<td>984</td>
<td>822</td>
</tr>
<tr>
<td>Children’s court appearance (finalised)b</td>
<td>6,199</td>
<td>2,130</td>
</tr>
<tr>
<td>Magistrates court appearance (finalised)</td>
<td>15,959</td>
<td>9,201</td>
</tr>
<tr>
<td>District court appearance (finalised)</td>
<td>471</td>
<td>433</td>
</tr>
<tr>
<td>Supreme court appearance (finalised)</td>
<td>43</td>
<td>42</td>
</tr>
<tr>
<td>Total events</td>
<td>33,455</td>
<td>14,171</td>
</tr>
</tbody>
</table>

a: Distinct individuals may have had more than one of each event type

b: Children’s court includes Children’s Court and Children’s Court of Queensland
Research phases

Phase one: Establishing the offender cohort

The offender cohort was created by linking between the cautioning dataset (Queensland Police Service), police referred conferencing dataset (Queensland Police Service), youth court dataset (Department of Communities) and adult court dataset (Department of Justice and Attorney General). The process used has been described elsewhere (Allard et al. 2009), but involved three steps:

Agencies provided identifying information (but not case information) to the Office of Economic and Statistical Research (Queensland Treasury) and case information (but not identifying information) to Griffith University. These datasets included agency identification numbers that were used to link between the identifying and case information datasets.

Within the Office of Economic and Statistical Research, a researcher linked within and between the datasets based on identifying information, including name, surname, date of birth and sex. Each unique person was assigned a Griffith University identification code. Agency and Griffith University identification codes were then released to Griffith University. Griffith University identification codes were assigned to the case information to identify distinct individuals for the purposes of analyses.

After linking, there were 90,785 offences finalised across systems, involving 16,558 distinct individuals. The data were cleaned to resolve inconsistencies between systems in the core demographic variables of age, sex and Indigenous status, and missing values were propagated from the known values in another record based on the balance of probabilities. After resolving discrepancies, sex was missing for 11 (0.1%) individuals and Indigenous status was missing for 1,217 (7.4%) individuals. All missing data for sex related to contacts that individuals had with the adult court system. Most individuals who did not have an assigned Indigenous status were from either the cautioning dataset or the adult court dataset. Individuals who were not identified as Indigenous were assumed to be non-Indigenous.

<table>
<thead>
<tr>
<th>Event type</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution only</td>
<td>3,799</td>
<td>26.8</td>
</tr>
<tr>
<td>Youth Justice Conference only</td>
<td>104</td>
<td>0.7</td>
</tr>
<tr>
<td>Youth Court only</td>
<td>436</td>
<td>3.1</td>
</tr>
<tr>
<td>Adult Court only</td>
<td>6,123</td>
<td>43.2</td>
</tr>
<tr>
<td>Caution and Youth Justice Conference</td>
<td>150</td>
<td>1.1</td>
</tr>
<tr>
<td>Caution, Youth Justice Conference and Youth Court</td>
<td>78</td>
<td>0.6</td>
</tr>
<tr>
<td>Caution, Youth Justice Conference, Youth Court and Adult Court</td>
<td>261</td>
<td>1.8</td>
</tr>
<tr>
<td>Caution, Youth Justice Conference and Adult Court</td>
<td>140</td>
<td>1.0</td>
</tr>
<tr>
<td>Caution and Youth Court</td>
<td>307</td>
<td>2.2</td>
</tr>
<tr>
<td>Caution, Youth Court and Adult Court</td>
<td>800</td>
<td>5.7</td>
</tr>
<tr>
<td>Caution and Adult Court</td>
<td>1,663</td>
<td>11.7</td>
</tr>
<tr>
<td>Youth Justice Conference and Youth Court</td>
<td>14</td>
<td>0.1</td>
</tr>
<tr>
<td>Youth Justice Conference, Youth Court and Adult Court</td>
<td>23</td>
<td>0.2</td>
</tr>
<tr>
<td>Youth Justice Conference and Adult Court</td>
<td>52</td>
<td>0.4</td>
</tr>
<tr>
<td>Youth Court and Adult Court</td>
<td>221</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>14,171</td>
<td></td>
</tr>
</tbody>
</table>

a: Percentages may not total 100 due to rounding
Given that an offender cohort was being created, all offences that resulted in a not guilty (n=1,445) finding were excluded because they did not represent offending. Two offence types were also excluded from the dataset. Traffic and related offences (n=15,077) were excluded because most are dealt with by Infringement Notice and individuals can elect to have a court hearing. Breaches of court orders (n=2,850) were excluded because they may not represent additional offending. After these exclusions, there were 71,413 offences committed by 14,171 offenders.

Phase two: Exploring the number of trajectory groups and their characteristics

A dataset was created to address the first research question How many distinct offender trajectories can be identified? The dataset had the annual number of offences for each of the 14,171 offenders in the cohort based on their age at the time of offence. To calculate age at time of offence, the individual’s date of birth and the earliest recorded date for each offence were used because the actual date of offence was not recorded. For cautioning and conferencing data, the date of offence was usually the date when the offence was reported to police. For court matters, the earliest date was either the date of lodgement or the earliest court appearance relating to the matter.

Nagin and Land’s (1993) SPGM was used to model offence frequency annually over the life course when individuals were aged 10 to 20 years old. The SPGM analysis was undertaken using the SAS procedure ‘PROC TRAJ’ developed by Jones, Nagin and Roeder (2001). As the majority of individuals in the cohort offended for short periods of time, there was an excess of data cells with zero counts for offending. Because of this, the offending count data was distributed according to the Zero-Inflated Poisson distribution (Fergusson, Horwood & Nagan 2000; Nagin 1999). Additionally, several individuals had high annual offence counts that exceeded 20 offences in a given year (n=279; 2%). These outliers were scaled to enable the trajectory analysis to converge.

Given the non-parametric nature of the procedure being used, it was necessary to specify the number of trajectory groups being modelled and their form prior to analysis. Thus, the development of the final model was necessarily iterative, with the process being repeated a number of times to determine the parameters that produced the best fit for the data. The final number of trajectories for the model was determined based on both the Bayesian Information Criterion (BIC) and the average probability of group assignment. The BIC increases as the model fit improves (incorporating the penalty for increases in the number of trajectories), while the average probability of assignment is higher for models with more distinct trajectories (Nagin 1999; Piquero 2008). Thus, the model with the optimum number of trajectories needed to have a high BIC (relative to other model options) and an average probability of group membership that was as close to one as possible.

The trajectory group membership that was assigned to individuals was then linked to case information to explore the second research question What are the demographic, offence, and criminal justice system event characteristics associated with trajectory group membership? Demographic characteristics examined included sex and Indigenous status. The types of offences committed by individuals in each trajectory group were explored. Criminal justice system event characteristics examined included type of event and number of days sentenced to community based supervision and detention/incarceration.

Phase three: Assessing the costs of offender trajectories

Two approaches were used to address the third research question What are the costs of offender trajectories? Criminal justice system costs of individuals in the trajectory groups were assigned based on the interactions they had with the criminal justice system, while wider social and economic costs of crime were assigned by updating Rollings’ (2008) assessment and applying costs based on offence type.
Criminal justice system costs

Criminal justice system costs were estimated based on the costs of criminal justice system events and supervision costs. These were assessed using the Transactional and Institutional Cost Analysis (Carey, Waller & Marchand 2006). This approach views offenders as consuming resources when they have transactions with, and are processed through, the criminal justice system. One strength of this approach is that it enables an assessment to be made about the cost of resources invested by multiple agencies. Although the Transactional and Institutional Cost Analysis is frequently used to assess costs at the micro level, the approach was used to determine the average cost of practices as individuals flowed through the criminal justice system.

Figure 1 presents a schematic diagram of the transactions individuals have as they flow through the criminal justice system. The average cost of police, court and supervision practices were assessed for youth and adults. Average police costs were calculated based on publicly available information and an internal police time-in-motion study, which assessed how long particular practices took for youth and adults. Five steps were used to assess the cost of police responses:

- 35 percent of the 2010–11 police budget was directed towards crime management ($624,796,550; QPS 2011a, 2009).
- Examination of police practices indicated that 9.3 percent of offences were dealt with by ‘other’ and this proportion was subtracted from the crime management budget (leaving $566,440,552; QPS 2011b).
- The number of youths and adults cautioned, conferenced and processed through the courts during 2010–11 were examined and total hours was calculated based on how long practices took in the Queensland Police Service time-in-motion study (DJAG 2011a, 2011b; QPS 2011b, 2005).
- The average hourly rate was assessed as $245.1, calculated by dividing the remaining crime management budget ($566,440,552) by the total time police spent processing offenders (2,311,118 hours).
- The cost per event was calculated by multiplying the length of time that processes took police by the hourly rate.
Average costs per court finalisation in the Childrens, Magistrates, District and Supreme courts were based on figures provided in the Report on Government Services (Productivity Commission 2012). The average cost of youth conferencing was determined by dividing the overall youth conferencing operating budget ($9.3m) by the number of referrals (n=2,614; Department of Communities 2009). The cost of community-based supervision and detention for youth was assessed based on the most recent costing information which was available (Bleijie 2012; CAIR 2008), while these costs were assessed for adults using costs provided in the Report on Government Services (Productivity Commission 2012).

Figure 1 presents average costs for the main transactions that individuals had with the criminal justice system. Transaction costs were added to calculate the cost per finalisation. For example, police cautioning only involves police expenditure (either $1,275 per youth or $1,103 per adult). However, the cost of individuals appearing in court requires police expenditure ($3,701 per youth or $2,696 per adult), court expenditure (depending on the level of the court) and possibly supervision costs, which were assessed per day.

As information was only available about the number of days that individuals were sentenced to various forms of supervision, it was assumed that youth would serve 60 percent of their detention sentence, while adults would serve 80 percent of their incarceration sentence before being released. These assumptions were based on advice provided by the relevant agencies about the applicable average proportions that would be subject to early release. Consistent with practice in Queensland, individuals were assumed to serve 100 percent of time sentenced to community-based orders. Where more than one court outcome was recorded at an event because several offences were finalised, it was assumed that sentences would be served concurrently and the most serious outcome for the event was used.

Wider economic and social costs

Estimating the wider economic and social costs of crime is challenging and there is considerable variability in these costs depending on whether a bottom-up or top-down approach is used. While bottom-up approaches include a range of specified tangible and intangible costs, they result in lower estimates than top-down approaches (ie willingness to pay). Given the absence of published estimates based on willingness to pay in the Australian context, a bottom-up approach was used that involved updating an assessment about what these costs were in Australia during 2005. Rollings (2008) estimated the average economic and social costs of crime for 12 offence categories. These costs included medical costs, costs of property loss or damage, costs of lost output and intangible costs. Costs that were excluded from the study were justice system costs, costs related to providing government services to victims, and security industry and insurance administration costs. The study acknowledged that there was likely to be considerable variation in costs within each offence category, so offence characteristics were taken into account when assessing costs. For example, most offences against the person involved assessing the number that would have resulted in injury requiring medical treatment or hospitalisation. Property offences were assessed separately for residential and commercial offences and took into account the number of offences that resulted in insurance claims.

Table 6 presents the social and economic costs of crime based on an update of Rollings’ (2008) assessment. In mapping the costs from the original assessment to the Australian Standard Offence Classification (ASOC), assault was mapped to two ASOC categories Acts intended to cause injury and Dangerous and negligent acts intended to cause injury. Six offence types in the original assessment were subsumed by two other ASOC codes—Theft and related offences included four theft types and Property damage and environmental pollution included criminal damage and arson. Where more than one offence category in the original assessment was included in one ASOC code, average costs for the offence code were calculated. Average costs were based on ratios developed to account for the frequency of each offence category in Queensland during 2010–11 (QPS 2011b). The 2005 cost of each offence was then adjusted for inflation to determine the 2012 cost (RateInflation 2011).
Unfortunately, the average cost per offence type was not assessed by Rollings (2008) for six ASOC categories. Offences that were not costed include:

- illicit drug offences (n=4,870; 6.8%);
- offences against justice procedures, government security and government operations (n=5,763; 8.1%);
- miscellaneous offences (n=1,139; 1.6%);
- weapons and explosives offences (n=863; 1.2%);
- and
- abduction and related offences (n=194; 0.3%).

Therefore, costs for these offences were not able to be included in the projected costs for the offender trajectories discussed in this report.

Table 6 Mapping cost of offences from Rollings’ assessment to ASOC

<table>
<thead>
<tr>
<th>2005 assessment in Australia</th>
<th>ASOC</th>
<th>Cost per offence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 ($)</td>
<td>2012 ($)</td>
<td></td>
</tr>
<tr>
<td>Homicide</td>
<td>Homicide and related offences</td>
<td>1,915,323</td>
</tr>
<tr>
<td>Sexual assault</td>
<td>Sexual assault and related offences</td>
<td>7,500</td>
</tr>
<tr>
<td>Assault</td>
<td>Acts intended to cause injury</td>
<td>1,695</td>
</tr>
<tr>
<td>Dangerous or negligent acts endangering persons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robbery</td>
<td>Robbery, extortion and related offences</td>
<td>2,300</td>
</tr>
<tr>
<td>Burglary</td>
<td>Unlawful entry with intent</td>
<td>2,869</td>
</tr>
<tr>
<td>Theft of vehicles (n=4,095)</td>
<td>Theft and related offences</td>
<td>1,241</td>
</tr>
<tr>
<td>Thefts from vehicles (n=4,949)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shop theft (n=14,453)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other theft (n=7,563)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraud</td>
<td>Fraud, deception and related offences</td>
<td>21,370</td>
</tr>
<tr>
<td>Criminal damage (n=12,565)</td>
<td>Property damage and environmental pollution</td>
<td>3,357</td>
</tr>
<tr>
<td>Arson (n=232)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Rollings 2008

Phase four: Exploring whether some communities generated chronic offenders and their residential mobility

Given that chronic offenders are likely to commit a high number of offences and be costly, the fourth research question was Are some communities more likely to generate chronic offenders than others? To explore this question, the proportion of the population in each POA who were chronic offenders was explored, based on each offender’s first recorded residential POA. Chronic offenders included individuals in the moderate and two chronic offender trajectory groups who had a higher level of contact with the criminal justice system and committed more offences than members of the two low trajectory groups. From the trajectory analysis, 2,234 offenders were classified as chronic (as described in Characteristics of Offender Trajectory Groups in the Results section). Chronic offenders represented 15.8 percent of offenders, but accounted for 67 percent of offences. Indigenous offenders were much more likely to be chronic offenders than non-Indigenous offenders, with two-fifths (39.9%) of Indigenous offenders compared with less than one-fifth (15.8%) of non-Indigenous offenders classified as chronic offenders. Therefore, exploring whether some communities are more likely to generate chronic offenders than others may be an efficient way of targeting crime prevention interventions to reduce offending, crime, victimisation and Indigenous overrepresentation in the criminal justice system.

The geographic measure used to assess community location was the postcode where the offender
resided when they first had contact with the criminal justice system. Each offender had their usual residential postcode recorded for each offence in the cautioning, conferencing, youth court and adult court datasets. These corresponded to POAs, which are the Australian Bureau of Statistics’ (ABS) equivalent of the Australia Post defined postal codes (ABS 2006a). The first recorded POA was selected in recognition of the importance placed on the early years of life from a developmental perspective and the cumulative nature of risk and protective factors.

While the ABS provides a number of standardised methods for measuring geographic location along with concordance files, POAs were used as the base measure of geographic location. POAs were used because the standardised geographical measures do not correspond directly to POAs. Alternating to these standardised measures would necessitate the random allocation of chronic offenders within single POAs to one of multiple standardised divisions. While probability derived concordance tables enable this to occur, doing so would introduce another layer of uncertainty into the data.

In Queensland, there were 432 POAs in 2006 (4000 to 4999). POAs differ substantially in both geographical size and population. The average size of a POA was 4,080.2km2 (SD=16,621.7km2). The minimum area covered by a POA was just 0.4km2 (4229—Bond University). However, the maximum area covered by a POA was 219,415km2. The POA that had the largest geographic size was 4871. This POA is located in far north Queensland and includes 58 different locations, one of which was the remote Aboriginal community Aurukun (see Appendix 1).

ABS statistics from the census were used to determine the population of each POA who were 16 years old in 2006 (ABS 2011a). These data were used because they were the most recent census data available at the POA level, covered the time when individuals born in 1990 would have been 16 years old and the average age of onset for offending was 16.21 years old. There was considerable variability in the base population of the 432 POAs, ranging from zero to 1,675 16 year olds (M=130.03, SD=187.14). POAs that had a population of 10 or fewer 16 year olds in 2006 (23.8% of postal areas) were excluded from analyses. This was because of the difficulties associated with small cell size and the random allocation process used by the ABS to prevent individual identification. After excluding these POAs, there were 329 POAs that had a population of more than 10 (M=169.42, SD=198.73, medium=96, maximum=1,675). The POA with the highest population of 16 year olds was 4350, which included the regional town of Toowoomba. It is obvious from these figures that the population is not evenly distributed across the postal areas.

ArcGIS was used to map the proportion of the population in POAs who were chronic offenders to determine whether some communities appeared to generate chronic offenders. POAs were categorised into four groups based on the proportion of the population who were chronic offenders using an average split (see Table 7). Additionally, the top 10 percent of POAs with the highest proportions of chronic offenders (33 POAs) were identified as locations where targeted interventions could be explored.

Because the project focused on the residential POA of chronic offenders when they first had contact with the criminal justice system, it was important to consider the potential role that offender residential mobility may have on limiting the usefulness of the findings for targeting interventions towards particular locations. The fifth research question was How residentially mobile are chronic offenders? To

<table>
<thead>
<tr>
<th>Category</th>
<th>Population chronic offenders (%)</th>
<th>Postal areas (n)</th>
<th>Postal areas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>0</td>
<td>74</td>
<td>22.5</td>
</tr>
<tr>
<td>Low</td>
<td>0.1–4.72</td>
<td>150</td>
<td>45.6</td>
</tr>
<tr>
<td>High</td>
<td>4.73–9.09</td>
<td>72</td>
<td>21.9</td>
</tr>
<tr>
<td>Very high</td>
<td>>9.09</td>
<td>33</td>
<td>10.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>329</td>
<td>100.0</td>
</tr>
</tbody>
</table>
address this question, the number of times that chronic offenders changed POAs was examined.

Phase five: Exploring which communities carry the burden of chronic offenders

The sixth research question was Which communities carry the burden of chronic offenders? As detailed in Cost of Offender Trajectory Groups in the Results section, individuals in the moderate and chronic trajectory groups cost, on average, between $58,116 and $262,057. While representing 3.8 percent of the population and 15.8 percent of offenders, they accounted for 68.6 percent of costs. Therefore, exploring whether communities could be identified that generate the most costly chronic offenders may provide additional information that will be useful for targeting crime prevention programs towards particular communities. This question was addressed by assigning the longitudinal individual costs to the POA where they first had contact with the criminal justice system. POAs were then ranked based on total cost and the top 10 percent most costly locations were examined. Total costs per chronic offender were established using the costing methodology described in Phase Three: Assessing the Costs of Offender Trajectories in the Methods section. These costs were aggregated for each POA. Once again, only the 329 POAs that had a population of more than 10 were included and costs were assigned to the offender’s usual residential POA when they first had contact with the criminal justice system. Across the 329 POAs with more than 10 individual, the average total cost of chronic offenders was $808,491 (SD=$1,441,216; range $0 to $14,041,855).
In this section, the results of the project are presented in five subsections addressing each of the research questions. First, the number of offender trajectory groups that were identified will be reported. Second, the demographic, offence and criminal justice system event characteristics of the trajectory groups will be discussed. Third, the overall cost of and cost per individual in the offender trajectories will be examined. Next, whether some communities were more likely to generate chronic offenders than others and the extent of residential mobility will be explored. Finally, the 10 percent ranked communities that carried the cost burden of chronic offenders will be identified.

Number of offender trajectory groups

The first research question sought to determine how many distinct offender trajectories could be identified in the criminal careers of individuals in the 1990 cohort. Models with two to seven trajectories were created and the BIC and average group membership probabilities for each of the models were examined (see Table 8). The optimal model included five or six groups, as the seven group model had false convergence. The six group model had a higher value for BIC, while the five group model had a relatively high value for BIC and a slightly higher probability of group membership (>0.75).

Examination of the form of the trajectories indicated

<table>
<thead>
<tr>
<th>Number of groups</th>
<th>BIC (1)</th>
<th>BIC (2)</th>
<th>AIC</th>
<th>Avg. group membership probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-105950.3</td>
<td>-105935.9</td>
<td>-105890.5</td>
<td>0.96</td>
</tr>
<tr>
<td>3</td>
<td>-103267.5</td>
<td>-103247.1</td>
<td>-103182.8</td>
<td>0.91</td>
</tr>
<tr>
<td>4</td>
<td>-102299.8</td>
<td>-102273.4</td>
<td>-102190.3</td>
<td>0.92</td>
</tr>
<tr>
<td>5</td>
<td>-101663.7</td>
<td>-101631.3</td>
<td>-101529.2</td>
<td>0.79</td>
</tr>
<tr>
<td>6</td>
<td>-101049.7</td>
<td>-101010.1</td>
<td>-100885.4</td>
<td>0.78</td>
</tr>
<tr>
<td>7</td>
<td>-100810.5</td>
<td>-100764.9</td>
<td>-100621.3</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Table 8 Bayesian Information Criterion and average group membership probability of trajectory models
that the six group model split the chronic offender trajectory into two groups, but did not add to interpretation. Consequently, the model with the smaller number of groups was selected for ease of interpretation (Fergusson, Horwood & Nagan 2000). Estimates of each component were examined to ascertain the form (ie cubic, quadratic, linear and intercept terms) of the five trajectories. Most terms were significant at the 0.5 level and all trajectories had a significant cubic term (see Table 9), so all five groups were assumed to be described best by cubic functions because of the possible impacts of truncation at age 20 and incarceration for this older group.

Figure 2 presents the five offender trajectories identified by the model. Individuals in groups one and two offended less frequently, with individuals in group one averaging 2.1 offences (SD=1.4) and individuals in group two averaging 1.9 offences (SD=1.5). Group one peaked during adolescence when individuals were aged 14 to 16 years, while group two had adult onset where individuals were over 17 years of age. These groups accounted for most of the offender cohort, with 29.3 percent of the cohort in group one and 54.9 percent in group two. Group one was labelled ‘adolescent peaking (low)’ while group two was labelled ‘adult onset (low)’. The third group involved early onset and high levels of offending (M=46.9 offences; SD=46.2 offences), with offending peaking when individuals were 15 years of age. This group included three percent of the cohort and was labelled ‘early onset (chronic)’. Group four had adolescent onset when youth were aged 11 to 14 years with moderate offending. On average, each individual in group four was convicted of 11.2 offences (SD=6.2). This group included 10.5 percent of the cohort and was labelled ‘adolescent onset (moderate)’. The fifth group had adolescent onset of offending when individuals were aged 12 or 13 years, with high levels of offending that peaked when individuals were 20 to 21 years of age. On average,
individuals in the fifth group were convicted of 35.0 offences (SD=29.7). Only a small proportion of the cohort was in this group (2.2%), which was labelled ‘adolescent onset (chronic)’.

Characteristics of offender trajectory groups

The second research question sought to determine What are the demographic, offence and criminal justice system event characteristics associated with trajectory group membership? Table 10 presents the demographic characteristics of the offender trajectory groups. Almost one-quarter (24.5%) of the population offended, although one-fifth (20.6%) were in the two low offending groups. Between 75 percent and 80 percent of each trajectory group were male, with the exception of the adolescent peaking (low) group, which comprised nearly 60 percent males. About one-tenth of the two low offending groups were Indigenous, while one-third of the two adolescent onset groups and nearly half of the early onset (chronic) offender group were Indigenous.

The number of offences committed by members of each trajectory group and types of offences committed are presented in Tables 11 and 12. Individuals in the two low offending trajectories accounted for 84.2 percent of offenders and 33 percent of offences. Members of the moderate group were 10.5 percent of offenders and were responsible for 23.4 percent of offences. Members of the two chronic groups were 5.2 percent of offenders and committed 43.7 percent of offences.

Visual inspection of the data (see Table 12) indicated that members of the adolescent peaking (low) trajectory were more likely than members of the overall offender cohort to have committed theft and related offences and less likely to have committed unlawful entry offences. Members of the adult onset (low) group were more likely to have committed public order offences, offences against justice procedures and dangerous or negligent acts.
endangering persons. They were less likely to have committed theft and related offences, unlawful entry offences and property damage offences. Members of the two chronic groups were more likely to have committed unlawful entry offences. Additionally, members of the early onset (chronic) group were more likely to have committed theft and related offences and were less likely to have committed public order offences.

Table 10 Demographic characteristics of offending trajectories

<table>
<thead>
<tr>
<th>Trajectory group</th>
<th>Offenders</th>
<th>Male</th>
<th>Indigenous</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>G1 Adolescent peaking—low</td>
<td>4,159</td>
<td>29.3</td>
<td>2,394</td>
<td>57.6</td>
</tr>
<tr>
<td>G2 Adult onset—low</td>
<td>7,778</td>
<td>54.9</td>
<td>5,824</td>
<td>74.9</td>
</tr>
<tr>
<td>G3 Early onset—chronic</td>
<td>428</td>
<td>3.0</td>
<td>336</td>
<td>78.5</td>
</tr>
<tr>
<td>G4 Adolescent onset—moderate</td>
<td>1,488</td>
<td>10.5</td>
<td>1,138</td>
<td>76.5</td>
</tr>
<tr>
<td>G5 Adolescent onset—chronic</td>
<td>318</td>
<td>2.2</td>
<td>257</td>
<td>80.8</td>
</tr>
<tr>
<td>Total</td>
<td>14,171</td>
<td></td>
<td>9,949</td>
<td>70.2</td>
</tr>
</tbody>
</table>

a: Percentages may not total 100 due to rounding
b: Total estimated population of 16 year olds in 2006: 57,954 (ABS 2011a)

Table 11 Offences committed by each trajectory group

<table>
<thead>
<tr>
<th>Trajectory group</th>
<th>Offenders</th>
<th>Offences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%a</td>
</tr>
<tr>
<td>G1 Adolescent peaking—low</td>
<td>4,159</td>
<td>29.3</td>
</tr>
<tr>
<td>G2 Adult onset—low</td>
<td>7,778</td>
<td>54.9</td>
</tr>
<tr>
<td>G3 Early onset—chronic</td>
<td>428</td>
<td>3.0</td>
</tr>
<tr>
<td>G4 Adolescent onset—moderate</td>
<td>1,488</td>
<td>10.5</td>
</tr>
<tr>
<td>G5 Adolescent onset—chronic</td>
<td>318</td>
<td>2.2</td>
</tr>
<tr>
<td>Total</td>
<td>14,171</td>
<td></td>
</tr>
</tbody>
</table>

a: Percentages may not total 100 due to rounding
Table 12 Offence types committed by trajectory group members

<table>
<thead>
<tr>
<th>ANZSOC offence type</th>
<th>G1 Adolescent peaking—low</th>
<th>G2 Adult onset—low</th>
<th>G3 Early onset—chronic</th>
<th>G4 Adolescent onset—moderate</th>
<th>G5 Adolescent onset—chronic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Theft and related offences</td>
<td>3,319</td>
<td>37.2</td>
<td>2,564</td>
<td>17.5</td>
<td>7,351</td>
<td>36.6</td>
</tr>
<tr>
<td>Unlawful entry with intent/burglary, break and enter</td>
<td>750</td>
<td>8.4</td>
<td>431</td>
<td>2.9</td>
<td>5,111</td>
<td>25.5</td>
</tr>
<tr>
<td>Public order offences</td>
<td>1,212</td>
<td>13.6</td>
<td>4,462</td>
<td>30.5</td>
<td>1,249</td>
<td>6.2</td>
</tr>
<tr>
<td>Property damage and environmental pollution</td>
<td>1,055</td>
<td>11.8</td>
<td>987</td>
<td>6.7</td>
<td>2,481</td>
<td>12.4</td>
</tr>
<tr>
<td>Offences against justice procedures, government security and government operations (excluding breaches)</td>
<td>375</td>
<td>4.2</td>
<td>1,950</td>
<td>13.3</td>
<td>1,107</td>
<td>5.5</td>
</tr>
<tr>
<td>Illicit drug offences</td>
<td>721</td>
<td>8.1</td>
<td>1,385</td>
<td>9.5</td>
<td>600</td>
<td>3.0</td>
</tr>
<tr>
<td>Acts intended to cause injury</td>
<td>568</td>
<td>6.4</td>
<td>698</td>
<td>4.8</td>
<td>741</td>
<td>3.7</td>
</tr>
<tr>
<td>Dangerous or negligent acts endangering persons</td>
<td>197</td>
<td>2.2</td>
<td>1,218</td>
<td>8.3</td>
<td>179</td>
<td>0.9</td>
</tr>
<tr>
<td>Deception and related offences</td>
<td>119</td>
<td>1.3</td>
<td>388</td>
<td>2.7</td>
<td>459</td>
<td>2.3</td>
</tr>
<tr>
<td>Miscellaneous offences</td>
<td>239</td>
<td>2.7</td>
<td>117</td>
<td>0.8</td>
<td>278</td>
<td>1.4</td>
</tr>
<tr>
<td>Weapons and explosives offences</td>
<td>144</td>
<td>1.6</td>
<td>242</td>
<td>1.7</td>
<td>112</td>
<td>0.6</td>
</tr>
<tr>
<td>Sexual assault and related offences</td>
<td>159</td>
<td>1.8</td>
<td>94</td>
<td>0.6</td>
<td>168</td>
<td>0.8</td>
</tr>
<tr>
<td>Robbery, extortion and related offences</td>
<td>47</td>
<td>0.5</td>
<td>58</td>
<td>0.4</td>
<td>156</td>
<td>0.8</td>
</tr>
<tr>
<td>Abduction and related offences</td>
<td>16</td>
<td>0.2</td>
<td>28</td>
<td>0.2</td>
<td>76</td>
<td>0.4</td>
</tr>
<tr>
<td>Homicide and related offences</td>
<td>2</td>
<td>0.0</td>
<td>4</td>
<td>0.0</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>8,923</td>
<td>14,626</td>
<td>20,069</td>
<td>16,680</td>
<td>11,115</td>
<td>71,413</td>
</tr>
</tbody>
</table>

Note: Shaded indicates that the offence type was included in the assessment of the wider economic and social costs of offending.
Table 13 presents the number of criminal justice system events and days supervision based on trajectory group membership. After taking into account the proportion of the cohort that each offender trajectory group comprised, visual inspection of the data indicated that members of the adolescent peaking (low) trajectory were more likely to have been cautioned and were less likely to have had a court appearance. Members of the adult onset (low) trajectory were less likely to have been cautioned, conferenced or to have had a Children's Court appearance and were more likely to have had a Magistrates Court appearance. Members of the two chronic offender trajectories and the moderate offender trajectory were more likely to have had all criminal justice system events. Members of these three groups were also found to have been sentenced to a higher number of days detention/incarceration and community-based supervision than would have been expected given the proportion of the offender cohort that each group represented.

Cost of offender trajectory groups

The third research question sought to determine the costs of individuals on different offender trajectories. Table 14 presents these costs. Over four-fifths (84.2%) of the cohort were in the two low offending groups, but these groups accounted for less than one-third (30.4%) of total costs. Approximately one-tenth (10.5%) of the cohort were in the adolescent onset (moderate) group, who accounted for 22.4 percent of the costs. Each individual in the moderate group generated a total cost $58,116, with criminal justice system costs accounting for two-thirds (59.9%) of this cost. While 5.2 percent of the cohort was in the two chronic groups, they accounted for 47.3 percent of the total costs. Each individual offender in the chronic groups cost more than three times as much as someone in the moderate group and over 20 times more than individuals in the two low offending groups. On average, each individual in the adolescent onset (chronic) group generated a total cost of $221,602, while each individual in the early onset (chronic) group cost $262,057.
Table 13 Number of criminal justice system events and days supervision based on trajectory group membership

<table>
<thead>
<tr>
<th>Trajectory group</th>
<th>G1 Adolescent peaking—low</th>
<th>G2 Adult onset—low</th>
<th>G3 Early onset—chronic</th>
<th>G4 Adolescent onset—moderate</th>
<th>G5 Adolescent onset—chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Cohort members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Police referred conference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children’s court appearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magistrates court appearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>District court appearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supreme court appearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Youth detention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult incarceration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Youth community-based supervision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult community-based supervision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n*</th>
<th>%</th>
</tr>
</thead>
</table>

- **a:** Percentages may not total 100 due to rounding
- **b:** Children’s court includes Children’s Court and Children’s Court of Queensland
- **c:** Assessed as the most serious outcome for the finalisation
Table 14 Criminal justice system and wider economic and social costs of offender trajectories

<table>
<thead>
<tr>
<th>Group</th>
<th>Cohort members</th>
<th></th>
<th>Justice system costs</th>
<th>Wider economic and social costs</th>
<th>Total costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>Mean ($)</td>
<td>Group costs ($ mil)</td>
<td>% cost</td>
</tr>
<tr>
<td>G1 Adolescent peaking—low</td>
<td>4,159</td>
<td>29.3</td>
<td>4,127</td>
<td>17.16</td>
<td>8.5</td>
</tr>
<tr>
<td>G2 Adult onset—low</td>
<td>7,778</td>
<td>54.9</td>
<td>5,695</td>
<td>44.30</td>
<td>22.0</td>
</tr>
<tr>
<td>G3 Early onset—chronic</td>
<td>428</td>
<td>3.0</td>
<td>130,520</td>
<td>55.86</td>
<td>27.7</td>
</tr>
<tr>
<td>G4 Adolescent onset—moderate</td>
<td>1,488</td>
<td>10.5</td>
<td>34,780</td>
<td>51.75</td>
<td>25.7</td>
</tr>
<tr>
<td>G5 Adolescent onset—chronic</td>
<td>318</td>
<td>2.2</td>
<td>101,497</td>
<td>32.28</td>
<td>16.0</td>
</tr>
<tr>
<td>Total</td>
<td>14,171</td>
<td></td>
<td>14,209</td>
<td>201.35</td>
<td></td>
</tr>
</tbody>
</table>

a: Percentages may not total 100 due to rounding
The extent that communities generated chronic offenders and the level of residential mobility

The fourth research question sought to determine whether some communities were more likely to generate chronic offenders. For the purposes of this analysis, offenders were classified as chronic if they had been identified in the moderate or chronic offender trajectories (15.7% of the offender cohort). Figure 3 graphically displays the proportion of the 16 year old population in each POA identified as chronic offenders. It is evident that chronic offenders are not randomly distributed geographically. About two-thirds of POAs (n=224; 68.1%) had none or a low proportion of the population that were chronic offenders. One-fifth (n=72; 21.9%) of locations were found to have a high proportion of the population who were chronic offenders, where between 5.7 and 9.1 percent of the population were chronic offenders. One-tenth (n=33; 10.0%) had a very high proportion of the population who were chronic offenders, where over nine percent of the population were chronic offenders.

The POAs were then ranked based on the proportion of the population who were chronic offenders. Figure 3 presents the top 10 percent POAs where over nine percent of the population were chronic offenders. While these 33 locations represents 10 percent of all POAs with over 10 individuals aged 16 years old at the time, they accounted for 458 (20.5%) of all chronic offenders. Also presented in this Table is the percentage of 16 year olds in the POA who were Indigenous, the Index of Relative Socio-economic Disadvantage (IRSD) decile and the Australian Standard Geographical Classification—Remoteness Areas. The IRSD is an index developed by the ABS (2006b) that summarises census data about low income, high unemployment and low levels of education. The index scores are presented as deciles, that is, an index score of 1 indicates the postal area is in the 10 percent of most disadvantaged areas in Australia. The Australian Standard Geographical Classification—Remoteness Areas (ABS 2011b) classifies areas into five broad geographical categories based on access to goods and services. These categories include Major Cities, Inner Regional, Outer Regional, Remote and Very Remote.

Examination of the information presented in Table 15 indicates that the majority of these POAs had a high proportion of Indigenous 16 year olds. Twenty-two of the 33 POAs had higher than average (5.38%) populations of Indigenous 16 year olds. In three of these POAs (4713, 4830 and 4876), 100 percent of the 16 year olds were Indigenous. These POAs were also classified by high levels of disadvantage. Ten (30%) were classified as being in the lowest decile of disadvantage (mean=3.36). However, a substantial number of POAs with high proportions of chronic offenders were classified as not disadvantaged. When these POAs are examined, they include the Brisbane City central business district, the inner suburbs of Brisbane and the coastal suburbs around Cairns. A substantial number of POAs (13 of the 33) with high proportions of chronic offenders were classified as remote and very remote. These are areas where it is difficult and costly to deliver goods and services. Additionally, 12 POAs were classified as outer regional. Interestingly, one of the very remote POAs (4730) that had a high proportion of chronic offenders had no officially identified Indigenous 16 year olds (based on the census data) and was not classified as disadvantaged (IRSD decile=6). This POA was in western Queensland and included Longreach.

The fifth research question sought to assess the extent of residential mobility among chronic offenders. On average, each chronic offender had 17.7 (SD=19.5) valid POAs recorded. The number of times that chronic offenders changed postal areas is presented in Table 16. About one-third (31.7%) of chronic offenders only had one POA, while about 32.1 percent had three or more POA changes. Hence, chronic offenders appear to be substantially mobile in terms of the number of times they change residential address after their initial contact with the criminal justice system.
Figure 3 Proportion of chronic offenders by Queensland postal areas
Table 15 Postal areas with the highest proportion of chronic offenders

<table>
<thead>
<tr>
<th>Postal area</th>
<th>% 16 year old population Indigenous</th>
<th>IRSD decile</th>
<th>ASGC-RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4713</td>
<td>100.0</td>
<td>1</td>
<td>Remote Australia</td>
</tr>
<tr>
<td>4890</td>
<td>62.5</td>
<td>1</td>
<td>Very Remote Australia</td>
</tr>
<tr>
<td>4000</td>
<td>0.0</td>
<td>9</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4824</td>
<td>29.0</td>
<td>3</td>
<td>Remote Australia</td>
</tr>
<tr>
<td>4605</td>
<td>45.5</td>
<td>1</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4490</td>
<td>59.1</td>
<td>1</td>
<td>Very Remote Australia</td>
</tr>
<tr>
<td>4714</td>
<td>26.1</td>
<td>1</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4830</td>
<td>100.0</td>
<td>2</td>
<td>Very Remote Australia</td>
</tr>
<tr>
<td>4465</td>
<td>25.0</td>
<td>2</td>
<td>Remote Australia</td>
</tr>
<tr>
<td>4470</td>
<td>10.0</td>
<td>4</td>
<td>Remote Australia</td>
</tr>
<tr>
<td>4849</td>
<td>0.0</td>
<td>2</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4387</td>
<td>0.0</td>
<td>2</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4874</td>
<td>55.8</td>
<td>2</td>
<td>Very Remote Australia</td>
</tr>
<tr>
<td>4852</td>
<td>0.0</td>
<td>6</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4032</td>
<td>5.0</td>
<td>6</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4876</td>
<td>100.0</td>
<td>1</td>
<td>Very Remote Australia</td>
</tr>
<tr>
<td>4825</td>
<td>56.9</td>
<td>4</td>
<td>Remote Australia</td>
</tr>
<tr>
<td>4730</td>
<td>0.0</td>
<td>6</td>
<td>Very Remote Australia</td>
</tr>
<tr>
<td>4183</td>
<td>27.6</td>
<td>2</td>
<td>Inner Regional Australia</td>
</tr>
<tr>
<td>4877</td>
<td>23.5</td>
<td>7</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4888</td>
<td>20.0</td>
<td>1</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4871</td>
<td>53.3</td>
<td>1</td>
<td>Very Remote Australia</td>
</tr>
<tr>
<td>4021</td>
<td>3.2</td>
<td>3</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4614</td>
<td>12.0</td>
<td>1</td>
<td>Inner Regional Australia</td>
</tr>
<tr>
<td>4880</td>
<td>17.5</td>
<td>2</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4895</td>
<td>46.3</td>
<td>1</td>
<td>Remote Australia</td>
</tr>
<tr>
<td>4558</td>
<td>2.4</td>
<td>4</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4355</td>
<td>0.0</td>
<td>3</td>
<td>Inner Regional Australia</td>
</tr>
<tr>
<td>4012</td>
<td>0.0</td>
<td>7</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4390</td>
<td>10.1</td>
<td>5</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4814</td>
<td>10.7</td>
<td>7</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4878</td>
<td>7.1</td>
<td>7</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4612</td>
<td>0.0</td>
<td>6</td>
<td>Outer Regional Australia</td>
</tr>
</tbody>
</table>

Note: POA locations are provided in Appendix 1
Communities carrying the cost burden of chronic offenders

The sixth research question sought to determine which communities carried the cost burden of chronic offenders. Table 17 presents the top 10 percent of POAs identified based on the total cost to the community of chronic offenders; these are graphically presented in Figure 4. When aggregated and totalled, chronic offenders in each POA were found to cost between $2.4 and $14.0m. Despite representing 10 percent of POAs, the top 33 POAs accounted for 40.4 percent of the chronic offenders, 47.0 percent of offences committed by chronic offenders, 50.5 percent of the total cost of chronic offenders and 35.2 percent of the total cost of all offenders in the cohort. These areas differed from the areas with the highest proportion of chronic offenders as these estimates do not take into account total population. Consequently, these POAs have the highest number of chronic offenders but not necessarily the highest concentration of chronic offenders.

A different picture emerged when the costs of chronic offending were examined (see Figure 4). Regional Queensland appears to be carrying the major cost burden of chronic offenders. Almost half of the high-cost POAs were classified as regional. The POA that incurred the highest cost of chronic offenders was 4350, with the cost estimated at over $14m dollars. This POA includes the regional city of Toowoomba. Only three of the areas were classified as remote or very remote. These POAs had high proportions of Indigenous young people and high levels of disadvantage. The cost of crime in these areas is considerable.

Finally, both the concentration of chronic offenders (Top 10% proportion of population chronic offenders) and the cost of chronic offenders (Top 10% total cost of chronic offenders) were mapped to examine the spatial distribution of these postal areas (see Figure 4). Eight POAs were identified that experienced high concentrations of chronic offenders and high costs of chronic offenders. These POAs are predominantly located in north and far north Queensland and contain a high proportion of Indigenous young people. The outer regional POA in Inner South West (Insert D of Figure 4) includes Cherbourg—a large Indigenous community. This map also clearly indicates that the costly POAs include the outer suburbs of Brisbane and the regional areas of Rockhampton, Gladstone and Toowoomba. However, the areas where high rates of chronic offenders are located are predominately in the remote and very remote areas of Queensland.
<table>
<thead>
<tr>
<th>Postal area</th>
<th>Total cost of chronic offenders $</th>
<th>% 16 year old population Indigenous</th>
<th>IRSD decile</th>
<th>ASGC-RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4350</td>
<td>14,041,855.40</td>
<td>5.9</td>
<td>5</td>
<td>Inner Regional Australia</td>
</tr>
<tr>
<td>4870</td>
<td>9,490,998.20</td>
<td>14.2</td>
<td>5</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4814</td>
<td>6,880,943.40</td>
<td>10.7</td>
<td>7</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4500</td>
<td>5,526,594.00</td>
<td>2.4</td>
<td>8</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4605</td>
<td>5,219,528.50</td>
<td>45.5</td>
<td>1</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4740</td>
<td>5,142,393.20</td>
<td>6.8</td>
<td>6</td>
<td>Inner Regional Australia</td>
</tr>
<tr>
<td>4825</td>
<td>4,980,879.60</td>
<td>56.9</td>
<td>4</td>
<td>Remote Australia</td>
</tr>
<tr>
<td>4114</td>
<td>4,486,789.60</td>
<td>7.5</td>
<td>1</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4871</td>
<td>4,433,063.80</td>
<td>53.3</td>
<td>1</td>
<td>Very Remote Australia</td>
</tr>
<tr>
<td>4000</td>
<td>4,145,758.00</td>
<td>0</td>
<td>9</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4680</td>
<td>4,083,81.002</td>
<td>3.6</td>
<td>7</td>
<td>Inner Regional Australia</td>
</tr>
<tr>
<td>4815</td>
<td>4,073,432.80</td>
<td>14.9</td>
<td>5</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4701</td>
<td>3,906,402.20</td>
<td>9.4</td>
<td>4</td>
<td>Inner Regional Australia</td>
</tr>
<tr>
<td>4650</td>
<td>3,870,516.31</td>
<td>3.2</td>
<td>2</td>
<td>Inner Regional Australia</td>
</tr>
<tr>
<td>4300</td>
<td>3,771,011.60</td>
<td>4.9</td>
<td>4</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4700</td>
<td>3,718,443.50</td>
<td>5.8</td>
<td>3</td>
<td>Inner Regional Australia</td>
</tr>
<tr>
<td>4305</td>
<td>3,633,307.60</td>
<td>5.8</td>
<td>3</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4405</td>
<td>3,633,085.00</td>
<td>8.6</td>
<td>5</td>
<td>Inner Regional Australia</td>
</tr>
<tr>
<td>4207</td>
<td>3,287,461.20</td>
<td>5</td>
<td>4</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4655</td>
<td>3,118,401.00</td>
<td>4.4</td>
<td>3</td>
<td>Inner Regional Australia</td>
</tr>
<tr>
<td>4077</td>
<td>3,071,191.40</td>
<td>7.3</td>
<td>1</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4152</td>
<td>2,966,410.00</td>
<td>2</td>
<td>9</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4053</td>
<td>2,909,976.11</td>
<td>2.4</td>
<td>8</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4880</td>
<td>2,687,249.30</td>
<td>17.5</td>
<td>2</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4510</td>
<td>2,644,249.80</td>
<td>5.3</td>
<td>2</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4021</td>
<td>2,604,52.40</td>
<td>3.2</td>
<td>3</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4557</td>
<td>2,601,894.00</td>
<td>1.3</td>
<td>7</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4280</td>
<td>2,598,683.00</td>
<td>2.4</td>
<td>8</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4713</td>
<td>2,530,978.80</td>
<td>100</td>
<td>1</td>
<td>Remote Australia</td>
</tr>
<tr>
<td>4503</td>
<td>2,521,033.00</td>
<td>1.7</td>
<td>7</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4869</td>
<td>2,470,170.80</td>
<td>15.4</td>
<td>6</td>
<td>Outer Regional Australia</td>
</tr>
<tr>
<td>4551</td>
<td>2,467,375.00</td>
<td>2</td>
<td>5</td>
<td>Major Cities of Australia</td>
</tr>
<tr>
<td>4812</td>
<td>2,421,583.60</td>
<td>13.4</td>
<td>4</td>
<td>Outer Regional Australia</td>
</tr>
</tbody>
</table>

a: Also identified as a POA with a high proportion of chronic offenders

Note: POA locations are provided in Appendix 1.
Figure 4: Distribution of total costs for chronic offenders by Queensland postal areas
Figure 5 Top 10 percent of locations based on proportion in population who were chronic offenders and the top 10 percent of most costly high-rate offender postcodes.
In this section, an outline of the rationale for the project will firstly be presented. Second, the findings of the project will be summarised in the context of previous findings. Third, the implications for policy arising from the project will be discussed. Next, the limitations of the research will be reported. The section will conclude by outlining directions for future research.

Rationale for project

This project aimed to assess whether communities that generated chronic offenders and carried substantial cost burdens associated with offending could be identified. If such communities could be identified, costly interventions may be targeted towards these locations to reduce offending, crime, victimisation and Indigenous overrepresentation. The project drew on methods and findings from research focused on offender trajectories and crime and place. Trajectory research finds that there is a small group of chronic offenders who account for a disproportionate amount of offending and costs (Piquero 2008). While this group can be retrospectively identified, research has not adequately been able to prospectively identify individuals who may be on this trajectory based on risk and protective factors. Findings from crime and place research suggest that these offenders are not randomly distributed geographically and highlight the importance of understanding the temporal aspects of locational data such as offender residential mobility (Gabor & Gottheil 1984; Oberwittler 2004; Sabol, Coulton & Korbin 2004; Schwartz 2010; Wiles & Costello 2000). Given these findings, the project firstly explored the number of offender trajectories, their nature and their cost. The project then focused on individuals in the moderate and chronic offender groups and explored how individuals and costs were geographically distributed. The six research questions addressed by the study were:

- How many distinct offender trajectories can be identified?
- What are the demographic, offence and criminal justice system event characteristics associated with trajectory group membership?
- What are the costs of offender trajectories?
- Are some communities more likely to generate chronic offenders than others?
- How residentially mobile are chronic offenders?
- Which communities carry the cost burden of chronic offenders?
Summary of findings

Consistent with Piquero’s (2008) review of trajectory research, five offender trajectory groups were identified. The offending patterns of these groups were similar to those found by prior research. There was an adolescent-peaked group who offended at low levels (29.3% of cohort; 12.5% of offences) and two groups who offended at chronics—early-onset chronic offenders (3.0% of cohort; 28.1% of offences) and adolescent-onset chronic offenders (2.2% of cohort; 15.6% of offences). Additionally, there was an adult-onset group who offended at low levels (54.9% of cohort; 20.5% of offences) and an adolescent onset group who offended at moderate levels (10.5% of cohort; 23.4% of offences). About one-tenth of the two low offending groups were Indigenous, while between one-third and one-half of the moderate and chronic groups were Indigenous. Therefore, targeting offenders in these three groups is likely to be a useful approach for reducing Indigenous overrepresentation. Chronic offenders were more likely to have committed unlawful entry offences and theft and related offences. They were also more likely to have been subjected to each of the criminal justice system events that were examined and found to account for a disproportionate number of days sentenced to detention/incarceration and community-based supervision.

Costs were applied to the five offender trajectory groups and findings were consistent with previous research, with chronic offender trajectory groups found to account for a disproportionate amount of costs. Early onset (chronic) and adolescent onset (chronic) offenders were 5.2 percent of the cohort, but these two types of offenders combined accounted for 47.2 percent of total costs. On average, each chronic offender cost over $220,000 by the time they turned 21 years of age. Approximately one-tenth (10.5%) of the cohort were in the adolescent onset (moderate) group, but 22.4 percent of the costs were accrued by members of this group. Each adolescent onset (moderate) offender cost $58,116 by the time they turned 20 years of age. Four-fifths (84.2%) of the cohort were adolescent peaking (low) or adult onset (low) members, and 30.4 percent of total costs were accrued by members of these groups. On average, each offender in these low offending groups cost $9,535 or $9,971 respectively by the time they turned 21 years old. Differences between the actual costs of the offender trajectories in the current study and previous research may be explained by the length of criminal careers captured by studies, the offences included and costed in the studies and the overall costing method that is applied (Allard et al. under review).

While information about the trajectory groups and their costs provides useful information about the small group of offenders who account for a large proportion of offences, it does not enable crime prevention interventions to be targeted towards chronic and costly offenders. When the moderate and chronic groups were combined as chronic offenders, they represented 3.8 percent of the population and 15.8 percent of offenders. However, they accounted for 67 percent of offences and 68.6 percent of the costs. Because the residential location of chronic offenders may prove useful for targeting interventions, the proportion of the population in each POA who were chronic offenders was explored. The POA where chronic offenders resided when they first had contact with the criminal justice system was used to assign costs because of the emphasis placed on the early years of life by developmental crime prevention and ABS census statistics were used to determine the populations of POAs.

It was evident that chronic offenders were not randomly distributed, with two-thirds (n=224; 68.1%) of POAs having none or less than five percent of the 16 year old population identified as chronic offenders. One-tenth (n=33, 10.0%) of POAs had over nine percent of the population that were chronic offenders and 20.5 percent of chronic offenders came from these POAs. Most of these locations had a high proportion of Indigenous peoples in the population, were outer regional, remote or very remote locations and many faced extreme disadvantage.

Given that the residential POA when offenders first had contact with the criminal justice system was used to assign location, it was considered important to investigate offender residential mobility. About one-third (31.7%) of chronic offenders only had one POA, while one-third (32.1%) had three or more
POA changes. While a significant proportion of chronic offenders were not residentially mobile, overall chronic offenders were substantially mobile in terms of the number of times they changed residential postal code after their initial contact with the criminal justice system.

Finally, the project identified communities that carried the burden of costly chronic offenders. The top 10 percent of POAs were identified based on total cost of chronic offenders and these postcodes were found to account for 40.4 percent of chronic offenders and 50.5 percent of the total cost of chronic offenders. Many of these POAs were located in regional Queensland, with each POA costing between $2.4 and $14.0m.

Implications for policy

The findings from this project indicate that chronic offenders represented a small proportion of offenders (15.9%) but accounted for a large proportion of offences (67.0%) and costs (68.6%). Three-quarters (77.5%) of chronic offenders were male, while one-third (33.8%) were Indigenous. On average, they committed 21.4 offences and had 6.7 finalised criminal justice system events. Chronic offenders were not found to be randomly distributed geographically and there was a substantial cost for some communities. The top 10 percent of POAs, where over nine percent of the population were chronic offenders, accounted for 20.5 percent of chronic offenders. The 10 percent most costly locations accounted for 50.5 percent of the total cost of chronic offenders.

These findings highlight the need for urgent action. Many of the communities where a high proportion of chronic offenders first had contact with the criminal justice system had extreme social and economic disadvantage. As such, these locations may benefit from community-wide programs that target the risk factors for offending by reducing substance abuse and unemployment and improving educational levels and housing conditions (Allard 2010). International evidence indicates that addressing community-wide risk factors through Vocational and Education Training, or community economic development, may reduce offending (Burghardt et al. 2001; McCord, Widom & Crowell 2001; Sherman et al. 1997), While the extent that these programs would reduce offending by Indigenous peoples remains unknown, the Closing the Gap strategy aims to improve educational and employment outcomes for Indigenous peoples (COAG 2009). As such, the current project may provide additional information to assist decisions about which locations should be targeted to most efficiently improve outcomes and reduce Indigenous overrepresentation as offenders in the criminal justice system.

A range of programs targeting the individual and their ecological environment may also be useful for reducing Indigenous overrepresentation. Early/developmental programs include parental training, home visiting, daycare/preschool programs and home/community programs (Farrington & Welsh 2003). Multi-modular programs such as Multi-Systemic Therapy typically focus on the family and the individual's ecological environment to address risk factors occurring in multiple domains simultaneously. These programs could be implemented in locations that were either identified as having high proportions of the population who were chronic offenders or that were identified as costly locations. They could be made available to the entire communities or could be further targeted to individuals using risk assessment tools.

Evidence from meta-analyses indicates that programs targeting the family may reduce offending by between 13.3 percent and 52 percent (Aos et al. 2001; Drake, Aos & Miller 2009; Latimer 2001; Lipsey & Wilson 1998; Woolfenden, Williams & Peat 2002). Programs that adopt a Multi-Systemic Therapy framework reduce offending by between 7.7 percent and 46 percent (Aos et al. 2001; Curtis, Ronan & Borduin 2004; Lipsey & Wilson 1998; Littell, Popa & Forsythe 2005). Whether these programs would result in similar reductions in offending for Indigenous peoples remains unknown. Nevertheless, the POAs identified in the current study might be ideal locations where these interventions could be implemented and rigorously evaluated to determine whether they can have an impact on Indigenous offending.

The identified locations may also be prime sites where situational crime prevention interventions could be implemented. Situational crime prevention
focuses on highly specific problems and the opportunities in specific environments that facilitate problem behaviour (Clarke & Felson 1993). Intervention aims to alter the immediate environment in which crime occurs or address factors within the context that may be causing or maintaining offending. As such, further spatial analysis of offending and crime data should be undertaken for the POAs where a high proportion of the population was found to offend or for the POAs that were found to have a high cost. Additional spatial analysis would enable determination of whether specific forms of offending occur in specific locations. The identification of micro locations would enable interventions to be planned and implemented that manipulate the environment to reduce the opportunities for offending. These interventions can result in real reductions in offending and have proven effective for reducing risk factors related to offending, such as substance abuse within Indigenous communities (Clarke 1997; Eck 2006; Richards, Rosevear & Gilbert 2011).

It must be emphasised that developing and implementing crime prevention interventions in many of the communities would be challenging. Many were disadvantaged and in regional, remote or very remote locations. The crime prevention literature suggests that successful programs have several core features, including:

- highly skilled leaders and staff;
- adequate funding;
- effective coordination and collaboration mechanisms across government and non-government agencies; and
- a high level of community involvement to ensure community acceptance and participation, that local community needs are met and to ensure that interventions are culturally appropriate (AIC 2012; Calma 2008; Cherney & Sutton 2007; Doone 2000; Gillbert 2012; Stacey and Associates 2004).

Even if interventions have these core features, they may still need to overcome the challenges resulting from poor access to services and infrastructure (Schwartz 2010).

Given the apparent usefulness of understanding geographic location for targeting crime prevention resources, other jurisdictions should consider using this approach to target interventions to reduce offending, crime, victimisation in Indigenous overrepresentation in the criminal justice system. A similar place-based approach for targeting resources that is gathering traction internationally and in Australia is justice reinvestment (Allen 2011; Clear 2011; Guthrie, Adcock & Dance 2011; House of Commons 2009; Queensland Government 2011; Schwartz 2010; Young & Solonec 2011). This approach involves using ‘justice mapping’ or ‘prisoner geographies’ to redirect a proportion of corrections budgets to the communities that generated the most costly prisoners. Mapping conducted overseas has enabled million dollar blocks to be identified and evidence is emerging that the approach is an effective way of reducing crime and expenditure on imprisonment (Schwartz 2010). The findings of the current study lend support to this approach, as costly chronic offenders were not found to be randomly distributed. Moreover, the methodology developed in the study may assist jurisdictions to assess the cost of offenders using a justice reinvestment framework.

Limitations of the project

Despite the potential importance of the findings, they should be interpreted in light of seven main limitations. First, the study was based on administrative data which is of variable quality and does not include offending that is not reported to justice agencies or attributed to an offender. Second, the study was not able to take into account cohort attrition (through death or population mobility) or migration into the cohort in assessing the offender trajectories. Taking migration and attrition into account may result in some variation in the final trajectory models identified (Eggleston, Laub & Sampson 2004). Third, the study did not control for the effects of exposure time when assessing the number of offender trajectories. Individuals in the cohort were in detention/incarceration for 62,870 days. When the number of days available for individuals in each offender trajectory group to offend is considered, the two low offender trajectory groups had the most time available to offend (<0.01% of the time). Members of the moderate group were detained/incarcerated for 0.9 percent of the time,
while members of the early onset and adolescent onset chronic groups were detained/incarcerated for 4.0 and 4.6 percent of the time respectively.

Fourth, criminal justice system costs were assessed based on the average cost of finalised events, taking into account how individuals flowed through the system, while the wider social and economic costs were assessed based on an update of Rollings’ (2008) assessment. In assessing criminal justice system costs, average costs were used although costs would vary based on factors such as whether the offender pleaded guilty, the offence type and the location of the offence. The cost of responding to offending in rural and remote areas is likely to be significantly higher for each event and individual than in cities. In assessing wider economic and social costs, six offence types were not assigned a cost. While these offence types could be considered less expensive, there were a large number of offences (32.7%) that were not assigned a cost. Inclusion of these costs would increase the wider economic and social costs of the trajectory groups, but particularly the adult onset (low) and adolescent peaking (low) groups. Members of these two groups had the highest proportions of the six offence categories that were not able to be included in the assessment of cost.

Fifth, the project was reliant on the POA recorded for each chronic offender when they first had contact with the criminal justice system and ABS census population data. Postcode 4000, which includes Brisbane City, was identified as being a location where a high proportion of chronic offenders first resided when they had contact with the system and as a high-cost location. Given the small residential population of this location, it is believed that this location may have been recorded when a residential address was not provided, for offenders who were homeless or for offenders who were detained. Additionally, there was considerable mobility among offenders, with two-thirds of high-risk offenders changing POAs at least once based on their contacts with criminal justice agencies and about one-tenth (9.5%) changing six or more times. However, there was no way of determining how frequently the chronic offenders moved residential address in the years prior to having contact with the criminal justice system or whether changes in POA location were not captured by criminal justice system data.

Sixth, POAs are a very crude approximation for communities. Some POAs are geographically very large with very small populations. Furthermore, while population data were available based on POAs, it should be noted that these are only approximations of POAs and that these data were subject to random allocation processes used by the ABS to prevent individual identification (ABS 2006a). Finally, there were also numerous challenges using the census data. The number of 16 year olds in 2006 was assumed to be an approximation for the cohort population. While the offender cohort would have been 16 years old in 2006, there was no way of determining the attrition from or migration into the cohort.

Directions for future research

Additional research focused on the cost of offender trajectories and considering their geographic distribution is clearly needed to promote the use of this evidence within policymaking environments. The need for this research is apparent given that jurisdictional differences in criminal justice practices, economic conditions, monetary values and geographic locations makes it difficult to generalise findings from one context to another. Moreover, there is considerable difficulty assigning market values to intangible costs and surprisingly little research has adopted a top-down costing approach based on methods such as willingness to pay. Additional research that assesses the costs of crime and assesses intangible costs will enable researchers to develop more valid and reliable cost estimates. The need for research that predicts future offending and differentiates offender trajectories based on risk factors and locations is also essential to further assist targeting of crime prevention programs.
All URLs correct at April 2013

Allard T 2010. Understanding and preventing Indigenous offending, Canberra: Indigenous Justice Clearinghouse, National Justice CEOs Group

Allard T et al. under review. The monetary cost of offender trajectories: Findings from Queensland Australia. Submitted to Journal of Quantitative Criminology

Australian Bureau of Statistics (ABS) 2012b. Recorded crime—Offenders. cat. no. 4519.0. Canberra: ABS

Australian Bureau of Statistics (ABS) 2006a. ABS postal area concordances. cat. no. 2905.0.55.001. Canberra: ABS

Australian Bureau of Statistics (ABS) 2006b. Census of population and housing: Socio-economic indexes for areas (SEIFA), Australia. cat. no. 2033.0.55.001. Canberra: ABS

Department of Justice and Attorney General (DJAG) 2011a.

Department of Justice and Attorney General (DJAG) 2011b.

Doone P 2000. Report on combating and preventing Maori crime. New Zealand: Crime Prevention Unit, Department of Prime Minister and Cabinet

Gurhie J, Adcock F & Dance P 2011. Exploring the feasibility of justice reinvestment in the Australian Capital Territory: ACT: Australian Institute of Aboriginal and Torres Strait Islander Studies

References

Townesley M & Sidebottom A 2010. All offenders are equal, but some are more equal than others: Variation in journeys to crime between offenders. *Criminology* 48(3): 210–222

<table>
<thead>
<tr>
<th>Postcode</th>
<th>Locations</th>
<th>Percent ATSI</th>
<th>IRSD Decile</th>
<th>ARIA category</th>
<th>ASGC category</th>
<th>Target flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>Brisbane Adelaide Street, Brisbane City, Petrie Terrace, Spring Hill</td>
<td>0</td>
<td>9</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Both top 10%</td>
</tr>
<tr>
<td>4012</td>
<td>Nundah, Toombul, Wavell Heights, Wavell Heights North</td>
<td>0</td>
<td>7</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4021</td>
<td>Kippa-Ring</td>
<td>3.25</td>
<td>3</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Both top 10%</td>
</tr>
<tr>
<td>4032</td>
<td>Chermside, Chermside Centre, Chermside South, Chermside West</td>
<td>5</td>
<td>6</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4053</td>
<td>Brookside Centre, Everton Hills, Everton Park, Mcdowall, Mitchellton, Stafford, Stafford Dc, Stafford Heights</td>
<td>2.41</td>
<td>8</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4077</td>
<td>Doolandella, Durack, Inala, Inala East, Inala Heights, Richlands</td>
<td>7.34</td>
<td>1</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4114</td>
<td>Kingston, Logan Central, Logan City Dc, Woodridge</td>
<td>7.47</td>
<td>1</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4152</td>
<td>Camp Hill, Carina, Carina Heights, Carindale</td>
<td>1.99</td>
<td>9</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4183</td>
<td>Amity, Amity Point, Dunwich, North Stradbroke Island, Point Lookout</td>
<td>27.59</td>
<td>2</td>
<td>Highly accessible</td>
<td>Inner regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4207</td>
<td>Alberton, Bahrs Scrub, Bannockburn, Beenleigh, Bellivah, Buccan, Cedar Creek, Eagleby, Edens Landing, Holmview, Logan Village, Luscombe, Mount Warren Park, Stapixelton, Steiglitz, Windaro, Wolffden, Woongoolba, Yarrabilba, Yatala, Yatala Dc</td>
<td>5.04</td>
<td>4</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4280</td>
<td>Jimboomba, North Maclean, South Maclean, Stockleigh</td>
<td>2.42</td>
<td>8</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4300</td>
<td>Augustine Heights, Bellbird Park, Brookwater, Camira, Carole Park, Gailies, Goodna, Springfield, Springfield Central, Springfield Lakes</td>
<td>4.91</td>
<td>4</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>Postcode</td>
<td>Locations</td>
<td>Percent ATSI</td>
<td>IRSD Decile</td>
<td>ARIA category</td>
<td>ASGC category</td>
<td>Target flag</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>4305</td>
<td>Basin Pocket, Brassall, Bremer, Churchill, Coalfalls, East Ipswich, Eastern Heights, Flinders View, Ipswich, Leichhardt, Limestone Ridges, Moores Pocket, Newtown, North Ipswich, North Tivoli, One Mile, Raceview, Sadliers Crossing, Tivoli, West Ipswich, Woodend, Wulkuraka, Yamanto</td>
<td>5.79</td>
<td>3</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4350</td>
<td>Athol, Blue Mountain Heights, Centenary Heights, Charlton, Clifford Gardens, Cotswold Hills, Cranley, Darling Heights, Drayton, Drayton North, East Toowoomba, Finnie, Glenvale, Gowrie Mountain, Harlaxton, Harristown, Kearneys Spring, Middle Ridge, Mount Kynoch, Mount Lofty, Mount Rascal, Newtown, North Toowoomba, Northlands, Prince Henry Heights, Rangeville, Redwood, Rockville, South Toowoomba, Toowoomba, Toowoomba City, Toowoomba Dc, Toowoomba East, Toowoomba South, Toowoomba Village Fair, Toowoomba West, Top Camp, Torrington, Wellcamp, Westbrook, Wilsonton, Wilsonton Heights, Wyalla Plaza</td>
<td>5.91</td>
<td>5</td>
<td>Highly accessible</td>
<td>Inner regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4355</td>
<td>Anduramba, Crows Nest, Emu Creek, Glenaven, Jones Gully, Mountain Camp, Pierces Creek, Pinelands, Plainby, The Bluff, Upper Pinelands</td>
<td>0</td>
<td>3</td>
<td>Highly accessible</td>
<td>Inner regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4387</td>
<td>Brush Creek, Bybera, Coolmunda, Greenup, Inglewood, Mosquito Creek, Terrica, Warroo, Whetstone</td>
<td>0</td>
<td>2</td>
<td>Accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4390</td>
<td>Billa Billa, Calingungee, Callandoon, Goodar, Goondiwindi, Kindon, Lundavra, Wondalli, Wyaga, Yangaburne</td>
<td>10.13</td>
<td>5</td>
<td>Moderately accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4405</td>
<td>Blaxland, Bunya Mountains, Dalby, Ducklo, Grassdale, Pirrinuan, Ranges Bridge, St Ruth, Tipton</td>
<td>8.56</td>
<td>5</td>
<td>Accessible</td>
<td>Inner regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4465</td>
<td>Dunkeld, Forestvale, Mitchell, V Gate, Womailla</td>
<td>25</td>
<td>2</td>
<td>Remote</td>
<td>Remote Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4470</td>
<td>Charleville, Langlo</td>
<td>10</td>
<td>4</td>
<td>Very remote</td>
<td>Remote Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4490</td>
<td>Barringun, Coongoola, Cunnamulla, Cuttaburra, Humieburn, Jobs Gate, Linden, Noorara, Tuen, Widgeegoara, Yowah</td>
<td>59.09</td>
<td>1</td>
<td>Very remote</td>
<td>Very remote Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>Postcode</td>
<td>Locations</td>
<td>Percent ATSI</td>
<td>IRSD Decile</td>
<td>ARIA category</td>
<td>ASGC category</td>
<td>Target flag</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>4500</td>
<td>Bray Park, Brendale, Brendale Bc, Cashmere, Clear Mountain, Joyner, Strathpine, Strathpine Centre, Warner</td>
<td>2.4</td>
<td>8</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4503</td>
<td>Dakabin, Griffin, Kallangur, Kurwongbah, Murrumba Downs, Whiteside</td>
<td>1.65</td>
<td>7</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4510</td>
<td>Beachmere, Bellmere, Caboolture, Caboolture Bc, Caboolture South, Donnybrook, Meldale, Moodlu, Rocksberg, Toorbul, Upper Caboolture</td>
<td>5.29</td>
<td>2</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4551</td>
<td>Aroona, Battery Hill, Bells Creek, Caloundra, Caloundra Dc, Caloundra West, Currimundi, Dicky Beach, Golden Beach, Kings Beach, Little Mountain, Meridan Plains, Moffat Beach, Pelican Waters, Shelly Beach</td>
<td>1.97</td>
<td>5</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4557</td>
<td>Mooloolaba, Mountain Creek</td>
<td>1.27</td>
<td>7</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4558</td>
<td>Cotton Tree, Kuluin, Maroochydore, Maroochydore Bc, Maroochydore Plaza</td>
<td>2.37</td>
<td>4</td>
<td>Highly accessible</td>
<td>Major cities of Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4605</td>
<td>Baril, Bye, Cherbourg, Cloyna, Cobbs Hill, Crownthorpe, Glenrock, Kitoba, Manyung, Merwood, Moffatdale, Moonboomer, Murgon, Oakdale, Redgate, Silverleaf, Sunny Nook, Tablelands, Warnung, Windera, Wooroorooden</td>
<td>45.45</td>
<td>1</td>
<td>Accessible</td>
<td>Outer regional Australia</td>
<td>Both top 10%</td>
</tr>
<tr>
<td>4612</td>
<td>Hivesville, Kawl Kawl, Keysland, Stonelands, Wigton</td>
<td>0</td>
<td>6</td>
<td>Accessible</td>
<td>Outer Regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4614</td>
<td>Neumgna, Upper Yarraman, Yarraman</td>
<td>12</td>
<td>1</td>
<td>Accessible</td>
<td>Inner Regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4650</td>
<td>Aidershot, Antigua, Bauple, Bauple Forest, Beaver Rock, Bidwill, Boonooro, Boonooro Plains, Duckinwillia, Dundathu, Dunmora, Ferney, Glenorchy, Gootchie, Grahams Creek, Granville, Gundiah, Island Plantation, Maaroom, Magnolia, Maryborough, Maryborough Dc, Maryborough West, Mount Urah, Mungar, Netherby, Oakhurst, Owanyilla, Pallas Street Maryborough, Pilerwa, Pioneers Rest, Poona, Prawle, St Helens, Talegalla Weir, Tandora, Teddington, The D imonds, Thinoomba, Tiaro, Tinana, Tinana South, Tinnanbar, Tuan, Tuan Forest, Waikers Point, Yengarie, Yerra</td>
<td>3.2</td>
<td>2</td>
<td>Accessible</td>
<td>Inner Regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>Postcode</td>
<td>Locations</td>
<td>Percent ATSI</td>
<td>IRSD Decile</td>
<td>ARIA category</td>
<td>ASGC category</td>
<td>Target flag</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>4655</td>
<td>Booral, Bunya Creek, Craignish, Dundowran, Dundowran Beach, Eli Waters, Great Sandy Strait, Hervey Bay, Hervey Bay Dc, Kawungan, Nimenbah, Pialba, Point Vernon, River Heads, Scarness, Sunshine Acres, Susan River, Takura, Toogoom, Torquay, Urangan, Urraweeen, Wallieburn, Walligan, Wondunna</td>
<td>4.44</td>
<td>3</td>
<td>Accessible</td>
<td>Inner regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4680</td>
<td>Barney Point, Beecher, Benaraby, Boyne Island, Boyne Valley, Boynedale, Bullyan, Burua, Byellee, Callemondah, Calliope, Clinton, Diglum, Gladstone, Gladstone Bc, Gladstone Central, Gladstone Dc, Gladstone Harbour, Glen Eden, Heron Island, Iveragh, Kin Kora, Kirkwood, Mount Alma, New Auckland, O’Connell, River Ranch, South End, South Gladstone, South Trees, Sun Valley, Tablelands, Tannum Sands, Taragoola, Telina, Toolooa, Ubobo, West Gladstone, West Slow, Wooderson, Wurdong Heights</td>
<td>3.59</td>
<td>7</td>
<td>Accessible</td>
<td>Inner regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4700</td>
<td>Allenstown, Depot Hill, Fairy Bower, Great Keppel Island, Port Curtis, Rockhampton, Rockhampton City, Rockhampton Hospital, The Keppels, The Range, Wandal, West Rockhampton</td>
<td>5.8</td>
<td>3</td>
<td>Highly accessible</td>
<td>Inner regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4701</td>
<td>Berserker, Central Queensland University, Frenchville, Greenisle, Ironpot, Kawana, Koongal, Lakes Creek, Limestone Creek, Mount Archer, Nankin, Nerimbera, Norman Gardens, Park Avenue, Red Hill Rockhampton, Rockhampton Dc, Rockyview, Sandringham, The Common</td>
<td>9.4</td>
<td>4</td>
<td>Highly accessible</td>
<td>Inner regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4713</td>
<td>Woorabinda</td>
<td>100</td>
<td>1</td>
<td>Moderately accessible</td>
<td>Remote Australia</td>
<td>Both top 10%</td>
</tr>
<tr>
<td>4714</td>
<td>Baree, Boulder Creek, Fletcher Creek, Hamilton Creek, Horse Creek, Johnsons Hill, Leydens Hill, Limestone, Moongan, Mount Morgan, Nine Mile Creek, Oakley Creek, Struck Oil, The Mine, Trotter Creek, Walmul, Walterhall, Wura</td>
<td>26.09</td>
<td>1</td>
<td>Accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4730</td>
<td>Camool, Chorregon, Ernestina, Longreach, Maneroo, Morella, Stonehenge, Tocal, Vergemont</td>
<td>0</td>
<td>6</td>
<td>Very remote</td>
<td>Very remote Australia</td>
<td>Top 10% proportion</td>
</tr>
</tbody>
</table>

Table A1: Postal areas and locations
Table A1 Postal areas and locations

<table>
<thead>
<tr>
<th>Postcode</th>
<th>Locations</th>
<th>Percent ATSI</th>
<th>IRSD Decile</th>
<th>ARIA category</th>
<th>ASGC category</th>
<th>Target flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>4740</td>
<td>Alexandra, Alligator Creek, Andergrove, Bakers Creek, Balberra, Balnagowan, Beacnoshield, Belmunda, Blaeks Beach, Cape Hillsborough, Chelona, Cremonra, Dolphin Heads, Dumbleton, Dundula, Dunnrock, East Mackay, Eimeo, Erakala, Foulten, Glenella, Grassstree Beach, Habana, Haliday Bay, Hay Point, Homebush, Mackay, Mackay Caneland, Mackay Dc, Mackay Harbour, Mackay North, Mackay South, Mcewens Beach, Mount Jukes, Mount Pleasant, Munbura, Nindaroo, North Mackay, Ooralea, Paget, Racecourse, Richmond, Rosella, Rural View, Sandiford, Slade Point, South Mackay, Te Kowai, The Leap, West Mackay</td>
<td>6.81</td>
<td>6</td>
<td>Moderately accessible</td>
<td>Inner regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4812</td>
<td>Currajong, Gulliver, Hermit Park, Hyde Park, Hyde Park Castletown, Mundingburra, Mysterion, Pimlico, Rosslea</td>
<td>13.41</td>
<td>4</td>
<td>Accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4814</td>
<td>Aitkenvale, Annandale, Cranbrook, Douglas, Garbutt, Garbutt East, Heatley, Mount Louisa, Murray, Vincent</td>
<td>10.74</td>
<td>7</td>
<td>Moderately accessible</td>
<td>Outer regional Australia</td>
<td>Both top 10%</td>
</tr>
<tr>
<td>4815</td>
<td>Condon, Gumlow, Kelso, Rasmussen</td>
<td>14.88</td>
<td>5</td>
<td>Accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4824</td>
<td>Cloncurry, Oorindi</td>
<td>29.03</td>
<td>3</td>
<td>Very remote</td>
<td>Remote Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4830</td>
<td>Burketown, Doomadgee</td>
<td>100</td>
<td>2</td>
<td>Very remote</td>
<td>Very remote Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4849</td>
<td>Cardwell</td>
<td>0</td>
<td>2</td>
<td>Moderately accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4852</td>
<td>Bingil Bay, Carmoo, Djiru, Garners Beach, Midgeree Bar, Mission Beach, South Mission Beach, Wongaling Beach</td>
<td>0</td>
<td>6</td>
<td>Moderately accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4869</td>
<td>Bentley Park, Edmonton, Mount Peter, Wrights Creek</td>
<td>15.38</td>
<td>6</td>
<td>Accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>Postcode</td>
<td>Locations</td>
<td>Percent ATSI</td>
<td>IRSD Decile</td>
<td>ARIA category</td>
<td>ASGC category</td>
<td>Target flag</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>4870</td>
<td>Aeroglen, Brinsmead, Bungalow, Cairns, Cairns City, Cairns Co, Cairns North, Earlville, Edge Hill, Freshwater, Kamerunga, Kanimbia, Manoora, Manunda, Martynvale, Moorooobool, Parramatta Park, Portsmith, Redlynch, Stratford, Westcourt, Whitfield</td>
<td>14.21</td>
<td>5</td>
<td>Accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% costs</td>
</tr>
<tr>
<td>4871</td>
<td>Almaden, Aloomba, Aurukun, Basilisk, Bellenden Ker, Bellevue, Bombeehta, Boogan, Bramston Beach, Camp Creek, Chiliagoe, Coen, Cowley, Cowley Beach, Cowley Creek, Croydon, Crystalbrook, Currajah, Deeral, Desailly, East Trinity, Edward River, Einasleigh, Fishery Falls, Forsayth, Gamboola, Georgetown, Germantown, Glen Boughton, Green Island, Gununa, Julatten, Kowanyama, Karrimine Beach, Lakeland, Laura, Lockhart, Lower Cowley, Meny Creek, Mirriwin, Moresby, Mount Carbine, Mount Molloy, Mount Mulligan, Mount Surprise, Nychum, Petford, Pormpuraaw, Sandy Pocket, Southedge, Stockton, Thornborough, Utche Creek, Wangan, Warnrubullen, Waugh Pocket, Woopen Creek, Yarrabah</td>
<td>53.28</td>
<td>1</td>
<td>Remote</td>
<td>Very remote Australia</td>
<td>Both top 10%</td>
</tr>
<tr>
<td>4874</td>
<td>Evans Landing, Mapoon, Mission River, Nanum, Napranum, Rocky Point, Trundling, Weipa, Weipa Airport</td>
<td>55.77</td>
<td>2</td>
<td>Very remote</td>
<td>Very remote Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4876</td>
<td>Bamaga, Injinoo, New Mapoon, Seisia, Umagico</td>
<td>100</td>
<td>1</td>
<td>Very remote</td>
<td>Very remote Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4877</td>
<td>Craigie, Killaloe, Mowbray, Oak Beach, Port Douglas, Wangetti</td>
<td>23.53</td>
<td>7</td>
<td>Moderately accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4878</td>
<td>Barron, Caravonica, Holloways Beach, Machans Beach, Smithfield, Yorkeys Knob</td>
<td>7.09</td>
<td>7</td>
<td>Accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4880</td>
<td>Arriga, Bitobohra, Chewko, Glen Russell, Mareeba, Paddys Green</td>
<td>17.46</td>
<td>2</td>
<td>Moderately accessible</td>
<td>Outer regional Australia</td>
<td>Both top 10%</td>
</tr>
<tr>
<td>4888</td>
<td>Evelyn, Kaban, Millstream, Ravenshoe, Turmoulin</td>
<td>20</td>
<td>1</td>
<td>Moderately accessible</td>
<td>Outer regional Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4890</td>
<td>Normanton</td>
<td>62.5</td>
<td>1</td>
<td>Very remote</td>
<td>Very remote Australia</td>
<td>Top 10% proportion</td>
</tr>
<tr>
<td>4895</td>
<td>Bloomfield, Cooktown, Hope Vale, Rossville, Wujal Wujal</td>
<td>46.34</td>
<td>1</td>
<td>Remote</td>
<td>Remote Australia</td>
<td>Top 10% proportion</td>
</tr>
</tbody>
</table>