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Abstract A local and deterministic model of quantum correlations is always possi-
ble, as shown explicitly by Brans in 1988: one simply needs the physical systems
being measured to have a suitable statistical correlation with the physical systems
performing the measurement, via some common cause. Hence, to derive no-go re-
sults such as Bell inequalities, an assumption of measurement independence is cru-
cial. It is a surprisingly strong assumption – less than 1/15 bits of prior correlation
suffice for a local model of the singlet state of two qubits – with ramifications for the
security of quantum communication protocols. Indeed, without this assumption, any
statistical correlations whatsoever – even those which appear to allow explicit su-
perluminal signalling – have a corresponding local deterministic model. It is argued
that ‘quantum nonlocality’ is bad terminology, and that measurement independence
does not equate to ‘experimental free will’. Brans’ 1988 model is extended to show
that no more than 2logd bits of prior correlation are required for a local determin-
istic model of the correlations between any twod-dimensional quantum systems.

1 Introduction

Various no-go results exist for models of quantum phenomena, based on various
more or less plausible assumptions for the structure of such models. Such results
support a longstanding view that quantum mechanics is more or less implausible —
indeed, Niels Bohr was famously quoted as saying [1]:

Those who are not shocked when they first come across quantum theory cannot possibly
have understood it.
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This has led not only to much philosophical discussion on which assumption(s)
should be relaxed, but also to surprising applications of what might be termed quan-
tum implausibility, such as quantum cryptography and quantum computation.

The most remarkable of these no-go results are Bell inequalities, which imply
that at least one of the plausible properties of determinism, locality and measure-
ment independence must be given up to successfully describequantum correlations
between distant measurement regions [2, 3, 4]. Here measurement independence
denotes the statistical independence of (i) any physical parameter influencing the
selection of measurement procedures from (ii) any physicalparameter influencing
measurement outcomes, and is typically justified by an appeal to experimental free
will [5].

The question of which property should be relaxed is not just amatter of idle
speculation: the security of quantum cryptographic protocols, for example, relies
on there being no deterministic description underlying correlations between distant
measurement outcomes — an eavesdropper possessing such a description would be
able to determine the cryptographic key [6]. Hence, any unconditionally secure pro-
tocol based on violation of Bell inequalities must, to ensure there is no deterministic
description available, assume that the properties of locality and measurement inde-
pendence hold. A similar requirement applies to device-independent protocols for
randomness generation [6].

While most discussion in the literature focuses on choosingbetween locality or
determinism to model quantum correlations, it was pointed out by Brans in 1988
that there is in fact an explicit localand deterministic model, obtained by relax-
ing measurement independence [7]. Brans further observed that there is an inherent
conflict in assuming that both determinism and measurement independence hold: if
the physical world is deterministic, then correlations between physical parameters
are generic.

There has been a recent upsurge of interest in local deterministic models, includ-
ing their construction [8, 9, 10]; the derivation of generalised Bell inequalities incor-
porating a given level of measurement dependence [9, 10, 11,12, 13, 14, 15, 16, 17];
impacts on device-independent quantum communication protocols [13, 14, 15]; and
new experimental tests [18, 19].

In this contribution I briefly review the assumptions leading to Bell inequalities
(Sect. 2); pause to urge replacement of the misleading terms‘quantum nonlocality’
and ‘Bell nonlocality’ in the literature by the more neutralterm ‘Bell nonsepara-
bility’ (Sect. 3); compare the degrees of measurement dependence of various local
deterministic models for the singlet state, and extend the Brans model to show that
local deterministic models for twod-dimensional quantum systems require no more
than 2log2d bits of measurement-dependent correlation (Sect. 4); and discuss the
relevance of local deterministic models to questions of causality and free will —
including a demonstration of theprima facieparadoxical existence of a local deter-
ministic model for superluminal correlations (Sect. 5).
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2 The well trod path to Bell inequalities

2.1 Bayes theorem

Consider an experiment in which

• Preparation procedureP is carried out.
• Measurement procedureM is performed.
• Outcomem is recorded.

In a joint measurement scenario one is interested in the casewhere the measurement
procedureM decomposes into two subproceduresx andy, with respective outcomes
a andb, i.e.,

M ≡ (x,y), m≡ (a,b).

Statistical correlations between these outcomes are represented by some joint prob-
ability densityp(m|M,P) = p(a,b|x,y,P), which can be in principle measured via
many repetitions of the experiment. Part of the physicist’sjob is to find an underly-
ing model for these correlations, for a given set of experiments{(x,y,P)}.

In particular, an underlying model introduces additional physical variables of
some sort. Denoting these underlying variables byλ , Bayes theorem immediately
tells us that

p(m|M,P) = p(a,b|x,y,P) =
∫

dλ p(a,b|λ ,x,y,P) p(λ |x,y,P), (1)

with integration replaced by summation over any discrete ranges ofλ . A given
model must therefore specify the type of information encoded in λ , and the un-
derlying probability densitiesp(a,b|λ ,x,y,P) andp(λ |x,y,P).

For example, in standard quantum mechanicsλ may be taken to range over a set
of density operators, with

pQ(a,b|λ ,x,y,P) = tr[λExy
ab], pQ(λ |x,y,P) = δ (λ −λP), (2)

for some density operatorλP associated with preparation procedureP and some
positive operator valued measure (POVM){EM

m ≡ Exy
ab} associated with the joint

measurement procedureM = (x,y).

2.2 Bell separability

A given underlying model may or may not satisfy certain physically plausible prop-
erties, such as determinism, causal correlations, etc. In the scenario typically con-
sidered for Bell inequalities [2], one requires the quantities in Eq. (1) to satisfy the
following three properties in particular:
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Statistical completeness:All statistical correlations arise from ignorance of the
underlying variable, i.e.,

p(a,b|λ ,x,y,P) = p(a|λ ,x,y,P) p(b|λ ,x,y,P). (3)

Thus, all correlations between measurement outcomes vanish when the additional
information encoded inλ is specified [20]. This property is also known as outcome
independence, and is guaranteed to hold fordeterministicmodels, i.e., for

p(a,b|λ ,x,y,P,) ∈ {0,1}.

Indeed, the existence of a deterministic model for a given set of correlations is equiv-
alent to the existence of a statistically complete model [11, 21]. The original moti-
vation for statistical completeness was in fact outcome determinism, via an appeal
to the existence of an underlying reality in which all measurement outcomes are
predetermined [2].

Statistical locality: Distant measurement subprocedures do not influence each
other’s underlying outcome probability distributions, i.e.,

p(a|λ ,x,y,P) = p(a|λ ,x,P), p(b|λ ,x,y,P) = p(b|λ ,y,P). (4)

Thus, an observer cannot distinguish, via any local measurementx, whether a distant
observer has carried out measurementy or y′, even given knowledge of the under-
lying variableλ . This property, also known as parameter independence, is justified
by the principle of relativity when the measurement subprocedures are carried out
in spacelike separated regions [2].

Measurement independence:The measurement procedure M= (x,y) is not cor-
related with the underlying variable, i.e.,

p(λ |x,y,P) = p(λ |P). (5)

Thus, knowledge of the underlying variable gives no information about the mea-
surement procedure, and vice versa. This property is often justified by an appeal to
‘experimental free will’ [5], as will be discussed in some detail further below.

The combination of all three properties is equivalent, via Eqs. (1) and (3)-(5), to:

Bell separability: The joint probabilities of distantly-performedmeasurement
procedures have an underlying model of the form

p(a,b|x,y,P) =
∫

dλ p(λ |P) p(a|λ ,x,P) p(b|λ ,y,P), (6)

i.e, a model satisfying statistical completeness, statistical locality and mea-
surement independence.
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Bell separable models were first introduced by John Bell [2] (see Ref. [22] for
a recent review), and capture the notion that statistical correlations between distant
regions separate into independent contributions, distinguished by their dependencies
on the measurement subprocedures as per Eq. (6).

2.3 Bell inequalities

Statistical correlations which have a Bell separable modelsatisfy various inequal-
ities, known as Bell inequalities. For example, if each measurement outcome is
labelled by±1, Bell separability implies that the Clauser-Horne-Shimony-Holt
(CHSH) inequality [3]

E(x,y,P)+E(x,y′,P)+E(x′,y,P)−E(x′,y′,P)≤ 2 (7)

holds for any four pairs of distantly performed measurementprocedures(x,y),
(x,y′), (x′,y) and(x′,y′), whereE(x,y,P) := ∑a,b=±1ab p(a,b|x,y,P).

It is now well known that not only do the predictions of standard quantum me-
chanics violate such Bell inequalities: so does nature [23,24]. Hence, our world is
Bell-nonseparable, and one or more of the three properties in Eqs. (3)-(5) must be
relaxed in any underlying model thereof.

It is worth noting that the existence of a Bell separable model as per Eq. (6), for
some given set of joint measurement procedures{(x,y)} and preparation procedure
P, is also equivalent to the existence of a formal joint probability distribution for any
finite subset(x1, . . . ,xm,y1, . . .yn) — whether or not this subset has an experimental
joint implementation. In particular, one may define [21]

pF(a1, . . . ,am,b1, . . .bn|x1, . . . ,xm,y1, . . .yn,P) :=
∫

dλ p(λ |P)
m

∏
j=1

p(a j |λ ,x j ,P)

×
n

∏
k=1

p(bk|λ ,yk,P). (8)

Bell inequalities correspond to boundary inequalities forthe space (polytope) of
such formal joint probability distributions [6, 25, 26, 27].

3 Why ‘quantum nonlocality’ is bad terminology

The violation of Bell inequalities by quantum systems is often referred to as ‘quan-
tum nonlocality’ or ‘Bell nonlocality’. To do so is quite misleading, however, as it
implicitly — and incorrectly — suggests that some sort of mysterious action-at-a-
distance is necessarily involved in quantum correlations.
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In particular, onlyoneof the three assumptions in Sect. 2.2 makes reference to
notions of locality:statistical localityrequires that a distant measurement proce-
dure cannot be identified from local statistics. The other two assumptions, statistical
completeness and measurement dependence, do not require any notion of acausal
information transfer between distant regions (as shown explicitly in Sects. 4 and 5).
Hence, by dropping either one of these two assumptions, Bellinequality violations
may be modelled in a perfectly local manner.

Further, the property of statistical locality is automatically satisfied in standard
quantum mechanics, via the usual tensor product representation

Exy
ab = Ex

a ⊗Ey
b (9)

of the POVM in Eq. (2) for measurements in separated regions [28]. Hence, quantum
mechanics is in factlocal, with respect to the only sense in which this concept makes
an appearance in the derivation of Bell inequalities!

This has led Mermin to conclude that use of the term ‘quantum nonlocality’ is
no more than “fashion at a distance” [29], and Kent to lament it as a “confusingly
oxymoronic phrase” that conflicts with the notion of locality in quantum field theory
[30]. An extended critique has been given recently byŻukowksi and Brukner [31]
(see also Ref. [32]).

While ‘Bell nonlocality’ is preferable to ‘quantum nonlocality’, insofar as the
adjective vaguely implies some sort of special qualification, essentially the same
criticisms apply. Moreover, since quantum communication protocols that rely on
the violation of Bell inequalitiesrequire the assumption of statisticallocality (and
measurement independence), to ensure indeterminism (see Sect. 1), it is similarly
‘confusingly oxymoronic’ to assert that such protocols rely on Bell nonlocality, as
is commonly done [6].

I therefore strongly urge adoption of the more neutral term ‘Bell nonseparability’.

4 Local deterministic models of quantum correlations

4.1 Relaxing measurement independence

As noted previously, violation of a Bell inequality, and hence of Bell separability,
implies that at least one of the properties in Eqs. (3)-(5) must be relaxed in any
underlying model. The degree to which these properties needto be individually or
jointly relaxed, relative to various measures, has been recently reviewed [11].

For example, the standard quantum mechanics model satisfiesthe property of sta-
tistical locality in Eq. (4), as noted in the previous section. Comparison of Eqs. (2)
and (5) shows that it also satisfies the property of measurement independence.
Hence, since it predicts violations of Bell inequalities, it follows that the standard
quantum mechanics model must relax the property of statistical completeness. This
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is indeed so: the joint probabilitypQ(a,b|λ ,x,y,P) in Eq. (2) is only guaranteed to
factorise, as per Eq. (3), for tensor product statesλ = λ1⊗λ2.

A major contribution by Brans was to provide, in contrast, the first explicitlocal
deterministicmodel of quantum correlations, by instead relaxing the assumption
of measurement independence [7]. The existence of such a fully causal model for
Bell-nonseparable correlations further emphasises the point made in Sect. 3, that the
properties of statistical completeness and measurement independence do not rely on
any concept of localityper se.

Brans’ model for the singlet state of two spin-1/2 particles or qubits, together
with two subsequent models, are briefly described in Sect. 4.2, before discussing
the generalisation of Brans’ model to arbitrary quantum correlations in Sect. 4.3.
However, it is of interest to first quantify the degree of measurement dependence
of any given model, so as to be able to make quantitative comparisons between
different models.

Several measures of measurement independence have been discussed in the lit-
erature [9, 10, 11, 12, 13, 14, 15, 16]. Attention here will beconfined to the ‘mea-
surement dependence capacity’, which directly quantifies the correlation between
the joint measurement procedure and underlying variable interms of the maximum
mutual information between them [10]:

CMD := sup
p(x,y)

H(Λ : X,Y) = sup
p(x,y)

∫

dλdxdy p(λ ,x,y|P) log2
p(λ ,x,y|P)

p(λ |P) p(x,y)
. (10)

Here the supremum is over all possible probability densitiesp(x,y) for the joint mea-
surement procedure;H(Λ : X,Y) denotes the mutual information; andp(λ ,x,y, |P) :=
p(λ |x,y,P) p(x,y). Note that the mutual information quantifies the average infor-
mation gained about the measurement procedure from knowledge of the underlying
variable, and vice versa, in terms of the number of bits required to represent the
information [33].

The above measure vanishes if and only the measurement independence condi-
tion in Eq. (5) is satisfied. A useful upper bound follows via [11]

CMD = sup
p(x,y)

[

H[Λ ]−
∫

dxdy p(x,y)Hx,y(Λ)

]

≤ Hmax(Λ)− inf
x,y

Hx,y(Λ), (11)

whereH(Λ) denotes the entropy of the underlying variableλ , with maximum pos-
sible valueHmax(Λ), andHx,y(Λ) denotes the entropy ofp(λ |x,y,P).

4.2 Singlet state models

Brans model: Letting PS denote a preparation procedure for the singlet state|ΨS〉,
the Brans model in its simplest form corresponds to choosingλ ≡ (λ1,λ2), with
λ1,λ2 = ±1, and identifying the labelsx andy with measurement of spin in the
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corresponding unit directionsx andy. The corresponding probabilities in Eq. (1) are
then specified, via Eq. (11) of Ref. [7], by

pB(a,b|λ ,x,y,PS) := δa,λ1
δb,λ2

, pB(λ |x,y,PS) :=
1−λ1λ2 x ·y

4
. (12)

This trivially reproduces the correct singlet state probabilities p(a,b|x,y,PS) =
(1− abx· y)/4, via Eq. (1). The model is deterministic, and clearly satisfies the
properties of statistical completeness and statistical locality in Eqs. (3) and (4) —
but not the measurement independence property in Eq. (5). Brans further showed
that the correlation existing between the underlying variable λ and the measure-
ment proceduresx andy can be simulated causally and deterministically [7], as will
be discussed in Sect. 5.

To evaluateCMD for this model, note first thatλ takes only 4 distinct values,
implying thatHmax(Λ) = log24= 2 bits. A straightforward calculation further gives

Hx,y(Λ) = log22+h(x ·y)≥ 1 bit,

whereh(a) denotes the entropy of the probability distribution{(1±a)/2}. Hence,
using Eq. (11), the degree of measurement dependence in Eq. (10) is bounded by
1 bit of correlation. It is straightforward to check that this bound is achieved by the
choicep(x,y) = [δ (x+y)+δ (x−y)]/(8π) in Eq. (10), wherex andy range over all
directions on the unit sphere, yielding

CB
MD = 1 bit. (13)

Thus, no more than one bit of correlation is required in the Brans model for the
singlet state. This result is generalised in Sect. 4.3.

Degorre et al. model: The local deterministic model of the singlet state due to
Degorreet al. takes the underlying variableλ to be a point on the unit sphere,
with [8]

pD(a,b|λ ,x,y,PS) := δa,A(λ ,x) δb,B(λ ,y), pD(λ |x,y,PS) :=
|λ ·x|
2π

, (14)

whereA(λ ,x) := signλ ·x andB(λ ,y) :=−signλ ·y determine the local outcomes.
Thus, these outcomes correspond to the projections of ‘classical’ spin vectors,λ and
−λ , onto the measurement directionsx andy respectively. As in the Brans model,
the properties of statistical completeness and statistical locality are clearly satisfied,
while the property of measurement independence is clearly not. Note from Eq. (14)
thatλ is only correlated withoneof the local measurement directions,x. This model
was also independently put forward by Barrett and Gisin [10].

To calculateCMD for the Degorreet al. model, note that the entropy of the un-
derlying variable is maximised by a uniform distribution over the unit sphere, with
Hmax(Λ) = log24π . Further, lettingθ denote the angle betweenλ andx, one has
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Hx,y(Λ) =−
∫ π

0
dθ

∫ 2π

0
dφ sinθ

|cosθ |
2π

log2
|cosθ |

2π
= log22πe1/2.

Hence, the upper bound in Eq. (11) is log22/
√

e. This bound is achieved, for exam-
ple, byp(x,y) = (4π)−1p(y), yielding [10]

CD
MD = log2

2√
e
≈ 0.279 bits. (15)

Thus, noting Eq. (13), the Degorreet al. model requires less correlation between
the measurement directions and the underlying variable, incomparison to the Brans
model. Moreover, this correlation is only required betweenλ andoneof the local
measurement directions.

Hall model: Finally, it is of interest to consider a local deterministicmodel with
an even smaller degree of measurement dependence [9]. The underlying variable
is again a point on the unit sphere, corresponding to a ‘classical’ spin vector, and
again the local outcomes are determined by the projection ofthis spin vector onto
the local measurement directions, via

pH(a,b|λ ,x,y,PS) := δa,A(λ ,x)δb,B(λ ,y), (16)

with A(λ ,x) = signλ · x andB(λ ,y) = −signλ · y as for the Degorreet al. model.
However, in contrast to the latter model,

pH(λ |x,y,PS) :=
1

4π
1+(x ·y)sign[(λ ·x)(λ ·y)]

1+(1−2φxy/π)sign[(λ ·x)(λ ·y)] , (17)

whereφxy ∈ [0,π ] denotes the angle between directionsx andy.
The interesting aspect of this model is its low degree of measurement depen-

dence, with [11]
CH

MD ≈ 0.0663 bits. (18)

Thus, in comparison to Eqs. (13) and (15), a remarkably low degree of correlation,
less than 1/15 of a bit, is required to model the singlet state.

4.3 Generalising the Brans model to arbitrary quantum states

While the Brans model of the singlet state is not optimal withrespect to the degree of
measurement dependence required, it does have the significant advantage of being
easily generalisable to a local deterministic model forall quantum correlations, with
a corresponding simple upper bound for the degree of measurement dependence
required.

In particular, consider a preparation procedureP corresponding to some quantum
density operatorρ describing two quantum systems, where these systems have ad1-
dimensional and ad2-dimensional Hilbert space respectively. Further, consider an
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arbitrary joint measurement of two Hermitian observables,xandy, on these systems,
with corresponding POVM{Exy

ab}. The joint outcome(a,b) may be labelled by ele-
ments of the setO := {1,2, . . . ,d1}×{1,2, . . . ,d2}, without any loss of generality.
To construct a corresponding local deterministic model, wechoose the underlying
variable to beλ = (λ1,λ2) ∈ O, and generalise Eq. (12) to

pB(a,b|λ ,x,y,P) := δa,λ1
δb,λ2

, pB(λ |x,y,P) := tr[ρExy
λ1λ2

] (19)

Substitution into Eq. (1) immediately recovers the quantumprobability density
p(a,b|x,y,P) = tr[ρExy

ab], as required.
To obtain an upper bound for the degree of measurement dependence required in

this model, note that 0≤ H(Λ)≤ log2d1d2, with the upper bound corresponding to
a uniform distribution overλ . Hence, from Eq. (11), one immediately has the upper
bound

CB
MD ≤ log2d1+ log2d2 (20)

for the degree of measurement independence. In particular,no more than 2log2d
bits of correlation are required to model the statistics of all Hermitian observables
on twod-dimensional quantum systems. Note that the bound holds irrespective of
whether the corresponding POVMs factorise as per Eq. (9). Itwould be of interest
to determine whether the bound also holds for non-Hermitianobservables, i.e., for
arbitrary joint POVMs.

5 Questions of causality and free will

5.1 Causality in measurement dependent models

Brans did more than give the first explicit local and deterministic model for singlet
state correlations. He also showed that the corresponding probability distribution
pB(λ |x,y,P) was compatible with a fully causal explanation, and that it did not con-
tradict the notion of ‘experimental free will’ in any operational sense [7]. The causal
aspect will be discussed here, and the free will aspect in Sect. 5.2. The surprising
existence of a local deterministic model forsuperluminalcorrelations is given in
Sect. 5.3.

The violation of measurement independence, i.e., a correlation such that

p(λ |x,y,P) 6= p(λ |P),

may at first sight suggest that the joint measurement procedure (x,y) has a causal
effect on the statistics ofλ . However, this is not so: using Bayes rule the above
equation can equivalently be written in either of the forms

p(x,y|λ ,P) 6= p(x,y|P), p(λ ,x,y|P) 6= p(λ |P) p(x,y|P),
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where the latter form is seen to be perfectly symmetrical with respect to the mea-
surement procedure andλ . Correlation does not specify causation.

In fact, for any measurement-dependent correlation,p0(λ |x,y,P) 6= p0(λ |P) say,
and any distribution of joint measurement procedures,p0(x,y|P) say, the corre-
sponding probability densityp0(x,y|λ ,P) 6= p0(x,y|P) is uniquely determined by
the laws of probability. It is straightforward to constructa causal model for this
probability density, of the form

p0(x,y|λ ,P) =
∫

dµ p(x|µ) p(y|µ) p(µ |λ ,P), (21)

whereµ is a further underlying variable. It is clear from this equation that the corre-
lation can be causally implemented via generation of the distribution of µ by λ and
P, with subsequent local generation of the distribution of the measurement subpro-
ceduresx andy by µ , with no retrocausal or superluminal propagation required.

As an explicit example, chooseµ ≡ (µ1,µ2), where(µ1,µ2) labels the set of pos-
sible joint measurement procedures{(x,y)}, with p(x|µ) := δ (x− µ1), p(y|µ) :=
δ (y− µ2), and

p(µ |λ ,P) :=
p0(λ |µ1,µ2,P) p0(µ1,µ2|P)

∫ ∫

dµ1dµ2 p0(λ |µ1,µ2,P) p0(µ1,µ2|P)
. (22)

It is straighforward to check that these choices reproduce Eq. (21), as desired. Thus
no violation of causality is required by measurement dependent models, such as
those in Sect. 4.

5.2 Free will and conspiracy

Brans noted that the assumption of measurement independence is fundamentally in-
consistent with a fully deterministic world [7]. In such a world even the preparation
procedureP, along with the measurementM = (x,y) and the outcomesm= (a,b),
will be predetermined by suitable underlying variables, and hence are generically all
correlated. Thus, in a superdeterministic world, assumingthatx andy arenot cor-
related with the underlying variables, i.e., measurement independence, amounts to
conspiracy! In such a world, measurement dependence — and hence the possibility
of Bell inequality violation — is only to be expected [34].

However, as previously remarked, measurement independence is typically justi-
fied by an appeal to ‘experimental free will’: surely the selection of measurement
procedures is independent of any underlying physical variables that determine the
outcomes? For if they were not, surely this would compromiseour perception of
having the free will to make such a selection?

There are several responses that can be made in this regard, in addition to the
obvious point that the subjective experience of free will does not imply its objectiv-
ity. The first is practical: in actual tests of Bell nonseparability and Bell inequalities,
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physical systems rather than physicists are used to ‘randomly’ select measurement
procedures [23, 24]. This fact has practical relevance for the security of commercial
quantum cryptographic devices that contain such systems: how can we trust random
number generators built by a third party? [13, 14, 15]. We certainly do not expect
these devices to have ‘free will’, and their degree of measurement dependence is
easily manipulated by the device manufacturer.

The second is operational: there is no experimental distinction that can be made
between models satisfying measurement independence and models which do not [7]
— at least, under the proviso that the distribution of measurement procedures is in-
dependent of the preparation procedure,p(x,y|P) = p(x,y). In such a case, all that
is operationally accessible to the ‘free will’ of the experimenter(s) in this regard is
the choice ofp(x,y). However,anysuch choice is compatible with measurement-
dependent models: it merely implies that the operationally-inaccessible joint distri-
butionp(λ ,x,y|P) is given byp(λ |x,y,P) p(x,y) [11].

The third is rhetorical: suppose that experimenters were informed that there was
a physical quantity they could not change: no matter what choices of preparation
and measurement procedures they made, using their ‘free will’, the quantity myste-
riously came out to be the same — even for joint measurements in spacelike sepa-
rated regions. Would this necessarily represent a lack of ‘free will’? No, not if the
quantity was the total energy! Conservation laws are not considered to be conspir-
atorial. This suggests the intriguing possibility of a local deterministic model for
quantum systems in whichp(x,y) emerges as a conserved quantity [35].

Thus, there is noa priori reason why the behaviour of experimenters or random
generators shouldnotbe statistically correlated with a given system to some degree,
reflecting a common causal dependence on some underlying variable, even in the
absence of superdeterminism and/or in the presence of ‘freewill’. However, it must
be admitted that a measurement-dependent model in whichp(x,y) emerged as a
conserved quantity would be far more compelling than those presented in Sect. 4.

5.3 Local deterministic models of superluminal correlations

It is remarkable to note that even correlations which appearto allow superluminal
signalling can be modelled in a local and deterministic manner, by relaxing the
assumption of measurement independence.

For example, consider some preparation procedureP and two joint measurement
proceduresM = (x,y) andM′ = (x′,y), with corresponding experimental joint prob-
ability distributions satisfying

p(b|x,y,P) 6= p(b|x′,y,P). (23)

Thus, knowledge of the local outcome distribution of procedurey provides infor-
mation about whether the procedurex or x′ was performed. This is an example of
a ‘signalling’ correlation. Such a correlation is not surprising in the case that the
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measurement subprocedurey is performed in the future lightcone of subprocedure
x or x′ — this would simply represent the possiblity of signalling from the past
to the future. However, such a correlation would be very surprising in the case of
spacelike-separated subproceduresx andy, as it would appear to amount to the pos-
sibility of superluminal signalling.

Surprisingly, perhaps, a local deterministic model for such signalling correlations
is easily obtained, via a straightforward adaptation of theextended Brans model
discussed in Sect. 4.3. In particular, for a given set of experimental joint probability
distributions{pE(a,b|x,y,P)}, choose the underlying variable to range over the set
of possible joint measurement outcomes, withλ = (λ1,λ2) ∈ {(a,b)}, and define

p(a,b|λ ,x,y,P) := δa,λ1
δb,λ2

, p(λ |x,y,P) := pE(λ1,λ2|x,y,P). (24)

This model is explicitly deterministic, and clearly satisfies both statistical com-
pleteness and statistical locality,whether or notthe experimental correlations are
signalling! Further, a causal description of the measurement-dependent correlation
p(λ |x,y,P) can always be given, as per the discussion in Sect. 5.1 above.

The resolution of this paradoxical result is that the very notion of ‘signalling’
logically requires some degree of measurement independence: if one has, for exam-
ple, no control at all over the choice of measurementx or x′ in Eq. (23), then one
has no ability at all to signal — e.g., ‘buy’ or ‘sell’ — via such a choice [14].

It follows that one should not refer to ‘no-signalling’ or ‘signal locality’ without
a simultaneous commitment to measurement independence (I must recant having
done so previously [11]). Moreover, a simple tweak of the above model implies that
it is possible to replace any underlying model that violatesthe property of statisti-
cal locality by one that instead violates measurement independence. Indeed, in this
regard Barrett and Gisin have previously shown that any underlying deterministic
model that requires at mostm bits of superluminal communication can be replaced
by one that requiresCMD ≤ mbits of measurement-dependent correlation [10].

6 Conclusions

One of the most remarkable discoveries in physics is the violation of Bell separabil-
ity by quantum phenomena: any underlying model of such phenomena must relax
at least one of the properties of statistical completeness,statistical locality or mea-
surement independence. There is a strong intuition among physicists that perfect
correlations between distant measurement outcomes, such as singlet state correla-
tions, should be deterministically and locally mediated, independently of the joint
measurement procedure. However, this intuition fails in the light of Bell inequality
violation.

Given that standard quantum mechanics satisfies statistical locality and measure-
ment independence, Occam’s razor suggests that it is the intuition behind determin-
ism (and thus statistical completeness) that must be given up. On the other hand,
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it may be argued that relaxing measurement dependence is relatively far more ef-
ficient: only 1/15 of a bit of measurement dependence is required to model the
singlet state, in comparison to 1 bit of communication in nonlocal models, and 1 bit
of shared randomness in nondeterministic models [11]. In the end, however, whether
or not one’s personal preference is guided by simplicity or efficiency, the consider-
ation of all three properties cannot be avoided — and is of practical relevance in
assessing the reliability of device-independent quantum communication protocols.

It is a pleasure to be able to acknowledge the seminal contribution of Carl Brans
to this ongoing debate, as part of this Festschrift to mark his 80th birthday. His
explicit local deterministic model for quantum correlations has led to a better un-
derstanding of the significance of measurement (in)dependence, and has stimulated
many new results and ideas. He will no doubt be pleased that one of the latter [18]
may lead to an experimental connection with his many cosmological interests: the
recent proposal to test measurement independence in a Bell inequality experiment
by using the light from distant quasars that have never been in causal contact.
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