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Abstract

Gender gaps in the development of mathematical and scientific literacy have important
implications for the general public’s understanding of scientific issues and for the
underrepresentation of women in science, technology, engineering and math (STEM)-related
fields. Data from National Assessment of Educational Progress (NAEP) were subjected to a
meta-analysis to examine whether there were sex differences in mathematics and science
achievement for students in the USA across the period 1990-2011. Results show that there are
were small but stable mean sex differences favoring males in mathematics and science across
the past two decades, with an effect size of d = .10 and .13 respectively for students in twelfth
grade. Furthermore, there were large sex differences in high-achievers, with males being
overrepresented by a factor of over 2:1 at the upper-right of the ability distribution for both
mathematics and science. Further efforts are called for to reach equity in mathematics and
science educational outcomes for all students.
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The issue of sex differences in science and
mathematics achievement continues to capture the
interest of parents, educators, researchers and
policy-makers, with implications for the ways in
which children are educated and encouraged to
pursue their chosen careers (Halpern et al., 2007;
Hyde & Lindberg, 2007). While significant inroads
have been made in recent decades, women continue
to be underrepresented in science, technology,
engineering and math (STEM)-related fields
(Handelsman et al., 2005; National Science
Foundation, 2011), despite the fact that more
women than men now attend college than men
(Alon & Gelbgiser, 2011). Predicted shortfalls for
the USA in the number of science graduates for the
USA relative to other developing nations carry
serious economic and social consequences
(President’s Council of Advisors on Science and
Technology, 2010), and will require broadening the

pool of new entrants into STEM-fields to include
more women in order to meet the growing
demand. Though the exact causal mechanisms
that contribute to sex differences in entering
mathematics and science fields are yet to be fully
understood (Ceci & Williams, 2011; Hanson,
Schaub, & Baker, 1996), many researchers
believe that early sex differences in achievement
at school shape attitudes towards STEM-fields
and self-efficacy beliefs (Halpern et al., 2007;
Newcombe et al, 2009; Wai, Lubinski, &
Benbow, 2009; Wang, Eccles, & Kenny, 2013).
Furthermore, even if they choose not to pursue a
STEM-related profession, students entering
college and university are increasingly required to
have more advanced technical and quantitative
skills. For this reason the emergence of sex
differences in educational achievement of students
is of interest to educational psychologists.
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A key component of any strategy to raise the
representation of women in STEM-fields is to address gender
gaps in mathematics and science outcomes, but the existence
and magnitude of these differences is strongly contested
(Gallagher & Kaufman, 2005; Halpern et al., 2007; Hyde,
Fennema, & Lamon, 1990; Hyde & Linn, 2006; Spelke,
2005; Wai et al., 2009). Much of the empirical research in
this area is somewhat dated (e.g. Hyde, Fennema, & Lamon,
1990). Furthermore, as Hedges and Nowell (1995) point out,
with few exceptions most empirical studies in this area are
subject to selection and sampling biases. Furthermore, as
there are interactions between gender and other sociocultural
factors (Becker & Hedges, 1988; Frieze, 2014; Hyde &
Mertz, 2009; Nowell & Hedges, 1998; Spelke, 2005) these
findings do not necessarily generalize well to the wider
population. Debate about educational issues such as sex-
segregated schooling (Halpern, Eliot et al., 2011), or early
intervention programs to boost mathematics and science
literacy (Hyde & Lindberg, 2007; Newcombe & Frick, 2010)
can only be served by timely and accurate empirical research
into the nature of sex differences in science and mathematics
achievement (Alberts, 2010; Halpern, Beninger, & Straight,
2011). Additionally, if gender gaps are decreasing in
response to cultural and educational changes (Auster & Ohm,
2000; Wood & Eagly, 2012), existing research on sex
differences in educational achievement for mathematics and
science could quickly become dated and require periodic
reassessment (Hyde & Mertz, 2009). We describe the
findings of prior research on sex differences in these
domains, and then extend these findings by reporting a meta-
analysis of sex differences in national science and
mathematical achievement from the National Assessment of
Educational Progress (NAEP) for the years 1990-2011. First,
we review the theoretical frameworks that posit the
emergence of sex differences in quantitative reasoning.

The issue of sex differences in science and mathematics
achievement continues to capture the interest of parents,
educators, researchers and policy-makers, with implications
for the ways in which children are educated and encouraged
to pursue their chosen careers (Halpern et al., 2007; Hyde &
Lindberg, 2007). While significant inroads have been made
in recent decades, women continue to be underrepresented in
science, technology, engineering and math (STEM)-related
fields (Handelsman et al., 2005; National Science
Foundation, 2011), despite the fact that more women than
men now attend college than men (Alon & Gelbgiser, 2011).
Predicted shortfalls for the USA in the number of science
graduates for the USA relative to other developing nations
carry serious economic and social consequences (President’s
Council of Advisors on Science and Technology, 2010), and
will require broadening the pool of new entrants into STEM-
fields to include more women in order to meet the growing
demand. Though the exact causal mechanisms that
contribute to sex differences in entering mathematics and
science fields are yet to be fully understood (Ceci &
Williams, 2011; Hanson, Schaub, & Baker, 1996), many
researchers believe that early sex differences in achievement
at school shape attitudes towards STEM-fields and self-
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efficacy beliefs (Halpern et al., 2007; Newcombe et al., 2009;
Wai, Lubinski, & Benbow, 2009; Wang, Eccles, & Kenny,
2013). Furthermore, even if they choose not to pursue a
STEM-related profession, students entering college and
university are increasingly required to have more advanced
technical and quantitative skills. For this reason the
emergence of sex differences in educational achievement of
students is of interest to educational psychologists.

A key component of any strategy to raise the
representation of women in STEM-fields is to address gender
gaps in mathematics and science outcomes, but the existence
and magnitude of these differences is strongly contested
(Gallagher & Kaufman, 2005; Halpern et al., 2007; Hyde,
Fennema, & Lamon, 1990; Hyde & Linn, 2006; Spelke,
2005; Wai et al., 2009). Much of the empirical research in
this area is somewhat dated (e.g. Hyde, Fennema, & Lamon,
1990). Furthermore, as Hedges and Nowell (1995) point out,
with few exceptions most empirical studies in this area are
subject to selection and sampling biases. Furthermore, as
there are interactions between gender and other sociocultural
factors (Becker & Hedges, 1988; Frieze, 2014; Hyde &
Mertz, 2009; Nowell & Hedges, 1998; Spelke, 2005) these
findings do not necessarily generalize well to the wider
population. Debate about educational issues such as sex-
segregated schooling (Halpern, Eliot et al., 2011), or early
intervention programs to boost mathematics and science
literacy (Hyde & Lindberg, 2007; Newcombe & Frick, 2010)
can only be served by timely and accurate empirical research
into the nature of sex differences in science and mathematics
achievement (Alberts, 2010; Halpern, Beninger, & Straight,
2011). Additionally, if gender gaps are decreasing in
response to cultural and educational changes (Auster & Ohm,
2000; Wood & Eagly, 2012), existing research on sex
differences in educational achievement for mathematics and
science could quickly become dated and require periodic
reassessment (Hyde & Mertz, 2009). We describe the
findings of prior research on sex differences in these
domains, and then extend these findings by reporting a meta-
analysis of sex differences in national science and
mathematical achievement from the National Assessment of
Educational Progress (NAEP) for the years 1990-2011. First,
we review the theoretical frameworks that posit the
emergence of sex differences in quantitative reasoning.

Theoretical Perspectives on Sex Differences in
Quantitative Reasoning

While reviews of intelligence testing studies find no
evidence for sex differences in general intelligence (Halpern
& Lamay, 2000; Neisser et al., 1996), consistent patterns of
sex differences have been observed for more specific
components of cognitive ability (Halpern, 2011; Kimura,
2000). For example, women show greater proficiency with
verbal ability and language tasks while men demonstrate
higher performance on tasks that tap visuospatial abilities
(Halpern & Lamay, 2000). Sex differences have also been
documented in quantitative reasoning (our present focus),
which include tasks that assess mathematical and scientific
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skills (Halpern et al., 2007; Wai et al., 2009). A number of
theoretical perspectives have been proposed by researchers to
explain why sex differences in quantitative reasoning might
emerge; these include both biological and psychosocial
contributions. While a full critique of all of these theoretical
perspectives is beyond the scope of this study, the most
prominent and well-established perspectives may be
categorized as  biological, social/environmental, or
psychobiosocial theories.

Biological Theories of Sex Differences

Sex hormones have been proposed as an
explanation for group differences between males and females
(Collins & Kimura, 1997; Kimura, 2000), as sex hormones
exert an influence on the organization and development of the
human brain before birth (Hines, 2006), as well as playing an
activational role at different points in maturation (Hines,
1990). Associations have been found between digit ratio - a
marker of prenatal androgen exposure - and some cognitive
tasks (Collaer, Reimers, & Manning, 2007), though evidence
has been mixed. However most research on biological
contributions to sex differences has focuses on differences in
sex hormone production, which increases with the onset of
puberty. Since this also coincides with a widening of the
gender gap in quantitative reasoning during adolescence and
early adulthood (Hyde et al., 1990), there is an intuitive
appeal to such an explanation. While initial interest by
researchers into the contributions of sex hormones such as
androgens to sex differences in quantitative reasoning was
high (Kimura & Hampson, 1994), research findings have
found mixed support with some studies finding no
association while other studies observing that endogenous
hormone levels explain very little variance in individual
performance (Halari et al., 2005; Puts et al., 2010).

Another purported biological contribution to sex
differences in quantitative reasoning comes from
evolutionary psychology. Darwin (1871) first proposed that
sexual selection as a result of evolutionary pressures has led
to a differentiation in the roles of men and women, a theme
that has been expanded upon by evolutionary psychology to
propose an alternate explanation for why sex differences in
quantitative reasoning emerge (Archer, 1996; Geary, 1996).
In the past, it was adaptive for males to develop and hone
spatial skills for navigation and hunting (Buss, 1995), leading
to the development of greater visuospatial ability in males.
This in turn lays down the foundation for the development of
quantitative reasoning through a variety of mechanisms
including differing social roles and sex-typing of children’s’
play activities (Caplan & Caplan, 1994; Geary, 1996, 2010).
Furthermore, the traditionally feminine roles of caring for
others and sensitivity to emotions may have been adaptive,
resulting in a tendency for women to focus on people over
things (Su, Rounds, & Armstrong, 2009), which Hyde (2014)
argued may decrease motivation to acquire quantitative skills
and pursue a STEM-based career. A common theme in such
arguments is an interaction between biology and
environment, rather than a strictly deterministic role of
biology.

Social and Environmental Contributions

Although biological factors may make a modest
contribution to sex differences, many theorists argue that
psychological and social factors exert a greater influence over
the course of a life time. One such theory is Eagly and
Wood’s social-role theory (Eagly, 1987; Eagly & Wood,
1999), which proposes that any psychological sex differences
arise from the distribution of men and women’s roles in
society. The gendered division of labor between men and
women encourages the development of instrumental and
achievement-oriented traits in men, and expressive and
communal-oriented traits in women. Such a position is also
compatible with gender schema theory (Bem, 1981), which
proposes that children develop an internal schema about the
sex-typing of interests and behavior, and that they are
motivated to behave in a manner consistent with their internal
sex-role identity (Martin & Ruble, 2004). From an early age
children learn to categorize things as inherently masculine or
feminine (Kagan, 1964), including school subjects like
mathematics and science (Nosek et al., 2009). These form the
foundation for sex-typing of interests and activities, which
facilitate the development of specific cognitive abilities. Nash
(1979) formalized this as a sex-role mediation explanation for
cognitive sex differences, theorizing that masculine
identification leads to cultivation of spatial, mathematical and
scientific skills (Reilly & Neumann, 2013; Signorella &
Jamison, 1986).

Another prominent theory was put forward by Caplan
and Caplan (1994), who argued that traditionally “masculine”
play activities promote the development of spatial ability by
encouraging the practice and application of spatial skills
(Serbin, Zelkowitz, Doyle, Gold, & Wheaton, 1990). Other
theorists argue that gender conformity pressures also play an
affective role in developing one’s talents. Highly sex-typed
individuals are motivated to keep their behavior consistent
with internalized sex-role standards and norms, while those
low in sex-typing show greater cognitive and behavioral
flexibility (Bem, 1975; Martin & Ruble, 2004; Spence,
1984). This has implications for success in academic domains
that are traditionally male-dominated, such as science and
mathematics (Eccles, 2007). Conversely, as we see changes
in the segregation of men and womens’ roles and increasing
gender equality, we might also see a diminishing of sex
differences in these areas over time (Hyde, 2014).

Psychobiosocial Theories of Sex Differences

While theorists may be divided over the relative share
of nature and nurture in the emergence of sex differences in
cognitive abilities, there is a growing consensus that both
make a meaningful contribution and neither in isolation
cannot explain sex differences (Wood & Eagly, 2013).
Indeed, it may be impractical to separate a specific biological
and social component and study them in isolation, as their
effects are reciprocal in nature (Halpern, 2011). Many
theorists have therefore adopted psychobiosocial models for
explaining the development of sex differences (Halpern &
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Tan, 2001; Hausmann, Schoofs, Rosenthal, & Jordan, 2009);
these incorporate elements of biological, psychosocial and
sociocultural factors to explain group differences between
males and females at the population level.

While these theories offer perspectives on why sex
differences in quantitative reasoning may be found, it is also
important to consider the many ways in which males and
females are alike. Hyde (2005) has proposed the gender
similarities hypothesis, which argues that men and women
are more similar than different. Specifically, it hypothesizes
that sex differences in cognition are either small in magnitude
or nonexistent. While this hypothesis is not supported for
language (Lynn & Mikk, 2009; Stoet & Geary, 2013) and
spatial abilities (Voyer, Voyer, & Bryden, 1995) where sex
differences are moderately large, the gender similarities
hypothesis may be compatible with the existence of sex
differences in quantitative reasoning, as these tend to be
somewhat smaller in magnitude (Hyde et al., 1990). However
the gender similarities hypothesis would be incompatible
with sex differences that are moderate or large in magnitude,
such as a gender imbalance in the sex ratio of high achieving
students in mathematics and science (Benbow, 1988; Hedges
& Nowell, 1995). It is also a hypothesis that is can easily be
put to the test, by examining the performance of men and
women in tests that tap quantitative reasoning skills.

Previous Meta-Analyses of Sex Differences in
Mathematics and Science

Meta-analysis of national testing data by Hedges
and Nowell (1995) from several decades of assessment
(1960s — 1990’s) revealed small mean differences favoring
males in mathematics and science performance (ranging from
d = +.03 to d = .26 for mathematics, and d = +.11 to d = +.50
for science). Although mean sex differences might play an
important role in the underrepresentation of women in
STEM-fields, other researchers have noted that the
distribution of performance in a number of cognitive domains
is more variable for males than females (Feingold, 1992;
Hyde, 2005; Machin & Pekkarinen, 2008). Even if there were
no differences in the average performance of males and
females on a specific ability test, greater variance in the male
group would result in an overrepresentation in the extreme
tails of the distribution (Feingold, 1992; Halpern et al., 2007,
Turkheimer & Halpern, 2009), such as the intellectually
gifted from which many STEM-researchers hail (Wai,
Cacchio, Putallaz, & Makel, 2010). For example, sex
(male:female) ratios of students at the 95 percentile in the
above-mentioned datasets ranged from 1.5 to 2.4 in
mathematics, and 2.5 to 7.0 in science achievement across
samples (Hedges & Nowell, 1995). This can translate to a
disparity in educational outcomes, and some researchers
argue that sex differences in variability may be more
important than the mean differences (Feingold, 1995;
Humphreys, 1988; Machin & Pekkarinen, 2008).

The greater male variability hypothesis can be
examined through calculation of the variance ratio (VR),

defined as the ratio of male variance to female variance
(Feingold, 1992; Hedges & Nowell, 1995; Turkheimer &
Halpern, 2009). A variability ratio of 1.00 indicates that
males and females are equal in variance. VR values less than
1.00 indicate that females show more variability than males,
while VR values greater than 1.00 reflect greater male
variability (Priess & Hyde, 2010). Feingold (1994) argues
that values between .90 and 1.10 ought to be regarded as
negligible (i.e. homogeneity of variance), and this practice is
adopted herein.

More recently, Hyde et al. (2008) presented data from a
subset of the National Assessment of Educational Progress
(NAEP), a nationally representative probability sample drawn
from all 50 states of the USA. The advantage of this sampling
method is that national NAEP data is a reliable population
level-estimate of student performance, reflecting the
demographic traits of the general population of students.
Although individual state and national performance data was
not available at the time, Hyde and colleagues obtained data
from a selection of ten states across Grades 2 though 11.
Mean sex differences were small (d’s from -.02 to .06). Hyde
(2009) has characterized these differences as ‘trivial’ in size
and others have used this research to argue that sex
differences are now no longer found in modern samples
(Hyde & Mertz, 2009; Lindberg, Hyde, Petersen, & Linn,
2010).

Although the analysis of Hyde et al. (2008) was
conducted using the most recent information available at the
time, a key limitation of their methodology is that only a ten-
state subset of the national dataset was analyzed. Hedges and
Nowell (1995) argued there are limitations to the use of
samples that show a selection bias, because the conclusions
they yield may be erroneous if attempting to generalize to the
wider population (Becker & Hedges, 1988; Spelke, 2005;
Stumpf, 1995). In particular, this may affect the magnitude of
any observed gender gap, as literature suggests an interaction
between student and socioeconomic background for many
cognitive abilities (Hanscombe et al, 2012; Levine,
Vasilyeva, Lourenco, Newcombe, & Huttenlocher, 2005).
National assessments of the NAEP are also drawn from both
public and private schools, and thus may better reflect the
demographic composition of students enrolled in USA
educational institutions than analysis of only public school
data.

The national test data from the NAEP is now publicly
available for researchers, providing a broader sampling of
students than was available at the time to Hyde et al.(2008).
We present an analysis of national NAEP performance for
boys and girls, allowing for an empirical test of claims of sex
differences in mathematics for USA students in the present
day. Furthermore, because data is now available across
several decades, it is possible to examine temporal trends
across the year of assessment, as well as developmental
trends across grade level of students (Hyde et al., 2008;
Lindberg et al., 2010). While the NAEP assesses mathematics
more regularly, periodic national testing of science
performance makes it possible to assess gender gaps in this



SEX DIFFERENCES IN MATHEMATICS AND SCIENCE

domain as well. Sex differences in science achievement may
also play a role in the decision of individuals to pursue a
science-related profession.

We focused on four key research questions for the
domains of mathematics and science. Firstly, are there sex
differences in overall mathematics and science achievement
for modern samples of students in the USA, and is the gap
diminishing over time? Sociocultural theories of sex
differences would predict a decline in the magnitude of sex
differences over time, while biological and psychobiosocial
theories would be compatible with stability in effect sizes.

Secondly, do males show greater variability in
performance than females as predicted by biological theories?
Thirdly, if there are sex differences in means and in variance,
what is their combined contribution to the proportion of
males and females attaining an ‘advanced’ proficiency
standard in mathematics and science achievement? Finally, if
there are sex differences in science achievement, are they
present for all of the three content areas assessed (earth
science, physical sciences, life sciences)? These research
questions also provide a test of the sex differences and
similarities hypothesis, which would predict that effect sizes
are small in magnitude.

Method

National Assessment of Educational Progress (NAEP)
Datasource

The NAEP is a project of the National Center for
Education Statistics (NCES), part of the U.S. Department of
Education. NAEP conducts assessments across a range of
subjects, including reading, writing, mathematics, history,
civics, geography and science. Each subject area is assessed
periodically, and the most frequently assessed subjects are
reading, mathematics, and science. National and state
performance in each assessment is reported publicly in a
series of documents titled “The Nation’s Report Card” which
provides a review of major trends using language accessible
to parents, educators, and policy makers
(http:/mationsreportcard.gov/ ). These form part of the main
NAEP assessment, which uses a modern mathematics and
science curriculum with large sample sizes and frequent
assessments. A secondary category of assessment is the
NAEP long term trends (LTT) assessment of mathematics,
which samples students using an earlier curriculum
framework from the 1970’s onward. The LTT assesses more
basic mathematical content, such as numbers, shapes,
measurement and probability, while the main assessment also
includes algebra, geometry and problem solving.
Additionally, the LTT restricts students to hand calculations,
which limits the depth of complexity for assessment items.
Although useful information can be obtained from the long-
term trend assessments, it fails to adequately assess students’
knowledge of more advanced mathematical content included
in the main assessment frameworks and is sampled less
frequently than the main assessment. As such, it was deemed

unsuitable for analysis, and only the main assessment data
was reported in the main article. However published reports
of the LTT long-term assessments show a consistent gender
gap in favor of males in mathematics for students at age 13
and 17 that has remained essentially unchanged since
assessments began (Rampey, Dion, & Donahue, 2009).

The results of NAEP assessments are made freely
available to researchers for secondary analysis via the NAEP
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/
).The target population for NAEP national assessments is
made up of all students in any educational institution (from
both private and public schooling), currently enrolled in the
target grade (4, 8, and 12). School and student responses are
appropriately weighted to draw an estimate of the target
population that reflects student demographics (for example,
specific ethnic and socioeconomic groups). This may mean
that some students and schools will be over-sampled or
under-sampled as appropriate. These weights are applied to
draw an estimate of national student performance, reported
through the NAEP Data Explorer. Additional information
about sampling design is available from the NAEP website
(https://nces.ed.gov/nationsreportcard/mathematics/samplede

sign.asp)

Mathematics  Framework. The  mathematics
assessment framework covers five key content areas, which
have remained the same since 1990. These are (a) number
properties and operations, (b) measurement, (c) geometry, (d)
data analysis, statistics, and probability, and (e) algebra.
Students are assessed at a grade-level appropriate standard
(for example, at grade 8 the topic of algebra includes linear
equations, while at grade 12 this is extended to include
quadratic and exponential equations). Assessment items vary
in complexity level to accommodate a wide range of ability
levels, which is important as some research has noted greater
sex differences are present for complex problem solving
items (Hyde et al., 1990). Calculators are permitted for
approximately one third of the assessment, while the
remaining questions must be completed without calculators.
The mathematics framework for assessment of Grades 4 and
8 is comparable with earlier assessments, allowing student
performance in more recent years to be compared to those
from earlier assessments. Although a revised mathematics
framework was instituted in 2005 for students in Grade 12,
these assessments are comparable to those administered
previously as they reflect similar content areas. Further
information on the mathematics content areas can be found at
the NAEP website,
http://nces.ed.gov/nationsreportcard/mathematics/whatmeasu

re.aspx

Science Framework. Topic areas for science
assessment are grouped into the following three domains,
which form separate subscales as well as contributing to the
overall science achievement score:

e Physical sciences, including concepts related to
properties and changes of matter, forms of energy, energy
transfer and conservation, position and motion of objects, and
forces affecting motion.
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o Life sciences, including organization and
development of cells and organisms, matter and energy
transformations, interdependence, heredity and reproduction,
evolution and diversity.

e Earth and space sciences, including concepts
relating to objects in the universe, the history of the Earth,
material properties, tectonics and energy in Earth systems,
climate and weather, and biogeochemical cycles.

The science framework used for assessment was
revised in 2009, in response to revised national science
education standards. While the content areas remained the
same (physical, earth and life science), they now include
coverage of space science. Students completed a range of
multiple-choice and open-ended questions, which also
include hands-on practical science tasks and interactive
computer-administered tasks from the 2009 assessment
onward. For additional information about the science
framework and sample questions, see

http://nces.ed.gov/nationsreportcard/science/whatmeasure.aspx

Reliability of NAEP instrument. Multiple choice
items are computer scored, while constructed response are
marked by raters. Consistency across markers for the
constructed response items was generally high for both
mathematics and science (Cohen’s Kappa > .80). Item
response theory (IRT) is then employed by NCES to measure
latent scores, which offers greater control over the
measurement characteristics of each question and ensures
high reliability. For additional information about reliability of
measures,see http://nces.ed.gov/nationsreportcard/tdw/analysis/.
Furthermore, the NCES conducted a NAEP-TIMSS linking
study to compare the assessment frameworks to international
standards, finding them comparable.

Schedule of Assessment

Mathematics and science assessments are conducted
periodically, adhering to the NAEP schedule. Mathematics is
assessed more frequently, roughly every two to three years
(1990, 1992, 1996, 2000, 2003, 2005, 2007, 2009, 2011). The
schedule of assessments gives greater coverage to students in
grades 4 and 8, which are developmentally critical time
periods for the acquisition of mathematics and scientific
skills (Newcombe & Frick, 2010). Grade 12 assessment was
not conducted in the years 2003 and 2011. Science is
assessed every four to five years (1996, 2000, 2005, 2009,
2011) and recruited somewhat smaller samples of students
than the mathematics assessments. Grades 4, 8 and 12 were
all assessed in the science target years, except for 2011.

In addition to an overall test score, students are
evaluated against fixed achievement levels in the NAEP,
categorizing students at a basic, proficient, and advanced
level. Sex differences in the percentage of students attaining
these levels are also available, and were obtained from the
NAEP Data Explorer. While some researchers have
examined sex differences in the extreme upper-tail of
mathematics and science distributions (Benbow, 1988;
Hedges & Nowell, 1995; Hyde et al., 2008; Nowell &

Hedges, 1998; Wai et al., 2010), Hyde and colleagues (2009)
have questioned whether sex differences in extreme talent are
a necessary requirement for pursuing STEM-related fields.
When greater male variability is present, this may present an
exaggerated picture of sex differences, particularly if more
stringent cutoff points are examined (e.g. 99.9" percentile).
Examining sex ratios in attainment of an advanced
proficiency in science or mathematics represents a tradeoff
between selecting a cutoff point that is germane to the
question of underrepresentation of women in STEM-related
fields, and seeking to avoid selecting an ability level that
serves to exaggerate sex differences.

Participants

National performance data in NAEP mathematics was
examined for the period 1990 — 2011, with a combined total
sample size of almost 2 million students (see Table 1).
Performance data in science was examined for the period
1996 — 2011. Science was assessed less frequently, and with
fewer students, with a combined total sample size of over
800,000. Information on sample sizes was obtained from
annual reports of the NAEP, which in recent years followed
the convention of rounding to the nearest hundred. When
individual numbers of males and females were not reported,
the assumption of equal sample sizes was made. Additional
information on the schedule of assessments and sample size
of individual assessment years can be found in the Appendix.

Meta-Analytic Procedure

Mean math and science scores and standard deviation
for males and females were obtained from the Data Explorer
website. The NAEP Data Explorer provides summary
statistics (i.e. mean, standard deviation) rounded off to whole
numbers which introduces measurement imprecision, but can
also export more precise values in Excel format which was
the option used in this meta-analysis. The unit of analysis was
group differences in performance of males and females at the
national level, rather than for individual states. Effect sizes
are reported as the mean difference between males and
females in standardized units (Cohen, 1988; Hedges, 2008),
commonly referred to as Cohen’s d. By convention, a
positive value for d indicates higher male performance while
a negative value indicates higher female performance (Hyde,
2005).

Comprehensive Meta Analysis (CMA) V2 and
Microsoft Excel software were used to calculate the statistics.
Meta-analysis typically employs either a fixed-effects or
random-effects model for combining study samples. As
NAEP assessments span a number of decades recruiting from
independent samples, and it was hypothesized that student
characteristics may have changed across years of sampling, a
random-effects model was chosen (Borenstein, Hedges,
Higgins, & Rothstein, 2009). The random effects model gives
slightly wider confidence intervals than a fixed-effects
model, but gives a more appropriate estimate of how much
variability is present across samples (Hunter & Schmidt,
2000; Kelley & Kelley, 2012). The benefit of such an
approach is that we can have greater confidence in the
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population estimate of sex differences produced, and that it is
not the result of inflated Type I error. Using a random effects
statistical model also caters for variation in test content and
student characteristics over time.

In addition to the calculation of effect size data for each
grade level, we investigated whether the year of assessment
was a potential moderator using the technique of meta-
regression (Kelley & Kelley, 2012). Meta-regression extends
a conventional meta-analysis by determining whether a
moderating variable accounts for variation in the magnitude
of an observed effect (i.e. explains sources of heterogeneity).
Based on claims of diminishing gender gaps (e.g. Hyde &
Linn, 2006), a negative association with year of assessment
was predicted. While it is clear that sex differences in
mathematics are smaller than systematic reviews had found
in data from the 1960°s — 1980’s (Hedges & Nowell, 1995), it
is not apparent whether such a trend would continue to the
point at which males and females would perform equivalently
(Caplan & Caplan, 1994), or whether it would plateau. We
employed a random effects model (method of moments) for
the meta-regression model to test if the year of assessment
acted as a moderator (Borenstein et al., 2009; Thompson &
Higgins, 2002). Additionally, subgroup analysis for
individual grades using a random effects model was
performed to examine whether sex differences change as
students progress through their schooling, as indicated by
previous research (Hyde et al., 1990).

Variance ratios (VR) for individual samples were
calculated following the method of Feingold (1992).
Estimates of overall male and female variance ratios were
combined across years of sampling for each grade level.
Some researchers have questioned whether, in combining
variance ratios across samples, mean variance ratios may be
the most appropriate measure (Katzman & Alliger, 1992),
and have advocated the use of medians or log transformed
means. These metrics are most appropriate if the direction of
variance ratios change across samples (i.e. greater male
variability is found in some samples, while greater female
variability is found in others). While this was not the case
(see Appendix), by convention and for comparability with
other studies the log transformed variance ratios were
averaged across sample years and then transformed back into
the Fisher’s variance ratio statistic. This statistic addresses
whether males and females differ at the extreme tails of an
ability distribution (for example, the top 1% of gifted
students) rather than focusing on the performance of the
‘average’ students in the middle of the distribution (Priess &
Hyde, 2010).

Additionally, the percentages of students for each
gender who achieved an ‘Advanced’ proficiency standard
were obtained to investigate the combined effect of sex
differences in central tendency and variability. Sex ratios,
defined as the relative risk ratio (RR) of male to female
students, were calculated for mathematics and science
performance at the ‘Advanced’ level of proficiency. This is a
somewhat different methodology than has been followed in
previous studies, and represents a tradeoff between selecting

a cutoff-point that fairly evaluates high achieving students in
their ability to solve STEM problems, and selecting an
arbitrarily high cutoff (e.g. 99" percentile) that would serve
to exaggerate sex differences.

Results

Two separate meta-analyses were conducted on the
NAEP sample for mathematics and science, with population-
level estimates of sex differences partitioned by grade level
(4, 8, 12). Although statistically significant sex differences
favoring males were found in each grade (p <.001), emphasis
is placed on effect size as this gives an indication of the
magnitude and practical impact of the observed differences
(Hedges, 2008; Hyde, 2005). In a review of meta-analytic
theory and practice, Hyde and Grabe (2008, p. 170)
recommend a threshold for considering effect sizes in sex
differences research a priori, and argued that effect sizes
smaller than d = .10 be considered “trivial” per Hyde’s
(2005) gender similarities hypothesis. Accordingly we use
this threshold herein for considering whether the observed
sex differences are practically meaningful. Variance ratios,
and the sex ratio of students attaining the advanced level of
proficiency are also reported for maths and science. The
original data used in this analysis is presented in the
Appendix.

NAEP assessment of mathematics

National performance data in mathematics was
examined for the period 1990 — 2011 (see Appendix for
schedule of assessment years). National sex differences are
somewhat larger than those reported by Hyde and colleagues
(2008) in their 10 state sample, with a weighted mean effect
size of d = .07, Z= 12.07, p < .001. However there was
considerable heterogeneity present in the distribution of
effect sizes, O(23) = 251.57, p <.001, P = 90.86 (see Figure
1). In order to better explain variability across assessments,
we tested whether grade level and year of assessment were
potential moderators.

Grade level as a moderator. Table 2 presents
comparisons between males and females in maths across the
three grade levels. When effect sizes were partitioned across
the three measured age groups using subgroup analysis, there
was a statistically significant difference between grade levels,
0(2)=23.15, p <.001. While sex differences were extremely
small in elementary and early high school, they grew larger in
the final year of high school, d = .10. The grade 12 effect size
is at the threshold of Hyde’s (2005) criterion for non-trivial
sex differences.

Year of assessment as a moderator. Next we
performed a meta-regression analysis to test for a declining
gender gap in mathematics over time. Contrary to our
hypothesis, there was no significant effect of assessment
year, Z=-.10,b =-.0001, Clos;; =-.0016 to +.0015, p =.923,
nor was the interaction between year and grade significant.
This is consistent with other studies that reported stability for
mean sex differences in mathematics in recent decades rather
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than a declining trend (McGraw, Lubienski, & Strutchens,
2006; Rampey et al., 2009).

Variance Ratios. In line with previous research, the
variability of boys’ performance in mathematics was wider
than that of females across each age group (see Table 3), and
exceeded Feingold’s (1994) threshold for non-trivial variance
ratios. These variance ratios were also stable across the time
period examined, with no association with year of assessment
or grade, p > .05.

Gender Gaps in High Achievers for Mathematics. In
order to evaluate the combined effect of mean differences and
greater male variability, we calculated the ratio of
males:females attaining the advanced proficiency standard
for mathematics, RR = 1.51, Z = 15.36, p < .001. As there
was significant heterogeneity across assessments, Q(23) =
300.99, p < .001, P = 92.35, we calculated risk ratios
separately for each grade level using subgroup analysis (see
Table 3). There was a statistically significant difference in
sex ratios between grades, O(2) = 61.74, p < .001. While
there was a moderate overrepresentation of high achieving
males in Grades 4 and 8, sex ratios increased considerably by
Grade 12 to a ratio of 2.13 males to every female student.
While these ratios are still smaller than reported from earlier
decades (e.g. Benbow, 1988; Hedges & Nowell, 1995), they
remain important targets for educational intervention to
encourage and foster high achievement.

Additionally, we tested whether there was a decline in
the gender gap for high achievers over time, finding a
significant interaction between grade and year of assessment,
p < .05. To investigate, we performed a meta-regression on
year of assessment for each grade level. While there was a
tendency towards slightly smaller sex ratios for grade 4
students over time, Z = -4.45, b = -.0247, Clyss; = -.0355 to -
.0138, p < .001, there was no association between year of
assessment and high achievers in grades 8 (Z = -37, p =
J711) and 12 (Z = -1.15, p = .249) indicating stability across
the time period examined.

NAEP assessment of science

National performance data in science was examined for
the period 1996 — 2011 (see Appendix for schedule). Overall,
the sex difference between males and females was small and
comparable to sex differences in mathematics, d = .11, Z =
9.15, p <.001. However there was considerable heterogeneity
across assessments, Q(11) = 328.22, p <.001, I* = 96.33 (see
Figure 2). In order to better explain variability across
assessments, we tested whether grade level and year of
assessment were potential moderators.

Grade level as a moderator. Using subgroup analysis
we partitioned effect sizes across the three grade levels,
reducing heterogeneity somewhat. Table 4 presents sex
differences in science achievement across each grade level,
and shows significant differences favoring males across all
grades. While the observed effect sizes were small in
magnitude, values for grade 8 and grade 12 exceed Hyde’s
(2005) criteria for negligible sex differences (both d = .12 and
.13 respectively).

Year of assessment as a moderator. Next we
performed a meta-regression analysis to test the effect of
assessment year as a potential moderator. Contrary to our
hypothesis of a declining gender gap in science over time,
there was no significant effect of the year of assessment on
the magnitude of sex differences in science (b = .00, Clyso; =
-.0039 to +.0057,
Z =37, p=.711), nor was there an interaction between year
and grade.

Variance Ratios. Consistent with previous research,
the variability of boys’ performance in science was larger
than that of girls’ (see Table 5). Variance ratios across all
grades exceeded Feingold’s (1994) criterion for greater male
variability, and were comparable to that found for
mathematics. These variance ratios were also stable across
the time period examined, with no association with year of
assessment or interaction with grade, p > .05.

Gender Gaps in High Achievers for Science. The
influence of greater male variability is most readily apparent
when looking at sex ratios for attainment of an advanced
proficiency standard in science. We calculated the risk ratio
of males:females attaining the advanced proficiency standard
for science, RR = 1.85, Z = 12.81, p < .001. As there was
significant heterogeneity across assessments, Q(12) = 83.32,
p <.001, > = 85.63, we calculated risk ratios separately for
each grade level using subgroup analysis (see Table 5). This
reduced heterogeneity somewhat. Sex ratios for students in
Grade 4 were modest (1.56), but grew wider for older
students in grades 8 (1.88) and grade 12 (2.28). There was
also a significant difference in science gender gaps between
grades, between groups heterogeneity Q(2) = 9.05, p=.011.

Additionally, we tested whether there was a decline in
the gender gap for high achievers over time, or an interaction
between grade and year. While there was no significant
association with year of assessment overall, Z = 0.84, p =
401, the interaction was significant p < .05, and we
examined effects of year for each level of grade. While there
was no significant association with year of assessments for
grades 4 (Z =-.13, p = .899) and 12 (Z = -.58, p = .557),
there was a significant trend towards slightly larger science
sex ratios in more recent years for students in grade 8, Z =
2.98, b =-.0260, Clyse; = -.0009 to +.0431, p = .003.

Science Domains. Overall science achievement only
shows part of the picture, however. NAEP assesses science
literacy across three subject domains: physical sciences, earth
sciences, and life sciences (see Table 6). If group differences
were present across all three domains then sex differences in
overall science literacy might be an appropriate target for
intervention. However, this was not the case. While small sex
differences were found in physical (d = .13) and earth
sciences (d = .17), there were no significant differences for
the field of life science. The absence of a statistically
significant sex difference in life sciences is consistent with
the findings of the National Educational Longitudinal Study
(Burkam, Lee, & Smerdon, 1997), and the Trends In
Mathematics and Science Study (Neuschmidt, Barth, &
Hastedt, 2008) which report finding no sex differences in the
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field of life sciences. However we note that greater male
variability was present for all content areas and grades.

There was also considerable heterogeneity of effect
sizes across assessments, which may be due in part to the
reduced coverage of assessments conducted for science, as
well as the smaller sample sizes employed (particularly for
grade 12). Accordingly, moderator analysis was also
performed for each science content domain to determine if
grade and year effects were present. There was no effect of
year of assessment across all three measures, or interactions
between grade and year of assessment. While there were no
significant effects of grade level for earth and life sciences,
there was a tendency for larger sex differences in physical
sciences for older students.

Discussion

The aim of this study was to evaluate the evidence for
sex differences in mathematics and science achievement over
a broad span of years, and to determine whether these were
diminishing over time in response to educational
advancements and cultural changes in the roles of men and
women (Auster & Ohm, 2000; Wood & Eagly, 2012). The
NAEP dataset provided an extremely large nationally
representative sample of students collected over a wide
timespan, and affords a more accurate and reliable test of sex
differences in STEM achievement than can be obtained from
a single sample. In doing so it extends coverage of the earlier
analysis by Hedges and Nowell (1995) to include the most
recently available data (1990-2011).

Sex Differences in Means

In contrast to the analysis by Hyde et al. (2008), which
found no difference in a 10-state subset of the national
assessment, analysis of the complete NAEP dataset found a
small but non-trivial mean difference in mathematics
favoring males for students in their final year of year of
schooling. Furthermore, we extended the analysis to include
national testing of science achievement with similar findings.
These findings make the claim that sex differences in
quantitative reasoning have been eliminated in modern
samples somewhat premature, but neither is there evidence of
a wide disparity between the performance of the average
male and female student. It is also consistent with US
performance in international tests of science and
mathematics, which have found only small sex differences
(Else-Quest, Hyde, & Linn, 2010; Guiso, Monte, Sapienza, &
Zingales, 2008; Reilly, 2012).

It is unclear exactly why the earlier meta-analysis by
Hyde et al. (2008) on a small subset of testing data found no
difference in NAEP mathematics performance, while sex
differences in the national dataset were somewhat larger. It
may be due to educational factors (inherent differences from
state to state), from the inclusion of private and public
institutions in the national dataset, or that when a more
representative sample and less selective sample is collected
greater sex differences emerge (Hyde et al., 1990). We also
note that the magnitude of these mean sex differences in the

NAEP was smaller than similar assessments collected in the
decades prior to 1990 for mathematics and science (Hedges
& Nowell, 1995), which would be consistent with changes
predicted by sociocultural perspectives. However, there was
no association between the magnitude of the sex difference
observed in each assessment and the assessment year,
indicating that there was stability across the period of time
investigated (1990-2011). That no further change occurred
over this timeframe would be compatible with biological and
psychobiological perspectives. Stability is also consistent
with the findings of McGraw et al., (2006), who found no
change across a shorter timeframe for NAEP mathematics
performance. While we found meaningful sex differences,
this does not necessarily preclude Hyde’s gender similarities
hypothesis as it posits that sex differences in cognitive ability
are only small in magnitude.

The data also indicated that there was a developmental
trend across both types of quantitative reasoning skills, with
smaller effect sizes in elementary school and larger effect
sizes in older students. Sex differences in mathematics
exceed Hyde’s criterion in Grade 12, while sex differences in
science achievement reach a non-trivial size in Grades 8 and
12. A prior meta-analysis by Hyde et al. (Hyde et al., 1990)
also found larger sex differences are observed when complex
problem solving tasks are measured, and the mathematics
assessment framework increases in complexity during grades
8 and 12. This is also consistent with developmental literature
reporting a widening of the gender gap in quantitative
reasoning at around puberty and middle-school (Fan, Chen,
& Matsumoto, 1997; Hyde et al, 1990; Robinson &
Lubienski, 2011), when the saliency of gender roles becomes
more prominent as suggested by sociocultural perspectives on
gender (Nash, 1979; Ruble, Martin, & Berenbaum, 2006).
During adolescence and into early adulthood, gender
stereotyping about the sex-typing of activities and interests
increases at both the explicit and implicit level (Halpern &
Tan, 2001; Nosek et al., 2009; Steffens & Jelenec, 2011),
which has implications for sex differences in achievement
motivation and self-efficacy for mathematics and science
(Priess & Hyde, 2010; Wigfield, Eccles, Schiefele, Roeser, &
Davis-Kean, 2006). However it also coincides with a time of
increased hormonal changes as outlined by biological
theories (Kimura, 2000), and therefore it is difficult to offer
more than speculation as to the origins of sex differences at
these developmental periods.

Of particular interest in our analysis is the observation
that mean sex differences were present for some, but not all,
of the scientific domains assessed by the NAEP. Despite the
considerable sample size there was no sex difference found
for biology and life sciences, where males and females show
equivalent performance (Neuschmidt et al., 2008). Reviews
of the literature find that males have greater overall interest in
science than females and rate their aptitude more highly
(Osborne, Simon, & Collins, 2003; Weinburgh, 1995), but
that when inquiries are made regarding interest in specific
scientific domains, biology and life sciences show no
significant difference between males and females (Miller,
Blessing, & Schwartz, 2006). Rather than indicating any
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inherent lack of ability, sex differences in certain but not all
domains of science may reflect different patterns of interest
and motivation towards people-oriented fields (Su et al.,
2009), or that other domains are seen as being less relevant to
future career paths (Jones, Howe, & Rua, 2000; Miller et al.,
2006). Alternately, the mathematical requirements of biology
and life sciences may be lower than for the physical sciences
or there may be reduced sex-typing stereotypes for this field
of study.

High Achievers

While sex difference research often focuses on the
performance of the average student, considerably less
attention is given to sex differences in the prevalence of high
achievers and those factors that contribute to their success
(Wai, Putallaz, & Makel, 2012). Although only small mean
differences in mathematics and science achievement were
found, consistent with prior research the performance of
males showed consistently greater variability than that of
female students (Hedges & Nowell, 1995). Greater male
variability in performance is often associated with essentialist
biological theories of sex differences (Feingold, 1992), but it
is also predicted by differential social and learning
experiences afforded to boys and girls argued in sociocultural
theories of gender. The combined effect of small mean
differences and greater male variability is then reflected in
the sex ratios of students attaining the “high” proficiency
standard of the NAEP in maths and science. While there are
no established guidelines as to how to interpret the magnitude
of sex ratios, we would suggest that a sex ratio of over 2:1
(i.e. over twice as many males as females reaching these
standards) should be considered meaningful and nontrivial.
Finding a large sex difference in high achievers for
mathematics and science may not be in keeping with a strict
interpretation of Hyde’s (2005) gender similarities
hypothesis, but it should be noted that the hypothesis as it
was originally articulated considered only mean sex
differences (Hyde, 2005), and did not speak to gender
imbalances in high achievers. Additionally, there was no
overall effect of year of assessment on tail ratios, though
there was a slight tendency for change in grade 4
mathematics and grade 8 science. It may be the case that
changes predicted by sociocultural perspectives operate over
a longer timeframe, or that greater male variability remains
unchanged as might be predicted by psychobiological
theories.

Implications

Although mean sex differences in mathematics and
science were only small in magnitude, even small differences
in ability level may be consequential if experienced over time
(Eagly, Wood, & Diekman, 2000; Prentice & Miller, 1992;
Rosenthal, 1986). In particular, they may serve to undermine
self-efficacy and interest in traditionally sex-typed subjects
such as mathematics and science (Eccles, 2013; Else-Quest,
Mineo, & Higgins, 2013). However this is less concerning
than the combined effect of small mean differences and
greater male variability, which leads to large gender gaps in
high-achievers for mathematics and science.
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Further efforts may be warranted to encourage and
cultivate girls’ interest and aptitude in these subject areas —
particularly with students who have yet to realize their full
potential. Many students have a stereotypically masculine
image of mathematics and science (Nosek, Banaji, &
Greenwald, 2002; Smeding, 2012) and countering deeply
ingrained sex-stereotypes is not easily achieved (Shapiro &
Williams, 2012). While all students receive instruction in
these areas through the school curriculum, parents can
facilitate development of mathematics and science interest
and aptitude by providing early enrichment activities and
science learning experiences equally for daughters and sons
(Newcombe & Frick, 2010). Boys report having more
extracurricular experiences with toys and games that promote
science learning (Jones et al., 2000), and examination of
parent-child interactions shows that parents explain scientific
concepts to boys more frequently than to girls (Crowley,
Callanan, Tenenbaum, & Allen, 2001; Diamond, 1994;
Tenenbaum & Leaper, 2003). Parents also estimate the
intelligence of sons as being higher than that of daughters,
including mathematics intelligence (Furnham, Reeves, &
Budhani, 2002), and parental expectations can profoundly
impact the self-efficacy of children (Eccles, Jacobs, &
Harold, 1990). Encouraging and supporting daughters who
show interest or aptitude in science to develop their potential
may be critical for addressing gender gaps in high-achievers.

The educational environment in which mathematics
and science are taught at school can also have a profound
impact on student learning outcomes (Gunderson, Ramirez,
Levine, & Beilock, 2012). Teachers have different beliefs
about male and female students in mathematics, have more
frequent interactions with male students than with female,
and higher expectations in this field for boys (Li, 1999).
Similar findings have been reported for science education,
such as calling more frequently on male students to answer
questions or provide a demonstration (Jones & Wheatley,
1990). Differential learning experiences for boys and girls in
the classroom are often subtle (Beaman, Wheldall, & Kemp,
2006), but may be contributing to the development of lower
self-efficacy and less interest in STEM for girls (for a review
see Gunderson et al.,, 2012). Individual differences in
endorsement of sex-stereotypes about STEM can seriously
undermine girls’ achievement in these fields later in life
(Schmader, Johns, & Barquissau, 2004), so it is important
that educators send a positive message about the applicability
of mathematics and science skills to both genders.

A growing body of research also suggests that
visuospatial skills play an important role in the development
of quantitative reasoning (Nuttall, Casey, & Pezaris, 2005),
and that sex differences in spatial ability may be a mediator
(Wai et al, 2009). However even brief educational
interventions can show marked improvements in the
development of spatial ability in both genders (Uttal et al.,
2013), with evidence of transfer to other quantitative tasks.
Many researchers have advocated for the inclusion of spatial
learning within the school curriculum (Newcombe & Frick,
2010; Priess & Hyde, 2010), as this would provide benefits to
all students and lay down a solid foundation for the later
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development of quantitative reasoning. Contrary to our
hypothesis, mean sex differences and sex ratios of high
achievers did not show a decline over the time period
analyzed. Despite societal changes in the roles of men and
women (Auster & Ohm, 2000) this has not translated into
diminishing sex differences over time as predicted by social
and psychobiosocial perspectives. The present findings of
stable sex differences give further weight to arguments that
educational interventions are still required in the interest of
gender equity.

Strengths and Limitations

The issue of sex differences in quantitative reasoning
has been contentious in recent decades, with some
researchers arguing that there are considerable differences
and others that there are none. By employing a large
nationally representative sample such as the NAEP, we can
be more confident that the observed sex differences reflects
the diversity of socioeconomic status and ethnicity found in
the United States, as well as the different educational
environments of each state. The statistical technique of meta-
analysis makes it possible to aggregate findings from
multiple waves of assessment, ensuring that the conclusion
reached is not idiosyncratic to a particular assessment year
and student cohort. As such it gives greater confidence in
estimating the magnitude of sex differences in mathematics
and science in USA students under the NAEP.

It has also offered the opportunity to test whether the
magnitude of said differences is declining, and to establish
that — at least for the time period analyzed — these are stable
across time. It also draws attention to the role that greater
male variability can play, and the critical importance of
examining tail ratios of high achieving students for a
complete test of the gender similarities hypothesis.

While adding to the existing literature on sex
differences, this study is not without limitations. Firstly, it
does not provide any information on the causal factors that
explain why sex differences emerge. Although researchers
have identified a number of biological, psychological and
social factors that contribute to sex differences in quantitative
reasoning (Halpern et al., 2007), many researchers agree that
a variety of factors are ultimately responsible and advocate a
biopsychosocial model of sex differences (Halpern, 2004;
Halpern & Tan, 2001). Thus the findings of a meta-analysis
can shed no light on why sex differences emerge, and can
only document their existence.

Secondly our study does not consider other factors,
such as socioeconomic background and ethnicity. There is
some evidence to show interactions between sex differences
and ethnic backgrounds. For example, while sex differences
are consistently found for Caucasian and Hispanic students,
some studies have failed to find differences for African
American samples (Fan, Chen, & Matsumoto, 1997; McGraw
et al., 2006). Likewise some studies have found interactions
between socioeconomic status and sex differences in early
spatial development (Levine et al., 2005), which provides a
foundation for quantitative reasoning. Teasing apart such
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theoretical contributions would be a useful addition to the
literature. Finally, our analysis is limited by the test content
being assessed by the NAEP. Previous studies (e.g. Hyde et
al., 1990) have noted larger sex differences are found in
complex problem solving, but the NAEP includes test items
across a range of difficulty levels. International assessments
of student ability such as the Programme for International
Student Assessment (PISA) include more challenging test
content, and find somewhat larger sex differences in
mathematics and science for USA students than under the
NAEP (Guiso et al., 2008; Reilly, 2012). While these parallel
lines of evidence provide a replication of sex differences,
they do suggest that the NAEP may underestimate the true
effect size of such differences somewhat.

Summary

In the present study, we report a meta-analysis of sex
differences in mathematics and science achievement in the
NAEP, a nationally-representative sample of students drawn
from public and private institutions from across all states in
the USA. Small mean sex differences favoring males were
observed in science and mathematics performance making
claims of their absence premature. Further examination of
male and female performance across the three domains of
science found that males and females were equivalent in
performance for life sciences, but not for earth and physical
sciences. Contrary to our hypothesis, sex differences were not
moderated by the year in which students were tested,
indicating stability across time. Additionally we found that
the performance of males was more variable than that of
females, which has implications for the proportion of males
to females in the upper-right tail of the ability distribution.
Greater male variability may contribute to the disparity in
educational outcomes in STEM-related fields with males
being over-represented in attainment of an advanced
proficiency in mathematics and science by a ratio of over 2:1.
Further research into the psychological and social factors
underpinning these gender gaps is required, as well as
educational interventions and support services to help girls
realize their full potential in mathematics and science
achievement. Counteracting the tendency for initially small
sex differences in achievement to be translated into larger sex
differences in career choices is likely to require concerted and
sustained efforts at many levels.
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Table 1
Sample Size Information for Mathematics and Science Assessments.
Content Domain Grade N of Students Assessed
Mathematics 4 974,700
8 845,400
12 104,900
Total 1,925,100
Science 4 352,105
8 470,374
12 56,437
Total 878,916
Table 2

Sex differences in NAEP mathematics achievement for Grades 4, 8, 12

95% Confidence Interval Test of null (2-tail)

Grade k£  Cohen’sd Lower limit Upper limit Z-value P-value Heterogeneity
4 9 .07 .06 .09 10.67 <.001 Q(8)=90.37, p <.001,
F=91.15
8 9 .04 .03 .06 6.54 <.001 Q(8)=28.52, p<.001,
F=171.95
12 6 .10 .08 12 10.08 <.001 Q(5)=10.71, p=n.s.

Note: k denotes the number of assessments conducted for each grade. Effect sizes that exceed Hyde’s (2005) criterion for
non-trivial differences (d >=.10) are highlighted in bold.
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Table 3
Sex Differences in Variability, and Sex Ratios Attaining Advanced Proficiency in Mathematics

95% Confidence Test of null (2-tail)

Interval
Grade Variance Ratio Risk Lower Upper  Z-value  P-value Heterogeneity
(VR) Ratio Limit Limit
4 1.12 1.51 1.42 1.60 13.71 <.001 Q(8)=94.30, p <.001,
F=91.51
8 1.12 1.30 1.23 1.37 9.27 <.001 Q(8)=24.71, p=.002,
I=67.63
12 1.15 2.13 1.90 2.38 13.28 <.001 Q(5)=8.77,p=n.s.
Table 4
Sex differences in NAEP science achievement for Grades 4, 8, 12
95% Confidence Test of null (2-tail)
Interval
Grade k Cohen’s Lower Upper Z-value  P-value Heterogeneity
d Limit limit
4 4 .08 .04 A2 3.64 .001 Q(3)=174.57, p < .001,
F=98.28
8 4 A2 .08 .16 6.39 <.001 Q(3) = 41.93, p < .001,
I =90.46
12 4 13 .09 18 6.05 <.001 Q(3) = 24.68, p <.001,
I=87.84

Note: Effect sizes that exceed Hyde’s criterion for non-trivial differences (d >=.10) are highlighted in bold.
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Table 5
Sex Differences in Variability, and Sex Ratios Attaining Advanced Proficiency in Science
95% Confidence Test of null (2-tail)
Interval
Grade Variance Ratio Risk Lower Upper Z-value P-value Heterogeneity
(VR) Ratio Limit Limit
4 1.09 1.56 1.33 1.83 5.45 <.001 Q(3) =19.20, p <.001,
IF=84.37
8 1.12 1.88 1.64 2.16 8.95 <.001 Q(4) =34.32, p <.001,
I =88.34

12 1.14 2.28 1.88 2.76 8.41 <.001 Q)= 4.77,p=n.s.
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Figure 1. Histogram of observed effect sizes in NAEP mathematics assessments (1990-2011).
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Figure 2. Histogram of observed effect sizes in NAEP science assessments (1996-2011).
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Appendix
Table Al.
Descriptive Statistics, Effect Sizes and Variance Ratios for NAEP Mathematics.
Male Female
Variance
Year Grade Mean (SD) Mean (SD) Sample size ratio Cohen's d
2011 4 241.41825 29.76624 239.92438 28.11948 209,000 1.12 0.05
2009 4 240.61765 29.50272 238.69442 27.86402 168,800 1.12 0.07
2007 4 240.79044 29.43191 238.62343 27.74161 197,700 1.13 0.08
2005 4 239.11030 28.92446 236.59788 27.81468 172,000 1.08 0.09
2003 4 236.37463 29.06977 233.41351 27.58066 190,000 1.11 0.10
2000 4 226.82131 32.34153 22430827 30.05055 13,800 1.16 0.08
1996 4 223.73966 31.70661 223.27141 29.95813 6,600 1.12 0.02
1992 4 220.89259 32.52064 218.52010 30.80918 8,700 1.11 0.07
1990 4 213.54463 32.73525 212.54085 30.70411 8,900 1.14 0.03
2011 8 284.45084 37.21046 283.23397 35.12125 175,200 1.12 0.03
2009 8 283.94915 37.22430 281.85728 3548711 161,700 1.10 0.06
2007 8 282.40116 37.40132 280.27550 34.62987 153,000 1.17 0.06
2005 8 279.61146 37.14541 278.01277 35.43316 162,000 1.10 0.04
2003 8 278.48139 37.18516 276.63517 35.21715 153,000 1.11 0.05
2000 8 273.91265 39.25296 272.27437 36.79607 15,800 1.14 0.04
1996 8 271.43222 38.25208 269.44691 36.62322 7,100 1.09 0.05
1992 8 268.09776 36.78734 268.70292 35.68133 9,400 1.06 -0.02
1990 8 263.20994 37.23174 261.87034 3470190 8,900 1.15 0.04
2009 12 154.94494 34.89788 151.66908 32.47539 51,700 1.15 0.10
2005 12 151.31353 35.54736 148.78616 32.35334 15,100 1.21 0.07
2000 12 301.90598 37.44853 298.52331 33.72126 13,800 1.23 0.09
1996 12 302.94416 34.98625 300.34237 32.67684 6,900 1.15 0.08
1992 12 301.33159 3471171 297.75355 33.04985 8,500 1.10 0.11
1990 12 297.08056 36.39719 291.48571 34.89335 8,900 1.09 0.16

Note: Effect sizes that are statistically significant at p <.05 are highlighted in bold.
Variance ratios (VRs) above 1.00 indicate greater male variability; VRs below 1.00 reflect greater female variability

22



SEX DIFFERENCES IN MATHEMATICS AND SCIENCE

Table A2.
Percentage of Male and Female Students Attaining the Advanced Proficiency Level for
Mathematics

Male Female
Grade Year at Advanced or higher at Advanced or higher Risk ratio

4 2011 7.576799 5.717962 1.33
2009 6.914833 4.945088 1.40

2007 6.625340 4.485612 1.48

2005 5.831723 4.180971 1.39

2003 4.891417 2.916470 1.68

2000 3.436696 1.760290 1.95

1996 3.054985 1.426135 2.14

1992 2.111726 1.334901 1.58

1990 1.685714 0.625990 2.69

Grade 4 Ratio 1.50

8 2011 9.216519 7.266763 1.27
2009 8.801046 7.020203 1.25

2007 8.103602 5.876708 1.38

2005 6.731102 5.331733 1.26

2003 6.118808 4.649840 1.32

2000 5.917239 4.102844 1.44

1996 4.296899 3.341992 1.29

1992 3.172883 2.990450 1.06

1990 2.366303 1.571801 1.51

Grade 8 Ratio 1.30

12 2009 3.520143 1.808225 1.95
2005 3.062339 1.372165 2.23

2000 3.233790 1.363867 2.37

1996 2.538683 1.378109 1.84

1992 2.082941 1.065519 1.95

1990 2.287939 0.685097 3.34

Grade 12 Ratio 2.13
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Table A3.
Descriptive Statistics, Effect Sizes and Variance Ratios for NAEP Science.
Male Female
Year Grade Mean (SD) Mean (SD) Sample size Variance ratio ~ Cohen's d

2009 4 150.57607 35.71345 149.40869 34.21378 156,500 1.09 0.03
2005 4 152.52981 31.78684 148.65937 30.40344 172,500 1.09 0.12
2000 4 152.54469  35.28189 147.13105 33.46140 15,800 1.11 0.10
1996 4 150.85221 33.53692 149.13861 32.39515 7,300 1.07 0.04
2011 8 154.16130  35.05894 149.21276 33.25938 122,000 1.11 0.14
2009 8 151.98475 36.14538 147.99001 33.65030 151,100 1.15 0.11
2005 8 150.48951  36.21289 146.58535  34.31355 173,700 1.11 0.11
2000 8 154.35722  36.53652 147.34892 35.03792 15,800 1.09 0.17
1996 8 150.84548 34.83000 149.12814 32.90619 7,800 1.12 0.06
2009 12 152.87615  35.79328 147.15407  33.95205 11,100 1.11 0.16
2005 12 149.01019  34.95658 145.14886 32.58746 22,000 1.15 0.11
2000 12 147.66712  35.31678 145.17791 32.66081 15,800 1.17 0.07
1996 12 153.73568 34.34129 147.22612 32.31225 7,500 1.13 0.20

Note: Effect sizes that are statistically significant at p < .05 are highlighted in bold.
Variance ratios (VRs) above 1.00 indicate greater male variability; VRs below 1.00 reflect greater female variability
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Table A4.
Descriptive Statistics, Effect Sizes for Males and Females Across Field of Science
Male Female Variance Effect size
Grade Year Sub-domain Mean (SD) Mean (SD) Ratio (VR) Cohen's d
4 2009 Earth 151.98697 3548140 147.94554 34.36776 1.07 0.12
Physical 150.68020  35.76229 149.30413 34.14173 1.10 0.04
Life 149.02011 35.45167 151.01676 34.48297 1.06 -0.06
2005 Earth 154.62696  34.23227 14790774 32.83755 1.09 0.20
Physical 152.88549 33.46338 150.37863 31.59997 1.12 0.08
Life 150.07751 32.25717 147.69223 31.53551 1.05 0.07
2000  Earth 155.29923  37.11476 146.93308 35.06581 1.12 0.23
Physical 151.73910 36.73263 147.29376 35.00875 1.10 0.12
Life 150.59632  36.19456 147.16675 34.57285 1.10 0.10
1996 Earth 152.68547  35.27448 147.28560 34.50327 1.05 0.15
Physical 150.40359  35.89103 149.59256 34.06300 1.11 0.02
Life 149.46810  35.33133 150.53822 34.64733 1.04 -0.03
8 2011 Earth 153.92140 34.84762 147.80144 33.75392 1.07 0.18
Physical 155.57074  35.11631 147.88813 32.92987 1.14 0.23
Life 153.30020 35.25709 151.58303 33.69989 1.09 0.05
2009 Earth 152.87875 35.59819 147.08004 34.11659 1.09 0.17
Physical 152.65646 36.30124 147.30709 33.38742 1.18 0.15
Life 150.69328 35.95506 149.30199 33.95972 1.12 0.04
2005 Earth 152.17593 36.88717 147.55658 34.80591 1.12 0.13
Physical 14921860  39.26031 142.21619 37.12914 1.12 0.18
Life 150.17797  36.55163 149.13386 35.07240 1.09 0.03
2000 Earth 155.05456 37.39703 148.12953 35.43240 1.11 0.19
Physical 155.15257  38.90284 144.44899 37.61012 1.07 0.28
Life 153.23782 36.96043 14893848 35.64924 1.07 0.12
1996 Earth 151.69663 35.79566 148.25032 34.06708 1.10 0.10
Physical 151.98523 35.94419 14795250 33.87181 1.13 0.12
Life 149.35236 35.93675 150.66815 33.98972 1.12 -0.04
12 2009 Earth 155.03106  35.30019 145.02064 33.96834 1.08 0.29
Physical 153.45769 36.05441 146.57822 33.56864 1.15 0.20
Life 150.91495 35.23967 149.09501 34.73195 1.03 0.05
2005 Earth 147.90490 35.52127 142.57167 33.07296 1.15 0.16
Physical 151.21768 37.09497 144.72360 34.38433 1.16 0.18
Life 147.90856 35.57997 148.15184 33.75475 1.11 -0.01
2000 Earth 146.87288 36.40061 142.34830 33.23612 1.20 0.13
Physical 149.10605  37.42376 144.84199 35.29647 1.12 0.12
Life 147.02286 35.56595 148.34385 32.84964 1.17 -0.04
1996 Earth 155.85416  35.50721 146.15392 33.06037 1.15 0.28
Physical 154.14569 36.15524 146.04818 34.04841 1.13 0.23
Life 151.20767  34.76459 149.47683 33.20536 1.10 0.05

Note: Effect sizes that are statistically significant at p < .05 are highlighted in bold.

Table AS.

Percentage of Male and Female Students Attaining the Advanced Proficiency Level for Science

Grade

Year

Male

at Advanced or higher

Female

at Advanced or higher

Gender ratio
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2009
2005
2000
1996

2011
2009
2005
2000
1996

2009
2005
2000
1996

0.682025
3.202503
4.792086
3.418698

2.203641
2.039891
4.038574
5.152212
3.553214

1.998120
2.651007
2.760126
3.993961

0.512587
1.853222
2.544751
2.695513
Grade 4 Ratio
0.989545
0.967621
2.349279
2.799564
2.530816
Grade 8 Ratio
0.827877
1.266683
1.390137
1.346876
Grade 12 Ratio

1.33
1.73
1.88
1.27
1.56
223
2.11
1.72
1.84
1.40
1.88
241
2.09
1.99
2.97
2.28
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