Long term health outcomes after injury in working age adults: a systematic review

Author
Cameron, Cate, Kliewer, E, Purdie, D, McClure, Roderick

Published
2006

Journal Title
Journal of Epidemiology and Community Health

DOI
https://doi.org/10.1136/jech.2005.041046

Copyright Statement
Copyright remains with the authors 2006 Griffith University. The attached file is posted here with permission of the copyright owners for your personal use only. No further distribution permitted.

Downloaded from
http://hdl.handle.net/10072/14250

Link to published version
http://jech.bmj.com/
Long term health outcomes after injury in working age adults: a systematic review

C M Cameron, E V Kliewer, D M Purdie, R J McClure

Background: Estimating the contribution of non-fatal injury outcomes remains a considerable challenge and is one of the most difficult components of burden of disease analysis. The aim of this systematic review was to quantify the effect of being injured compared with not being injured on morbidity and health service use (HSU) in working age adults.

Methods: Studies were selected that were population based, had long term health outcomes measured, included a non-injured comparison group, and related to working age adults. Meta-analysis was not attempted because of the heterogeneity between studies.

Results: Nine studies met the inclusion criteria. In general, studies found an overall positive association between injury and increased HSU, exceeding that of the general population, which in some studies persisted for up to 50 years after injury. Disease outcome studies after injury were less consistent, with null findings reported.

Conclusion: Because of the limited injury types studied and heterogeneity between study outcome measures and follow up, there is insufficient published evidence on which to quantify the effect of long term injury and increased HSU that is not accounted for in current methods of quantifying injury burden.

Priorities for injury prevention activities and planning for services depend on comprehensive knowledge of the distribution of the burden of injury related morbidity and mortality in the community.1 A systematic review of the literature was conducted to summarise available evidence on population based estimates of long term morbidity and health service use (HSU) attributable to injury and to quantify the effect of the key prognostic factors, injury type and severity, after controlling for potential confounding variables.

METHODS

Study question
What is the effect of being injured compared with not being injured on long term morbidity and HSU in working age adults?

Search strategy and inclusion criteria
The following sources were searched: Medline (1966–February 2005), PubMed (1966–February 2005), PsychINFO (1840–February 2005), CINAHL (1982–February 2005), Science Citation Index, and bibliographies of identified papers. Synonyms for the key components of the research question were included as search terms.

Studies were included in the review if they were population based cohort studies with a non-injured comparison group, and a sample size greater than 50 participants. Any long term morbidity and HSU outcomes reported in the literature were accepted, and “long term” was defined as occurring more than 12 months after the injury. Studies of people younger than 15 years or older than 65 years were excluded. One author (CC) initially screened all titles/abstracts from the searches and identified 36 studies, which were population based and measured outcomes more than 12 months after injury. Two authors (CC and RM) then assessed these studies against the remaining inclusion criteria, with discordant assessments resolved by consensus. Nine studies met the criteria for this review.

Synthesis and standardisation of study results
Information extracted from the papers were summarised and presented in tabular and text form. Meta-analysis was not attempted because of the heterogeneity between studies. SMR-Exact (Simple Interactive Statistical Analysis, 1997, http://home.clara.net/sisa/smrlhp.htm) and Epi-Info (3.3 version, Epidemiology Program Office, Division of Public Health Surveillance and Informatics, 2004, http://www.cdc.gov/epiinfo/) were used to convert presented morbidity results to incidence rate ratios (IRRs) with 95% confidence intervals (CIs).

RESULTS

Study design, study populations, and case characteristics
Table 1 outlines the characteristics of the included studies. All of the studies had a retrospective cohort design. Sample sizes ranged widely from 198 to 311 006 injured cases. All but one study reported the mean age at the time of the injury was below 45 years. Two studies did not report the sex distribution. The proportion of men in the remaining studies ranged from 59.7% to 85%.

Outcome measurement
The studies were broadly classified by outcome measures into disease outcomes and post-injury HSU. Only outcome measures that were compared with non-injured samples or populations were of interest for this review and any other study outcomes are not reported here.

Confounding and loss to follow up
All studies adjusted for age and sex by comparing morbidity in the injured cases with either a matched non-injured group, or to age-sex standardised incidence rates from published national or census data. The one study that used a population based matched non-injured group did not adjust for potential confounders.

Abbreviations:
CI, confidence interval; HI, head injury; HSU, health service use; IRR, incidence rate ratio; SCI, spinal cord injury; TBI, traumatic brain injury
Table 1 Characteristics and findings of long term morbidity for injured cases relative to non-injured comparison groups

<table>
<thead>
<tr>
<th>Study</th>
<th>Injury type</th>
<th>Source population</th>
<th>Study size</th>
<th>Study population</th>
<th>Comparison group</th>
<th>Adjusting factors</th>
<th>Outcome measures</th>
<th>Results</th>
<th>95% Confidence intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson et al, 1998*</td>
<td>SCI</td>
<td>Colorado, USA</td>
<td>917</td>
<td>Cases selected from state registry of SCI cases, alive at discharge from hospital, 1986–1993. All ages.</td>
<td>Age adjusted general population hospitalisation rates in 1990, USA.</td>
<td>Age</td>
<td>Incidence of post-injury hospitalisations compared to total population. Up to five years after injury.</td>
<td>Overall IRR = 2.00</td>
<td>t</td>
</tr>
<tr>
<td>Drydan et al, 2004*</td>
<td>SCI</td>
<td>Alberta, Canada</td>
<td>233</td>
<td>All cases hospitalised with injury diagnosis ICD-9 806 and 952 during April 1992 and March 1994.</td>
<td>Matched non-injured population (1:5). 1165 matched non-injured.</td>
<td>Matched on age, sex, and place of residence.</td>
<td>Incidence of all cause hospitalisation compared to matched non-injured comparison group. Up to six years after injury.</td>
<td>Hospitalisations IRR = 2.60</td>
<td>2.3 to 3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physician claims IRR = 2.70</td>
<td>2.6 to 2.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hosp days per year IRR = 3.34</td>
<td>3.34 to 6.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Home care* IRR = 4.52</td>
<td>4.34 to 6.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Depression* IRR = 2.54</td>
<td>1.95 to 3.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Home care IRR = 3.26</td>
<td></td>
</tr>
<tr>
<td>Dowd et al, 1996</td>
<td>All injury</td>
<td>New Zealand</td>
<td>43507</td>
<td>All non-fatal cases hospitalised ICD-9 E800–E999 during 1990 (exc late effects, med and surg complications, legal interventions). All ages.</td>
<td></td>
<td></td>
<td></td>
<td>Overall IRR = 6.5</td>
<td>5.8 to 7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Non-assaultive IRR = 3.2</td>
<td>2.7 to 3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assaultive IRR = 3.95</td>
<td>3.58 to 43.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Undetermined IRR = 29.4</td>
<td>12.3 to 69.8</td>
</tr>
<tr>
<td>Conner et al, 2003</td>
<td>All injury</td>
<td>New Zealand</td>
<td>49683</td>
<td>All non-fatal cases hospitalised ICD-9 E800–E999 during 1997 (exc late effects, med and surg complications, legal interventions). All ages.</td>
<td></td>
<td></td>
<td></td>
<td>Overall IRR = 20.5</td>
<td>18.8 to 22.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Non-assaultive IRR = 5.6</td>
<td>4.8 to 6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assaultive IRR = 9.2</td>
<td>5.6 to 14.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Undetermined IRR = 13.7</td>
<td>2.9 to 64.1</td>
</tr>
<tr>
<td>Nemetz et al, 1999*</td>
<td>TBI</td>
<td>Olmsted County, USA</td>
<td>1283</td>
<td>TBI diagnosed cases during 1935–1984, aged 40 or more at last contact. All ages.</td>
<td></td>
<td></td>
<td></td>
<td>Overall IRR = 3.10</td>
<td>2.7 to 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mild IRR = 1.50</td>
<td>1.0 to 2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moderate IRR = 2.90</td>
<td>1.9 to 4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Severe IRR = 17.0</td>
<td>12.3 to 23.6</td>
</tr>
<tr>
<td>Anneges et al, 1998*</td>
<td>TBI</td>
<td>Olmsted County, USA</td>
<td>4541</td>
<td>TBI diagnosed cases during 1935–1984, excluding those with known epilepsy. All ages.</td>
<td>Age, sex standardised general population incidence rates of Alzheimer’s disease in Rochester, Minnesota.</td>
<td></td>
<td></td>
<td>Overall IRR = 3.10</td>
<td>0.9 to 1.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mild IRR = 1.50</td>
<td>1.0 to 2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moderate IRR = 2.90</td>
<td>1.9 to 4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Severe IRR = 17.0</td>
<td>12.3 to 23.6</td>
</tr>
<tr>
<td>Inskep et al, 1998</td>
<td>HI</td>
<td>Denmark</td>
<td>228055</td>
<td>All cases hospitalised with injuries to the head, National Hospital Discharge Register 1977–1992. All ages.</td>
<td>Expected numbers of cancer calculated based on Danish population incidence rates.</td>
<td>Observed distribution of Pt’s, age, sex and calendar year of injury.</td>
<td>Incidence of intracranial tumours compared with total population. Up to 16 years after injury. Intracranial tumours Year 1 IRR = 1.03</td>
<td>1.01 to 1.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Year 2 IRR = 1.36</td>
<td>1.20 to 1.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Year 3 IRR = 2.59</td>
<td>3.23 to 3.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Year 4 IRR = 1.94</td>
<td>1.53 to 2.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Year 5 IRR = 2.99</td>
<td>2.13 to 4.23</td>
</tr>
<tr>
<td>Nygren et al, 2001</td>
<td>TBI</td>
<td>Sweden</td>
<td>311006</td>
<td>Cases identified from National Hospital Register discharges 1965–1994. All ages.</td>
<td>Age, sex standardised, year specific population incidence rates of brain tumours.</td>
<td>Age at injury, sex, years of follow up, severity of injury.</td>
<td>Incidence of brain tumours compared with total population. Excludes first 12 months after injury.</td>
<td>Overall IRR = 1.00</td>
<td>0.9 to 1.2</td>
</tr>
</tbody>
</table>

*Calculated from data presented. t Unable to calculate confidence intervals based on presented results. TBI, traumatic brain injury; SCI, spinal cord injury; HI, head injury; IRR, incidence rate ratio; ICD-9, International Classification of Diseases Revision 9; Pt’s, person years.
confounding by pre-existing conditions. Only three studies reported the proportions of injured cases lost to follow up. In these studies, losses over the respective study periods ranged from 10% to 30%.

Study findings
HSU outcomes
Studies examining rates of HSU after injury compared with that of the general population, found an overall association between injury and subsequent increased HSU (table 1). IRRs of all cause hospitalisations ranged from 2.0 to 2.6.

Dryden et al found cases with spinal cord injury (SCI) had 2.6 times the rate of hospital admissions (95% CI 2.3 to 3.0), 2.7 times the rate of physician claims (95% CI 2.6 to 2.71), 3.29 times the rate of stay in hospital per person year, and 4.52 times the number of people receiving home care services (95% CI 3.34 to 6.11) during the six year follow up period, relative to that of the non-injured. They also found rates of hospitalisations increased significantly in the first and second year after injury, decreased considerably by year three after injury. However, at no time did the rates of hospitalisations for the injured cases decrease to that of the non-injured.

Johnson et al showed during five years after injury, the cases of SCI had twice the rate of hospital admissions compared with rates in the general population. While the proportion of people being hospitalised decreased at each period of follow up, the adjusted average number of hospitalisations continued to exceed the total population (p<0.05). Savic et al found cases of people with SCI, who were injured at least 20 years previously, had 2.4 times the rate of hospitalisations and 3.26 times the bed occupancy rate compared with the total population. Dowd et al and Conner et al found people who had been hospitalised for an injury had an increased risk of subsequent assaultive injury hospitalisations and self injury hospitalisations. Both studies showed that the IRRs increased with the intent of the original injury (table 1).

Disease outcomes
Studies examining the incidence of specific conditions after injury found differing estimates of effect (table 1). Annegers et al found an overall significant association between traumatic brain injury (TBI) and subsequent incidence of unprovoked seizures (IRR = 3.1, 95% CI 2.5 to 3.8). Nemetz et al found no significant differences in the incidence of Alzheimer’s disease in people with TBI compared with that of the general population (IRR = 1.2, 95% CI 0.8 to 1.7). However, their results showed the time until onset of the disease may be reduced in people who have sustained a TBI. Inskip et al and Nygren et al found that after the first year after injury, there was no significant increase in intracranial tumours or brain tumours after sustaining a TBI compared with the general population (IRR = 1.15, 95% CI 0.99 to 1.32 and IRR = 1.00, 95% CI 0.9 to 1.2 respectively). Dryden et al identified that the cases with SCI were more than twice as likely to be treated for depression as the non-injured (IRR = 2.54, 95% CI 1.95 to 3.31) during the six years of follow up.

DISCUSSION
The single most important finding of this review was the lack of empirical research from which burden of disease estimates can be derived. Only nine papers met the inclusion criteria for this review and all but two of these considered only a single injury type. This review showed a positive association between injury and an increase in total HSU that exceeded that of the general population, which in some studies persisted up to 50 years after injury. The greatest excess in HSU was evident during the initial period after injury, but an increased risk remained for many years after injury. With the exception of one finding, all measures of increased risk of post-injury HSU were statistically significant. Disease outcome studies after injury were less consistent, with null findings reported.

In most studies, comparisons were made between outcomes in the injured group and age-sex standardised incidence rates from national statistics or census data. The flaw in this comparison is the implied assumption that before the injury event the two populations were the same. There is clear evidence, however, that injured cases are considerably different from the general population in terms of the prevalence of pre-existing comorbidities, alcohol use, and smoking. Comparing morbidity outcomes with general population disease incidence tables or population “norms” from national health surveys will not control for these confounders. No studies in this review attempted to control for pre-existing conditions in the injured and comparison populations.

Policy implications
Indicators of the long term burden of injury are required to facilitate planning and monitoring health service needs and evaluating prevention and control strategies. These indicators need to be derived from the best available evidence. The review shows that current evidence is not sufficiently complete or detailed to support the required public health response.

Authors’ affiliations
C M Cameron, R J McClure, School of Medicine, Griffith University, Logan, Australia
E V Kliewer, Department of Epidemiology and Cancer Registry, CancerCare Manitoba, Canada
E V Kliewer, Department of Community Health Sciences, University of Manitoba, Canada
E V Kliewer, School of Public Health, University of Sydney, Australia
D M Purdie, Queensland Institute of Medical Research, Queensland, Australia
Funding: none.
Conflicts of interest: none.
Correspondence to: Dr C Cameron, School of Medicine, Logan Campus, Griffith University, University Drive, Meadowbrook, Queensland 4131, Australia; cate.cameron@griffith.edu.au
Accepted for publication 15 November 2005

REFERENCES

www.jech.com
THE JECH GALLERY
Contrasts in public transport

An important aim of public policy in many countries is to increase the use of public transport, for both environmental and health reasons. However, bus stops may differ in their appearance in ways that may promote or discourage their use, for example, seating, the extent of graffiti, and protective barriers enclosing nearby trees and shrubs. Lack of perceived defensible space is associated with a heightened fear of crime and may deter use, or invoke anxiety in users.

Anne Ellaway, Sally Macintyre
MRC Social and Public Health Sciences Unit, University of Glasgow, 4 Lilybank Gardens, Glasgow G12 8RZ, UK

Correspondence to: Dr A Ellaway, anne@msoc.mrc.gla.ac.uk

REFERENCE