Ten-year health service use outcomes in a population-based cohort of 21,000 injured adults: The Manitoba Injury Outcome Study

Author
Cameron, Cate, Purdie, DM, Kliewer, EV, McClure, Roderick

Published
2006

Journal Title
Bulletin of the World Health Organization

DOI
https://doi.org/10.2471/BLT.06.030833

Copyright Statement
Copyright 2006 World Health Organization. Please refer to the journal's website for access to the definitive, published version.

Downloaded from
http://hdl.handle.net/10072/14190

Link to published version
http://www.who.int/bulletin/volumes/84/en/index.html/
Introduction

Burden of disease estimates are increasingly being used to support health-policy decisions relating to clinical, preventive and health services activity. With advances in medical technology and an increasing number of people surviving serious injury, studies of the burden and cost of injury need to include long-term morbidity indicators. Current estimates of the burden of non-fatal injury have largely been derived from the opinions of expert panels. It has been shown, however, that panel predictions of the outcomes of injury in populations are unreliable. We did a systematic review and noted that there have been few population-based studies of long-term outcome of non-fatal injury from which accurate empirical estimates of the burden of injury could be derived. In part, this is because large population-based samples of people with all injury types are logistically complex and costly to recruit and follow up over long periods. In addition, the nature of morbidity and disability outcomes from injury are poorly conceptualized and difficult to measure. Greater efforts to obtain accurate empirical information on population outcomes from injury are vital. Counts and rates of hospitalizations, length of stay (LOS) in hospital, emergency department visits, admissions to rehabilitation programmes and physician services are considered to be valid measures of disease outcomes. While limitations to the usefulness of administrative data exist, and caution must be applied in the interpretation of findings, these data are still of considerable value. One advantage is that they are available from existing systems making them relatively inexpensive. Patterns of service use (e.g. hospitalization rates and LOS) have a face validity, with service patterns which, at least to some extent, reflect patient care needs. Administrative health data can also provide sound information on the presence of comorbid conditions.

The aim of this study was to quantify health service use (HSU) for 10 years post-injury, controlling for demographic factors and pre-existing comorbidities. Furthermore, we examined the differential risk of HSU on the basis of severity and type of injury.

Materials and methods

Study design

The Manitoba Injury Outcome Study is a population-based retrospective matched cohort study with a follow-up period of 10 years, which uses linked administrative health data from Manitoba, Canada. The study was approved by the University of Manitoba Research Ethics Board, Manitoba Health’s Health Information Privacy Committee and the University of Queensland Ethics Committee.
Setting and data sources
Canada is a high-income country where the provision of health care is based on a system of universal health insurance known as Medicare. This entitles all eligible residents to access publicly provided or insured health services, such as hospital, physician and extended-care services. As there are no fees, non-participation in the health-care plan is rare. We have analysed population-based data on the 1.14 million residents of Manitoba.18,19

A population registry of those eligible for health-care cover and databases of claims made by health providers for reimbursement of services (hospital, physician and extended-care) are managed by the provincial health department and data can be linked using unique identification numbers.18,20 The population registry contains demographic information and biannual snapshots of a person’s health coverage status in the province, as well as reasons for any cancellation of cover, such as leaving the province or death. The databases have been used extensively in health services research and are described in detail elsewhere.21

Participants
All persons aged 18–64 years, resident in the province of Manitoba, who were hospitalized with an injury between 1 January 1988 and 31 December 1991 were identified (n = 21 032). The cohort included all individuals who had an International statistical classification of diseases, ninth revision, clinical modification (ICD-9-CM) injury code 800–995 (excluding late effects from injury 905–909, and allergies from within 995), in the first or second diagnostic fields of their hospital record. During the inception period, the first injury-related hospital admission was designated as the index case record.

A comparison cohort of people not hospitalized for an injury during the same period was randomly selected from the total remaining study population, identified from the Manitoba population registry. A non-injured person was matched on aboriginal status, age, gender and geographical location of residence (partial postcode) at the date of admission of the injured case. Excluded from both cohorts were residents of care homes, patients in extended hospital care and persons not resident in the province for 12 months before the admission date on the index record.

Pre-injury use of health services and comorbidity measures
Pre-existing health conditions at the time of the index injury were quantified as a potential confounder when investigating injury as a risk factor for subsequent health service use. Pre-existing health conditions were determined from HSU records during the 12-month period prior to the index injury for both the injured and comparison cohorts.24 Group differences were identified by classifying primary diagnoses under the 18 disease chapters of ICD-9-CM and combining the frequency of use of hospital and ambulatory physician services for each of these conditions. Two levels of severity of comorbidity were then defined. A “mild condition” was one which involved one to three physician claims and no hospital discharges; a “moderate–severe condition” was defined as four or more physician claims or at least one hospitalization for that condition in the 12 months prior to the injury date.

Health status and service use in the 12 months before date of injury event
Charlson comorbidity index (score ≥ 1) 1235 5.9 254 1.2 P < 0.001
No. of persons with a mental health condition2 1498 7.1 423 2.0 P < 0.001
No. of persons with a musculoskeletal condition3 1236 5.9 580 2.8 P < 0.001
No. of persons with a prior injury/ poisoning4 1978 9.4 530 2.5 P < 0.001
Mean number of physician claims4 3.9 (0–295)6 2.2 (0–127) P < 0.001
Mean number of hospitalizations4 0.12 (0–19) 0.09 (0–12) P < 0.001
Cumulative length of stay in days 0.36 (0–248) 0.18 (0–258) P < 0.001

Table 1. Baseline demographic characteristics, measures of pre-existing health status and health service use for 12 months before the injury event for injured and matched comparison cohorts

<table>
<thead>
<tr>
<th>Demographics at the time of the injury event</th>
<th>Injured (n = 21 032)</th>
<th>Comparison (n = 21 032)</th>
<th>Significancea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>13 441 63.9</td>
<td>13 441 63.9</td>
<td>P = 1.0</td>
</tr>
<tr>
<td>Females</td>
<td>7591 36.1</td>
<td>7591 36.1</td>
<td></td>
</tr>
<tr>
<td>Age in yearsb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18–24</td>
<td>5410 25.7</td>
<td>5422 25.7</td>
<td></td>
</tr>
<tr>
<td>25–34</td>
<td>6014 28.6</td>
<td>5990 28.6</td>
<td></td>
</tr>
<tr>
<td>35–44</td>
<td>3959 18.8</td>
<td>3972 18.8</td>
<td>P = 0.99</td>
</tr>
<tr>
<td>45–54</td>
<td>2805 13.3</td>
<td>2799 13.3</td>
<td></td>
</tr>
<tr>
<td>55–64</td>
<td>2844 13.5</td>
<td>2849 13.5</td>
<td></td>
</tr>
<tr>
<td>Place of residenceb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>8687 41.3</td>
<td>8799 41.9</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>8167 38.8</td>
<td>8208 39.0</td>
<td>P = 0.21</td>
</tr>
<tr>
<td>Remote</td>
<td>4178 19.9</td>
<td>4025 19.1</td>
<td></td>
</tr>
</tbody>
</table>

* Determined by Mann–Whitney U test or χ² test.
1 Age-matched on year of birth and place of residence on partial postcode; thus there are small differences in actual numbers of injured and non-injured.
2 Presence of moderate–severe condition defined by four or more physician claims or at least one hospitalization for that condition in the 12 months prior to the injury date.
3 Geometric mean calculated due to non-normal distributions.
4 Figures in parentheses are the range.
heads (brain injury, spinal injury, burns, long-bone fractures, poisonings, internal injuries and other). Injury severity scores (ISS) were generated by ICDMAP-90 software (Johns Hopkins University, Baltimore, MD, USA). An ISS of ≥16 was considered to be a major injury; an ISS of 9–15 a moderate injury, and a mild injury was defined as an ISS of 1–8.22,25 Not all cases of injury were scored according to their severity as ICDMAP-90 maps only some of the ICD-9-CM codes for Injury and Poisonings.

Outcome measures

Hospital discharge data provided two outcome measures: the total number of hospitalizations and cumulative LOS for the 10 years post-injury. Although hospitalization for the index injury was not included in the number of hospitalizations, the resulting number of days stay in hospital was included in the LOS following the injury event. The number of claims by ambulatory physicians for the 10 years post-injury provided the third HSU measure. The fourth outcome measure was the time from the index injury until the first admission to a care home during the 10-year follow-up period.

Calculation of person–years at risk

Using the information from the population registry, we calculated the total time a person was in the province, alive and eligible for health coverage for the 10 years following the date of the index injury.

Analysis

Analysis was done using SAS version 8.2 and STATA version 8. The statistical significance of differences between groups for rates of HSU and presence of comorbid conditions was assessed by χ² test statistics for categorical data and with the Mann–Whitney U test for continuous data because of non-normal distributions. All tests were two-sided with a 5% level of significance.

Consistent with a matched cohort study design, negative binomial regression was used to estimate crude and adjusted rate ratios (RRs) between exposure (injury) and outcome (HSU) for hospital discharges and physician claims. Analysis was conducted using the Kaplan–Meier method and Cox proportional hazards model to analyse the time from the injury event until the first admission to a care home. Hazard ratios estimated from the Cox regression were used as measures of rate ratios. A group-by-time interaction term was added to test the proportional hazards assumption for the injured versus non-injured cohorts.28 Evidence of non-proportionality was demonstrated (P<0.001), thus rate ratios were calculated for each year following the injury, in addition to a pooled estimate for the total 10 years. Owing to the small number of events within single years, only crude year-by-year analyses were conducted.

Attributable risk percentages (AR%) were calculated as the adjusted rate ratio minus one, divided by the adjusted rate ratio, multiplied by 100.29 The AR% was used to estimate the proportion

Table 2. Measures of pre-existing health status and health service use for 12 months before the injury event for injured and matched comparison cohorts by injury type

<table>
<thead>
<tr>
<th>Injury subgroups</th>
<th>Charlson comorbidity index*</th>
<th>Physician claims</th>
<th>Hospitalizations</th>
<th>Cumulative length of stay in days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Injured</td>
<td>Comparator</td>
<td>Injured</td>
<td>Comparator</td>
</tr>
<tr>
<td>Brain injury (n = 1290)</td>
<td>71 (5.50)</td>
<td>15 (1.16)</td>
<td>3.46 (0–161)</td>
<td>2.28 (0–118)</td>
</tr>
<tr>
<td>Spinal injury (n = 95)</td>
<td>2 (2.11)</td>
<td>1 (1.05)</td>
<td>3.28 (0–31)</td>
<td>2.52 (0–26)</td>
</tr>
<tr>
<td>Burns (n = 524)</td>
<td>33 (6.30)</td>
<td>6 (1.15)</td>
<td>3.56 (0–173)</td>
<td>1.86 (0–46)</td>
</tr>
<tr>
<td>Long bone fractures</td>
<td>306 (8.19)</td>
<td>42 (1.67)</td>
<td>3.40 (0–73)</td>
<td>2.42 (0–127)</td>
</tr>
<tr>
<td>Poisonings (n = 2169)</td>
<td>202 (9.31)</td>
<td>29 (1.34)</td>
<td>7.93 (0–295)</td>
<td>2.75 (0–56)</td>
</tr>
<tr>
<td>Internal Injuries</td>
<td>26 (4.38)</td>
<td>7 (1.18)</td>
<td>3.20 (0–93)</td>
<td>2.05 (0–48)</td>
</tr>
<tr>
<td>Other (n = 13 846)</td>
<td>695 (5.02)</td>
<td>154 (1.11)</td>
<td>3.64 (0–170)</td>
<td>2.16 (0–115)</td>
</tr>
</tbody>
</table>

* Score ≥1.

b Geometric mean calculated due to non-normal distributions.
of long-term HSU where injury was a component cause.

Results

Characteristics of the cohort

There was an overrepresentation of males (63.9%) and younger people aged 18–34 years (54.3%) among the 21 032 injured people (Table 1). Four categories of external causes accounted for 80.3% (n = 16 797) of all the injuries: “other” accidents, 28.5%; accidental falls, 22.9%; transport-related accidents, 18.0%; and attempted homicide or injury inflicted by others, 10.9%.

In the 12 months before the injury, members of the injured cohort had higher Charlson comorbidity index scores, more hospitalizations, increased LOS in hospital and a greater number of physician claims than the comparison group (all variables significant; P < 0.001) (Table 1). Further details of these results have been published elsewhere.22

Ten-year follow-up

Over the 10-year follow-up period, fewer members of the injured cohort left the province or were unable to be located (10.9%) than members of the comparison cohort (14.2%). Of the injured cohort members, 8.0% died (n = 1677) compared with 3.6% of the comparison cohort members (n = 754).

Health service use

The members of the injured cohort had higher rates of HSU in every year of the post-injury study period than members of the non-injured cohort, for each of the outcome measures (Fig. 1). Over this time, the non-injured cohort demonstrated a consistent pattern of increasing rates of HSU. The distribution of rates of placement in care homes was less consistent, probably because the overall numbers of placements in care homes were small in both cohorts.

After adjusting for demographic characteristics and pre-existing health status, the injured cohort had 1.63 times the number of all-cause post-injury hospital discharges (95% confidence interval (CI), 1.59–1.68), 3.22 times the number of days’ post-injury in hospital for all causes (95% CI, 2.96–3.50), 1.28 times the post-injury physician claims rate (95% CI, 1.26–1.30) and 4.37 times the rate of placements in care homes than the comparison cohort (95% CI, 3.18–6.02). The adjusted AR% suggested that 38.7% of all post-injury hospital discharges (n = 25 183), 68.9%
Health service use in injured adults

Table 3. Ten-year post-injury hospital discharges, rates per 10 person-years (PYs) for injured and non-injured comparison cohorts, by injury subgroups and injury severity

<table>
<thead>
<tr>
<th>Injury subgroups and severity level</th>
<th>Injured (n = 21 032)a</th>
<th>Comparison (n = 21 032)</th>
<th>Unadjusted rate ratio</th>
<th>95% Confidence interval</th>
<th>Adjusted rate ratiob</th>
<th>95% Confidence interval</th>
<th>Adjusted attrib. risk %b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury subgroup</td>
<td>Hospital</td>
<td>Per 10 PYs</td>
<td>Hospital</td>
<td>Per 10 PYs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain injury (n = 1290)</td>
<td>3505</td>
<td>3.29</td>
<td>2181</td>
<td>1.92</td>
<td>1.77</td>
<td>1.58–1.98</td>
<td>1.54</td>
</tr>
<tr>
<td>Spinal injury (n = 95)</td>
<td>284</td>
<td>3.45</td>
<td>211</td>
<td>2.47</td>
<td>1.37</td>
<td>0.93–2.03</td>
<td>1.51</td>
</tr>
<tr>
<td>Burns (n = 524)</td>
<td>1382</td>
<td>3.00</td>
<td>717</td>
<td>1.61</td>
<td>1.95</td>
<td>1.62–2.34</td>
<td>1.36</td>
</tr>
<tr>
<td>Long-bone fractures (n = 2515)</td>
<td>7162</td>
<td>3.23</td>
<td>4251</td>
<td>1.92</td>
<td>1.76</td>
<td>1.64–1.90</td>
<td>1.64</td>
</tr>
<tr>
<td>Poisonings (n = 2169)</td>
<td>11 384</td>
<td>6.12</td>
<td>4702</td>
<td>2.43</td>
<td>2.67</td>
<td>2.48–2.88</td>
<td>1.89</td>
</tr>
<tr>
<td>Internal Injuries (n = 593)</td>
<td>1377</td>
<td>2.68</td>
<td>833</td>
<td>1.63</td>
<td>1.72</td>
<td>1.46–2.03</td>
<td>1.76</td>
</tr>
<tr>
<td>Other (n = 13 846)</td>
<td>39 978</td>
<td>3.24</td>
<td>20 984</td>
<td>1.72</td>
<td>1.92</td>
<td>1.86–1.99</td>
<td>1.62</td>
</tr>
<tr>
<td>Injury severity score (ISS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor (ISS 1–8) (n = 14 599)</td>
<td>39 782</td>
<td>3.04</td>
<td>22 211</td>
<td>1.73</td>
<td>1.79</td>
<td>1.73–1.85</td>
<td>1.54</td>
</tr>
<tr>
<td>Moderate (ISS 9–15) (n = 1 746)</td>
<td>5082</td>
<td>3.37</td>
<td>2666</td>
<td>1.74</td>
<td>2.06</td>
<td>1.88–2.26</td>
<td>1.87</td>
</tr>
<tr>
<td>Severe (ISS ≥ 16) (n = 657)</td>
<td>1474</td>
<td>2.98</td>
<td>997</td>
<td>1.71</td>
<td>1.90</td>
<td>1.61–2.24</td>
<td>1.86</td>
</tr>
<tr>
<td>No ISS computed (n = 4 030)</td>
<td>18 734</td>
<td>5.41</td>
<td>8005</td>
<td>2.24</td>
<td>2.52</td>
<td>2.37–2.67</td>
<td>1.86</td>
</tr>
</tbody>
</table>

a Excludes hospitalization for original index injury
b Adjusted for age, gender, place of residence and comorbidities in 12 months prior to injury date (including Charlson comorbidity index, cumulative LOS, number of physician claims, pre-existing psychiatric condition, pre-existing musculoskeletal condition and previous injuries).

<table>
<thead>
<tr>
<th>Injury subgroup</th>
<th>Unadjusted rate ratio</th>
<th>95% Confidence interval</th>
<th>Adjusted rate ratio</th>
<th>95% Confidence interval</th>
<th>Adjusted attrib. risk %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain injury</td>
<td>12.31</td>
<td>9.5% CI, 1.58–1.98</td>
<td>1.54</td>
<td>1.39–1.71</td>
<td>35.1</td>
</tr>
<tr>
<td>Spinal injury</td>
<td>5.52</td>
<td>95% CI, 2.34–2.74</td>
<td>2.43</td>
<td>1.75–2.05</td>
<td>47.1</td>
</tr>
<tr>
<td>Burns</td>
<td>3.45</td>
<td>95% CI, 2.73–5.56</td>
<td>2.47</td>
<td>1.75–2.05</td>
<td>47.1</td>
</tr>
<tr>
<td>Long-bone fractures</td>
<td>5.07/10 person-year</td>
<td>95% CI, 4.37–6.99</td>
<td>2.34</td>
<td>1.75–2.05</td>
<td>47.1</td>
</tr>
<tr>
<td>Poisonings</td>
<td>3.29/10 person-years</td>
<td>95% CI, 1.58–1.98</td>
<td>1.77</td>
<td>1.54</td>
<td>1.39–1.71</td>
</tr>
<tr>
<td>Internal Injuries</td>
<td>3.29/10 person-years</td>
<td>95% CI, 1.58–1.98</td>
<td>1.77</td>
<td>1.54</td>
<td>1.39–1.71</td>
</tr>
<tr>
<td>Other</td>
<td>3.29/10 person-years</td>
<td>95% CI, 1.58–1.98</td>
<td>1.77</td>
<td>1.54</td>
<td>1.39–1.71</td>
</tr>
</tbody>
</table>

 ajusted to being injured.

For each measure, the greatest difference in HSU between the injured and comparison cohorts occurred in the first year following the injury (Fig. 1). After adjusting for potential confounders, in each subsequent year following the injury, the injured cohort continued to have significantly greater HSU than the comparison cohort for all outcome measures.

Health service use by injury type

Of the seven injury subgroups, members of the poisoning subgroup had the highest rate of all-cause post-injury hospitalizations (6.12/10 person-years), followed by spinal injury (3.45/10 person-years) and brain injury (3.29/10 person-years) (Table 3). After adjusting for demographic characteristics and pre-injury health status, the rate ratios for all-cause post-injury hospitalizations for each injury type ranged from 1.36 to 1.89.

Spinal injury led to the highest rate (12.07/person-year) and the highest adjusted rate ratio of all-cause days LOS in hospital post-injury (RR = 12.31; 95% CI, 2.73–55.62) (Table 4). Of all the measures of HSU, the highest proportion of observed outcome attributable to the injury event, was the post-injury LOS in hospital, for which the AR% was between 62.5% and 91.9% across all injury subgroups.

While the poisonings group had the highest number of post-injury physician claims (11.48/person-year), those with a brain injury had the greatest adjusted rate ratio (RR = 1.44; 95% CI, 1.35–1.53) (Table 5). Those injured with a fracture of a long bone had the highest rate of admissions to a care home (28.67/10 000 person-years) and accounted for almost 26% of all such placements in the injured cohort (results not shown).

Health service use by severity of injury

Hospital discharge rates were similar for each of the three levels of severity of injury, measured by the ISS (Table 3). In contrast, LOS and rate ratios increased with the severity of the injury (Table 4). Those with minor injury had days’ LOS of 2.08/person-year (RR = 2.53; 95% CI, 2.34–2.74) compared to 5.07/person-year in those with moderate injuries (RR = 5.52; 95% CI, 4.37–6.99) and 10.49/person-year in those with an ISS score of ≥ 16 (RR = 11.54; 95% CI, 6.34–21.02). Whereas, cohort members with minor injuries accounted for almost 50% of total time in hospital, those who were moderately injured accounted for 14% and those with severe injuries 9.5% of total post-injury LOS.

Rates of all-cause post-injury physician claims increased with increasing severity of the injury, as did the adjusted rate ratios (Table 5). However, fewer of the post-injury physician claims were found to be attributed to the original index injury (between 20.0% and 36.7%). Rates of admission to care homes and rate ratios increased as the severity of the injury increased (results not shown).

Discussion

This study quantifies the population-based, long-term HSU attributable to injury, after controlling for demographic factors and pre-existing comorbidities. Injured cohort members had 1.63 times the rate of hospitalizations, 1.28 times the number of physician claims, 3.22 times the LOS in hospital and a 4.37 times greater likelihood of placement in care homes in the 10 years after the injury than the comparison group. The AR% indicated that 38.7% of all post-injury hospitalizations, 68.9% of all years spent in hospital (n = 1031), 21.9% of physician claims (n = 269 318) and 77.1% of placements in care homes (n = 189) in the injured cohort could be attributed to being injured.

For each measure, the greatest difference in HSU between the injured and comparison cohorts occurred in the first year following the injury (Fig. 1). After adjusting for potential confounders, in each subsequent year following the injury, the injured cohort continued to have significantly greater HSU than the comparison cohort for all outcome measures.
in care homes in the injured cohort could be attributed to being injured. Injury type and injury severity were found to have a significant effect on long-term HSU outcomes. This information can be used to derive estimates of the burden of non-fatal injury in the population.

These findings are consistent with the results of the few studies reported in the literature which have used similar methods and a non-injured comparison group. Rate ratios of hospitalizations post-injury comparing injured and non-injured populations ranged from 2.0 to 2.6. These studies confirmed the observation that, although rates of HSU in the injured (compared to the non-injured) cohort was an outcome principally associated with the incident injury. The use of an unexposed comparison group is a key element for attributing effects which have occurred a considerable time after the exposure. While, to some extent, confounding by factors other than pre-existing morbidity was addressed by the matched study design, some unmeasured potential confounders remain. These include aspects of socioeconomic status, risk-taking and health behaviours associated with both the injury and outcome, over and above the matched variables, which were not included in the administrative datasets. Accordingly, the observed morbidity that was attributed to the injury may have been overestimated.

There are a number of strengths that set this study apart from previous injury outcome studies. Through its use of linked administrative data, this study demonstrated the ability to overcome some of the design limitations of existing injury outcome studies to conduct a large-scale population-based study with a long follow-up time, accurate pre- and post-injury measures and a sample size sufficient for quantitative analysis. This is one of the few studies that have used a population-based non-injured comparison group.

While the administrative data lacked complex details on individual risk factors, they enabled measurement of health status before injury in the injured cohort, and previous health status in the non-injured group, which circumvented recall biases. Of principal value, was the ability to obtain longitudinal HSU data at the individual level and to link the provincial population registry to provide comprehensive follow-up of the cohorts. Few previous outcome studies have been able to determine the individual burden of hospital readmissions, ongoing outpatient visits, physician visits or long-term care provision following injury.

The results of this study can be generalized to other populations from other high-income countries where the demographic characteristics, distribution of injury types, severity of injury, mechanism of injury and health care systems are similar. The distribution of these characteristics broadly reflects those of published data on injury surveillance from Australia, Canada, New Zealand and the United Kingdom.
Résumé

Effets de l’utilisation des services de santé sur 10 ans dans une cohorte de 21 000 adultes ayant présenté un traumatisme dans la population : la Manitoba Injury Outcome Study

Objectif Quantifier l’utilisation à long terme des services de santé après un traumatisme non mortel chez l’adulte.

Méthodes Une étude rétrospective, en population, de cohortes appariées a permis de recenser une cohorte de départ (1988-1991) de personnes ayant subi un traumatisme et ayant été hospitalisées (CIM-9-MC 800-995), âgées de 18 à 64 ans (n = 21 032) et un groupe de comparaison apparié non traumatisé (n = 21 032), à partir de données administratives interdépendantes du Manitoba, Canada. Les données relatives à l’utilisation des services de santé à long terme (hospitalisations, durée cumulée du séjour; demandes et placements des médecins dans des services de soins de longue durée) ont été obtenues pour les 12 mois précédant et les 10 années suivant le traumatisme. On s’est servi des régressions binomiales négatives et de Poisson pour quantifier les associations entre traumatisme et utilisation prolongée des services de santé.

Résultats Des différences statistiquement significatives dans les taux d’utilisation des services de santé ont été mises en évidence entre les cohortes traumatisées et non traumatisées au cours de l’année précédant le traumatisme et de chaque année de suivi. Après avoir tenu compte de l’utilisation des services de santé avant le traumatisme, la fraction attribuable du risque a indiqué que 38,7 % de toutes les hospitalisations post-traumatiques (n = 25 183), 68,9 % de toutes les années passées à l’hôpital (n = 1031), 21,9 % des demandes des médecins (n = 269 318) et 77,1 % des placements en maisons de soins (n = 189) recensés dans la cohorte traumatisée pouvaient être imputables au fait d’avoir subi un traumatisme.

Conclusion Bon nombre des personnes qui survivent à la période initiale faisant suite à un traumatisme doivent faire face à de longues périodes de soins hospitaliers et à de fréquentes...
Health service use in injured adults

CM Cameron et al. Health service use in injured adults

Resumen

Uso de los servicios de salud a lo largo de 10 años en una cohorte basada en la población de 21 000 adultos con traumatismos: Estudio de Manitoba sobre el Desenlace de los Traumatismos

Objetivo

Cuantificar la utilización de los servicios de salud (USS) por adultos que han sufrido traumatismos no mortales.

Métodos

Estudio retrospectivo, poblacional, realizado en Manitoba (Canadá), de una cohorte de inicio (1988–1991) de 21 032 adultos de 18 a 64 años hospitalizados con traumatismos (CIE-9-CM 800-995), y de una cohorte de comparación (n = 21 032) de características similares, seleccionada a partir de datos administrativos. Se registraron los datos sobre la USS (hospitalizaciones, duración acumulada de la estancia, facturas médicas y prescripción de servicios asistenciales a largo plazo) en los 12 meses anteriores y los 10 años posteriores al traumatismo. Las asociaciones entre las lesiones y la USS a largo plazo se cuantificaron mediante regresiones binomiales negativas y regresiones de Poisson.

Resultados

Las tasas de USS presentaron diferencias estadísticamente significativas entre la dos cohortes, tanto en el año anterior al traumatismo como en cada uno de los años siguientes. Después de controlar los efectos de la USS anterior al traumatismo, el porcentaje de riesgo atribuible indicó que el 38,7% de todas las hospitalizaciones posteriores al traumatismo (n = 25 183), el 68.9% de los años pasados en el hospital (n = 1031), el 21.9% de las facturas médicas (n = 269 318) y el 77.1% de los ingresos en hogares de atención a largo plazo (n = 189) registrados en la cohorte con traumatismos podían atribuirse a los traumatismos.

Conclusiones

Muchas personas que sobreviven a un traumatismo sufren largos periodos de hospitalización (y frecuentes reingresos), tienen contactos frecuentes con los médicos y corren mayor riesgo de ingresar de forma prematura en establecimientos de asistencia a largo plazo. Las estimaciones de la carga de traumatismos podrían mejorar si se incluyeran las consecuencias sanitarias a largo plazo no mortales y se controlaran los efectos de la comorbilidad anterior a la lesión.

ملخص

دراسة مركزة على السكان لحصائل انتفاع 21000 من الأتراب البالغين المصابين بالأذى، والخدمات الصحية على مدى 10 سنوات:

درس مايتيوبا حول حصائل الأذى.

References

