Proton-transfer and non-transfer in compounds of quinoline and quinaldic acid with L-tartaric acid

Author
Smith, Graham, Wermuth, Urs, M. White, Jonathan

Published
2006

Journal Title
Acta Crystallographica, Section C Crystal Structure Communications

DOI
https://doi.org/10.1107/S0108270106045136

Copyright Statement
Copyright 2006 International Union of Crystallography. Published by Blackwell Publishing Ltd. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.

Downloaded from
http://hdl.handle.net/10072/14295
Proton-transfer and non-transfer in compounds of quinoline and quinaldic acid with l-tartaric acid

Graham Smith, Urs D. Wermuth and Jonathan M. White
Proton-transfer and non-transfer in compounds of quinoline and quinaldic acid with L-tartaric acid

Graham Smith, Urs D. Wermuth and Jonathan M. White

School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 23414, Brisbane, Queensland 4001, Australia, bSchool of Science, Griffith University, Nathan, Queensland 4111, Australia, and cSchool of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia
Correspondence e-mail: g.smith@qut.edu.au

Received 12 October 2006
Accepted 27 October 2006
Online 30 November 2006

The structures of two compounds of L-tartaric acid with quinoline, viz. the proton-transfer compound quinolinium hydrogen (2R,3R)-tartrate monohydrate, C6H5N⁺·C6H4O4⁻·H2O, (I), and the anhydrous non-proton-transfer adduct with quinaldic acid, bis(quinolinium-2-carboxylate) (2R,3R)-tartaric acid, 2C10H10NO2·C6H4O6 (II), have been determined at 130 K. Compound (I) has a three-dimensional honeycomb substructure formed from head-to-tail hydrogen-bonded hydrogen tartrate anions and water molecules. The stacks of π-bonded quinolinium cations are accommodated within the channels and are hydrogen bonded to it peripherally. Compound (II) has a two-dimensional network structure based on pseudo-centrosymmetric head-to-tail hydrogen-bonded cyclic dimers comprising zwitterionic quinaldic acid species which are interlinked by tartaric acid molecules.

Comment

Tartaric acid is a relatively strong diprotic chiral α-hydroxy acid (pKₐ1 = 2.93 and pKₐ2 = 4.23) and, therefore, is potentially capable of forming both 1:1 and 1:2 proton-transfer salts with most Lewis bases. However, with stoichiometric control it is possible to selectively form 1:1 hydrogen tartrates and the crystal structures of a large number of these 1:1 salts have been reported, particularly since these compounds usually have good crystal morphology, allowing structure determination by single-crystal X-ray analysis, which is often not possible with the parent Lewis base. Applications have been with drugs such as epinephrine (Carlström, 1973), dextromoramide (Bye, 1975), amosulalol (Furuya et al., 1989), alprenolol (Główka & Codding, 1989), phenmetrazine (Glaser et al., 1994) and tolteroxine (Koštút-Hulita & Zegarac, 2005), as well as natural products such as alkaloids, e.g. strychnine (Gould et al., 1987), brucine (Smith, Wermuth & White, 2006), quinine (Rytergaard & Larsen, 2004), cinchonine (Puliti et al., 2001), cinchonidine (Rytersgaard & Larsen, 2003; Zhang et al., 2003) and quinocridine (Kania et al., 2004), and amino acids, e.g. L-alanine (Rajagopalan et al., 2002), L-proline (Subha Nandhini et al., 2001), D-, L- and Dl-histidine (Marcheswka et al., 2003; Rajagopalan et al., 2003; Johnson & Feeder, 2004a,b,c), and L-lysine (Debrus et al., 2005).

Because of the ready availability of L-(+)-tartaric acid, which has the confirmed 2R,3R absolute configuration, it has been very useful for both resolution and the crystallographic determination of absolute configuration in chiral molecular species, e.g. with the anticholinergic agent R-(−)-1,1-diphenyl-3-piperidinobutan-1-ol (Schjelderup et al., 1990). More recently, its utility as an agent for the introduction of chirality in achiral organic compounds for the generation of crystalline materials with potentially useful non-linear optical properties has been explored (Aackeröy et al., 1992; Fuller et al., 1995; Marchewska et al., 2003; Debrus et al., 2005; Manivannan et al., 2006).

We have found that 1:1 stoichiometric interactions of the relatively strong carboxylic acids 5-sulfo salicylic acid (5-SSA) (Smith et al., 2004) and 3,5-dinitrosaliclyc acid (DNSA) (Smith, Wermuth, Healy & White, 2006) with a series of bicyclic heteroaromatic amines, including quinoline, tetrahydroquinoline, 8-hydroxyquinoline, 8-aminquinoline and

Figure 1
The molecular configuration and atom-numbering scheme for the quinolinium cation, the hydrogen tartrate anion and the solvent water molecule in (I). Non-H atoms are shown as 50% probability displacement ellipsoids.
quinaldic acid (quinoline-2-carboxylic acid, QA), mostly gave 1:1 proton-transfer compounds. The only exception was with quinaldic acid and 5-SSA, where an adduct salt compound [QA-·5-SSA·QA] was found. In this structure, an unusual head-to-tail hydrogen-bonded cyclic homodimer was present [graph set \(R_2^2(10) \); Etter, 1991] involving two QA species, one protonated and the other zwitterionic. With quinaldic acid itself, the crystal structure (Dobrzyńska & Jerzykiewicz, 2004) showed the presence of a tautomeric mixture of both zwitterionic and normal acid molecules, with the zwitterions forming a similar homodimer. This was not the case with DNSA, where a conventional 1:1 product was formed with the QA molecule fully protonated.

The 1:1 reaction of these heteroaromatic amines with L-tartaric acid might be expected to give similar quinolinium hydrogen L-tartrates. Although the structures of the 1:1 tartrate salts of the previously mentioned quinine alkaloids are known (Puliti et al., 2001; Zhang et al., 2003; Ryttersgaard & Larsen, 2003, 2004; Kanai et al., 2004), those with the simple analogues of quinoline are not common. The only other tartrates of simple polycyclic heteroaromatic amines are those with benzimidazole (proton-transfer) (Aakeröy & Hitchcock, 1994) and the non-proton-transfer 1:1 adduct with 1,10-phenanthroline (Wang et al., 2006). Our 1:1 stoichiometric reaction of L-tartaric acid with quinoline (pK_a = 4.81) resulted in the isolation of the expected proton-transfer compound, a

Figure 2
The packing of (I) in the unit cell, viewed down the b axial direction, showing the columns of \(\pi \)-stacked quinolinium cations inside the tartrate–water honeycomb substructure. Hydrogen-bonding interactions are shown as broken lines and non-interactive H atoms have been omitted. (For symmetry codes, see Table 1.)

Figure 3
The packing of (I) in the unit cell, viewed approximately perpendicular to the honeycomb substructure. Hydrogen-bonding interactions are shown as broken lines and non-interactive H atoms have been omitted. (For symmetry codes, see Table 1.)
organic compounds

1:1 hydrate, quinolinium hydrogen (2R,3R)-tartrate monohydrate, (I). However, with quinaldic acid, the adduct quinolinium-2-carboxylate-(2R,3R)-tartrate acid (2/1), (II), was formed. This compound differs from the 5-SSA-QA compound by the absence of proton transfer, the two QA molecules being zwitterionic. The structures of both (I) and (II) are reported here. With the quinoline analogues 8-hydroxyquinoline and 8-aminoquinoline, the non-crystalline products obtained with 1-tartaric acid did not allow a full series structural comparison to be made with the quinoline salts of DNSA and 5-SSA.

Compound (I) shows the presence of single-proton transfer from 1-tartaric acid to the N atom of quinoline (Fig. 1). The hydrogen tartrate anions and the water molecules of solvation then form an unusual three-dimensional hydrogen-bonded honeycomb substructure through carboxylate interactions with other tartrate carboxylic acid and hydroxyl groups, as well as with the water molecule (Table 1). This structure extends down the a cell direction and accommodates the columns of π-stacked quinolinium cations within the channels (Figs. 2 and 3). The ring centroid separations for the alternating six-membered (N1/C2–C4/C10/C9 and C5–C10) ring systems of the quinolinium ions within the stacks are 3.7555 (11) and 3.7591 (11) Å, with an inter-ring dihedral angle of 42.2° (1°). The cation stacks are peripherally hydrogen bonded to a carboxylate O-atom acceptor within the substructure through a single strong link [N′−H···O12 = 2.6635 (18) Å]. Only two weak aromatic C−H···O interactions are present in the structure, which in most respects is similar to that reported for the compound of 1-tartaric acid with 1,10-phenanthroline (Wang et al., 2006).

With compound (II) (Fig. 4), surprisingly, no proton transfer has occurred. The two QA species are zwitterionic, forming a pseudo-centrosymmetric head-to-tail hydrogen-bonded cyclic dimer similar to that found in the structure of the acid itself (Dobrzyńska & Jerzykiewicz, 2004). These R2(10) dimers are essentially planar [the torsion angles are N1–C2–C22–O22 = 5.4 (3)° and N1A–C2A–C22A–O22A = 4.1 (3)°], and are stabilized by both inter- and intramolecular N′−H···O interactions [N1···O22A = 2.747 (3) Å, N1A···O22 = 2.784 (3) Å, N1···O22 = 2.686 (3) Å and N1A···O22A = 2.668 (3) Å; Table 2], as well as longer aromatic C−H···O

Figure 4
The molecular configuration and atom-numbering scheme for the two independent quinaldic acid zwitterions and the 1-tartaric acid molecule in the asymmetric unit in (II). Non-H atoms are shown as 50% probability displacement ellipsoids.

Figure 5
A perspective view of the partial packing of (II) in the unit cell, showing the zwitterionic dimer units and their extension via the tartaric acid molecules. Hydrogen-bonding interactions are shown as broken lines and non-interactive H atoms have been omitted. [Symmetry code: (iv) x + 1, y + 1, z + 1; for other symmetry codes, see Table 2.]
interactions [C8–H8···O22A = 3.181 (3) Å and C8A–
H8A···O22 = 3.202 (3) Å]. This is also similar to the
dimers found in the [QAH"⁺···SSA⁻·QA] adduct, except that in
this structure one of the QA species is fully protonated (Smith et
al., 2004). It is therefore assumed that the absence of proton
transfer in (II) is because of the stability of this zwiterionic
dimer despite the pK_a difference for QA (pK_a = 4.96 and
pK_a = 9.02) versus tartaric acid. In (II), these dimers are
linked through the tartaric acid molecules by head-to-tail
heteromolecular carboxylic acid–carboxyl interactions
(Interaction 2) which, together with homomolecular hydroxy-
carboxyl extensions, give a two-dimensional network structure
(Fig. 5). Contrasting with the structure of (I) there are also
numerous aromatic C–H···O associations with an absence of
any π–π interactions between the QA molecules.

The accepted 2R,3R absolute configuration for the
l-tartaric residues in both (I) and (II) (Waser, 1949; Bijvoet
et al., 1951; Hope & de la Camp, 1972) was assumed and in both
components they adopt the common extended conformation,
which is similar to those of the parent tartaric acid (Stern &
Bearens, 1950; Okaya et al., 1966; Albertsson et al., 1979), the
l-acid in the anhydrous dl-acid (Luner et al., 2002 (Table 3))
and the 1:1 compound with 1,10-phenanthroline (Wang et al.,
2006). However, unlike these, in both (I) and (II), a single
hydroxyl–carboxyl intramolecular hydrogen bond is present
[O–H···O = 2.6652 (17) and 2.639 (3) Å, respectively].

While the absence of proton transfer in (II) may be
explained in terms of the presence of the QA zwitterion dimer,
the absence of transfer in the l-tartaric acid–1,10-phenan-
throline compound reported by Wang et al. (2006) when
compared with the structurally similar (I) is not understood,
considering that the pK_a value for 1,10-phenanthroline (4.86)
is very close to that of quinoline (4.81).

Experimental

Both compounds were synthesized by heating 1 mmol quantities of
l-tartaric acid and either quinoline [for (I)] or quinoline-2-carboxylic
acid (quinacid) [for (II)] in 50% 2-propanol–water for 10 min
under reflux. Compound (I) was obtained as colourless needles (m.p.
397.6–398.6 K) and (II) as pale-yellow plates (m.p. 469.1–470.7 K),
after partial room-temperature evaporation of the solvent.

Compound (I)

Crystal data

\[\begin{align*}
 & C_4H_7N^+\cdot C_7H_6O_7^- \cdot H_2O, \\
 & M_r = 297.26, \\
 & \text{Orthorhombic, } P2_12_12_1, \\
 & a = 7.2546 (6) \text{ Å,} \\
 & b = 9.4922 (8) \text{ Å,} \\
 & c = 19.4971 (16) \text{ Å,} \\
 & V = 1339.86 (19) \text{ Å}^3.
\end{align*} \]

Data collection

Brucker SMART CCD area-detector
diffractometer

\[\begin{align*}
 & \text{φ and ω scans,} \\
 & \text{Absorption correction: multi-scan (SADABS, Brucker, 1999)} \\
 & \text{\(T_{\text{min}} = 0.888, T_{\text{max}} = 1.00 \).}
\end{align*} \]

Refinement

\[\begin{align*}
 & \text{Refinement on } F^2: \\
 & \text{R}(F^2 > 2\sigma(F^2)) = 0.035 \\
 & \text{wR}(F^2) = 0.088 \\
 & S = 1.04.
\end{align*} \]

\[\begin{align*}
 & 1795 \text{ reflections} \\
 & 214 \text{ parameters}
\end{align*} \]

\[\begin{align*}
 & \text{H atoms treated by a mixture of independent and constrained refinement}
\end{align*} \]

\[\begin{align*}
 & w = \frac{1}{\sigma^2(F^2)} + \left(0.0465P^2 + 0.233P \right)
\end{align*} \]

\[\begin{align*}
 & \text{where } P = (\sigma^2(F^2) + 2F^2)/3
\end{align*} \]

\[\begin{align*}
 & \text{\(\Delta F_{\text{max}} < 0.001 \),} \\
 & \text{\(\Delta F_{\text{min}} = 0.25 e \text{ Å}^{-3} \),} \\
 & \text{\(\Delta F_{\text{min}} = -0.19 e \text{ Å}^{-3} \),} \\
 & \text{Absolute structure: Flack (1983), 1209 Friedel pairs}
\end{align*} \]

\[\begin{align*}
 & \text{Flack parameter: } -0.2 (9)
\end{align*} \]

Table 1

<table>
<thead>
<tr>
<th>Hydrogen-bond geometry (Å, °) for (I)</th>
<th>D–H···A</th>
<th>D–H</th>
<th>H···A</th>
<th>D–A</th>
<th>D–H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1–H1⋯O12</td>
<td>0.880 (19)</td>
<td>1.797 (19)</td>
<td>2.6635 (18)</td>
<td>162 (2)</td>
<td></td>
</tr>
<tr>
<td>O1W–H1W⋯O12</td>
<td>0.82 (2)</td>
<td>1.88 (2)</td>
<td>2.6888 (17)</td>
<td>171 (2)</td>
<td></td>
</tr>
<tr>
<td>O1W–H2W⋯O21W</td>
<td>0.84 (3)</td>
<td>1.95 (3)</td>
<td>2.7382 (17)</td>
<td>170 (3)</td>
<td></td>
</tr>
<tr>
<td>O21–H211⋯O12W</td>
<td>0.86 (3)</td>
<td>1.81 (3)</td>
<td>2.6665 (17)</td>
<td>172 (3)</td>
<td></td>
</tr>
<tr>
<td>O31–H31⋯O42</td>
<td>0.84 (2)</td>
<td>2.17 (2)</td>
<td>2.6552 (17)</td>
<td>177.7 (17)</td>
<td></td>
</tr>
<tr>
<td>O31–H31⋯O41w</td>
<td>0.84 (2)</td>
<td>2.28 (2)</td>
<td>2.9480 (17)</td>
<td>136.4 (19)</td>
<td></td>
</tr>
<tr>
<td>O41–H41⋯O11W</td>
<td>0.90 (3)</td>
<td>1.61 (3)</td>
<td>2.5090 (16)</td>
<td>180 (4)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i) \(x-1, y, z \); (ii) \(y-\frac{1}{2}, -z, \frac{1}{2} - x \); (iii) \(x \); (iv) \(x+1, y, z \).

Table 2

<table>
<thead>
<tr>
<th>Hydrogen-bond geometry (Å, °) for (II)</th>
<th>D–H⋯A</th>
<th>D–H</th>
<th>H⋯A</th>
<th>D–A</th>
<th>D–H⋯A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1–H1⋯O22A</td>
<td>0.92</td>
<td>2.36</td>
<td>2.6868 (3)</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>N1–H1⋯O22A</td>
<td>0.92</td>
<td>1.85</td>
<td>2.747 (3)</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>N1A–H1A⋯O22A</td>
<td>0.81</td>
<td>2.01</td>
<td>2.784 (3)</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>N1A–H1A⋯O22A</td>
<td>0.81</td>
<td>2.30</td>
<td>2.668 (3)</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>O11–H11⋯O23A</td>
<td>0.89</td>
<td>1.64</td>
<td>2.521 (3)</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>O21–H21⋯O12</td>
<td>0.79</td>
<td>2.21</td>
<td>2.639 (3)</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>O31–H31⋯O42A</td>
<td>0.82</td>
<td>1.92</td>
<td>2.739 (3)</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>O41–H41⋯O42A</td>
<td>0.92</td>
<td>1.65</td>
<td>2.557 (3)</td>
<td>173</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i) \(x-1, y-1, z-1 \); (ii) \(x-1, y, z \); (iii) \(x+y, z \).
organic compounds

<table>
<thead>
<tr>
<th>(I)</th>
<th>(II)</th>
<th>d-TART</th>
<th>dl-TART</th>
<th>PHENTART</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11—C21—C31—C41</td>
<td>174.41 (12)</td>
<td>170.9 (2)</td>
<td>175.6 (16)</td>
<td>177.6 (1)</td>
</tr>
<tr>
<td>O11—C11—C21—O21</td>
<td>−170.33 (12)</td>
<td>−170.93 (19)</td>
<td>174.5 (16)</td>
<td>−170.3 (1)</td>
</tr>
<tr>
<td>O21—C21—C31—O31</td>
<td>−70.63 (1)</td>
<td>−75.5 (2)</td>
<td>58 (2)</td>
<td>−65.2 (1)</td>
</tr>
<tr>
<td>O31—C31—C41—O41</td>
<td>178.61 (12)</td>
<td>−169.6 (2)</td>
<td>177.6 (17)</td>
<td>−170.3 (1)</td>
</tr>
</tbody>
</table>

H atoms potentially involved in hydrogen-bonding interactions in (I) and (II) were located by difference methods and their positional and isotropic displacement parameters were refined. However, with (II), because of the poor reflections/refined parameters ratio, the parameters were fixed for the final refinement cycle. Other H atoms for both (I) and (II) were included at calculated positions (aromatic C—H = 0.95 Å and aliphatic C—H = 0.97 or 0.98 Å) and treated as riding [U(eq)H = 1.2Ueq(C)]. Friedel pairs were averaged for the data used in the refinements. The absolute configuration determined for the parent t-(-)-tartaric acid, viz. 2R,3R (Waser, 1949; Bijvoet et al., 1951; Hope & de la Camp, 1972), was invoked in both structures.

For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) in WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in WinGX; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

The authors acknowledge financial support from the School of Physical and Chemical Sciences (Queensland University of Technology), the School of Science, Griffith University, and the School of Chemistry, The University of Melbourne.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SF3023). Services for accessing these data are described at the back of the journal.

References

