The significance of measurement independence
for Bell inequalities and locality

Michael J. W. Hall

Abstract A local and deterministic model of quantum correlations is always possi-
ble, as shown explicitly by Brans in 1988: one simply needs the physical systems
being measured to have a suitable statistical correlation with the physical systems
performing the measurement, via some common cause. Hence, to derive no-go re-
sults such as Bell inequalities, an assumption of measurement independence is cru-
cial. It is a surprisingly strong assumption — less thah3Lbits of prior correlation
suffice for a local model of the singlet state of two qubits — with ramifications for the
security of quantum communication protocols. Indeed, without this assumption, any
statistical correlations whatsoever — even those which appear to allow explicit su-
perluminal signalling — have a corresponding local deterministic model. It is argued
that ‘quantum nonlocality’ is bad terminology, and that measurement independence
does not equate to ‘experimental free will'. Brans’ 1988 model is extended to show
that no more than 2lad) bits of prior correlation are required for a local determin-
istic model of the correlations between any tdiimensional quantum systems.

1 Introduction

Various no-go results exist for models of quantum phenomena, based on various
more or less plausible assumptions for the structure of such models. Such results
support a longstanding view that quantum mechanics is more or less implausible —
indeed, Niels Bohr was famously quoted as sayling [1]:

Those who are not shocked when they first come across quantum theory cannot possibly
have understood it.
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This has led not only to much philosophical discussion onctvldassumption(s)
should be relaxed, but also to surprising applications aitwight be termed quan-
tum implausibility, such as quantum cryptography and quantomputation.

The most remarkable of these no-go results are Bell ineipgliwhich imply
that at least one of the plausible properties of determinispality and measure-
ment independence must be given up to successfully despudnrgum correlations
between distant measurement regidid [Z,]3, 4]. Here measuteéndependence
denotes the statistical independence of (i) any physicamater influencing the
selection of measurement procedures from (ii) any phygiaeameter influencing
measurement outcomes, and is typically justified by an dppexperimental free
will [5].

The question of which property should be relaxed is not justadter of idle
speculation: the security of quantum cryptographic prot®cdor example, relies
on there being no deterministic description underlyingelations between distant
measurement outcomes — an eavesdropper possessing sisdhiptaia would be
able to determine the cryptographic k&Y [6]. Hence, any nditmnally secure pro-
tocol based on violation of Bell inequalities must, to eestiere is no deterministic
description available, assume that the properties of ikycahd measurement inde-
pendence hold. A similar requirement applies to devicejrahdent protocols for
randomness generatidn [6].

While most discussion in the literature focuses on choosgtgeen locality or
determinism to model quantum correlations, it was pointedby Brans in 1988
that there is in fact an explicit localnd deterministic model, obtained by relax-
ing measurement independerice [7]. Brans further obselnatdtere is an inherent
conflict in assuming that both determinism and measuremeéepiendence hold: if
the physical world is deterministic, then correlationsamn physical parameters
are generic.

There has been a recent upsurge of interest in local detistmaimodels, includ-
ing their constructiori[8,]9, 10]; the derivation of gen&radi Bell inequalities incor-
porating a given level of measurement dependence[9, 102113 14 18, 16, 17];
impacts on device-independent quantum communicatiompots [13[ 14, 15]; and
new experimental tests [118,119].

In this contribution | briefly review the assumptions leagto Bell inequalities
(Sect[2); pause to urge replacement of the misleading teumasitum nonlocality’
and ‘Bell nonlocality’ in the literature by the more neuttatm ‘Bell nonsepara-
bility’ (Sect.[3); compare the degrees of measurement digere of various local
deterministic models for the singlet state, and extend tiam8model to show that
local deterministic models for twd-dimensional quantum systems require no more
than 2logd bits of measurement-dependent correlation ($éct. 4); &udisk the
relevance of local deterministic models to questions ofality and free will —
including a demonstration of th@ima facieparadoxical existence of a local deter-
ministic model for superluminal correlations (Sédt. 5).
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2 The well trod path to Bell inequalities

2.1 Bayestheorem

Consider an experiment in which

e Preparation procedufeis carried out.
e Measurement proceduk is performed.
e Outcomemis recorded.

In a joint measurement scenario one is interested in thevdasee the measurement
procedurévl decomposes into two subproceduxesdy, with respective outcomes
aandb, i.e.,

M= (xy), m= (a,b).

Statistical correlations between these outcomes aregepted by some joint prob-
ability densityp(m|M,P) = p(a,b|x,y,P), which can be in principle measured via
many repetitions of the experiment. Part of the physicjetisis to find an underly-
ing model for these correlations, for a given set of expentsg(x,y,P)}.

In particular, an underlying model introduces additionhygical variables of
some sort. Denoting these underlying variables\bayes theorem immediately
tells us that

P(MM.P) = p(a.blx .P) = [ dA p@bid xyP)PAIXYP). (@)

with integration replaced by summation over any discret@yea ofA. A given
model must therefore specify the type of information encbuteA, and the un-
derlying probability densitiep(a, b|A, x,y,P) andp(A|x,y,P).

For example, in standard quantum mechaniesay be taken to range over a set
of density operators, with

po(a,blA,x,y,P) =trfAEY],  pa(A|xY,P) =3&(A —Ap), ()

for some density operatoyp associated with preparation procediend some
positive operator valued measure (POVEBY = E;‘g} associated with the joint
measurement proceduve= (X,y).

2.2 Bell separability

A given underlying model may or may not satisfy certain pbghy plausible prop-
erties, such as determinism, causal correlations, ethdrstenario typically con-
sidered for Bell inequalities [2], one requires the quaegitn Eq. [1) to satisfy the
following three properties in particular:
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Statistical completeness:All statistical correlations arise from ignorance of the
underlying variablei.e.,

p(a,bjA,x,y,P) = p(alA,x,y,P) p(b|A,x,y,P). 3)

Thus, all correlations between measurement outcomeshvamien the additional
information encoded ii is specified([20]. This property is also known as outcome
independence, and is guaranteed to holdigterministionodels, i.e., for

p(a,blA,x.y,P) € {0,1}.

Indeed, the existence of a deterministic model for a givenfssrrelations is equiv-
alent to the existence of a statistically complete made|[#H]. The original moti-
vation for statistical completeness was in fact outcomerdenism, via an appeal
to the existence of an underlying reality in which all measnent outcomes are
predetermined]2].

Statistical locality: Distant measurement subprocedures do not influence each
other’s underlying outcome probability distributigne.,

p(aA,x,y,P) = p(aA,x,P), P(b]A,x,y,P) = p(b|A,y,P). (4)

Thus, an observer cannot distinguish, via any local measeme, whether a distant
observer has carried out measuremeat y, even given knowledge of the under-
lying variableA. This property, also known as parameter independencestifigal
by the principle of relativity when the measurement subpdatces are carried out
in spacelike separated regiohs [2].

Measurement independence:The measurement procedure=M(x,y) is not cor-
related with the underlying variabjée.,

Thus, knowledge of the underlying variable gives no infaiiotaabout the mea-
surement procedure, and vice versa. This property is of&ified by an appeal to
‘experimental free will’ [5], as will be discussed in someaikfurther below.

The combination of all three properties is equivalent, vig H1) and[(B)E(5), to:

Bell separability: The joint probabilities of distantly-performed measuraine
procedures have an underlying model of the form

p(abix.y.P) = [ dA p(A[P) p(aA, xP)p(bIA.¥P),  (©)

i.e, a model satisfying statistical completeness, stedistocality and mea-
surement independence.
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Bell separable models were first introduced by John Béll $2k(Ref.[[22] for
a recent review), and capture the notion that statisticaktations between distant
regions separate into independent contributions, digisingd by their dependencies
on the measurement subprocedures as pefkEq. (6).

2.3 Bdll inequalities

Statistical correlations which have a Bell separable med#sfy various inequal-
ities, known as Bell inequalities. For example, if each measent outcome is
labelled by+1, Bell separability implies that the Clauser-Horne-Shiydlolt
(CHSH) inequality([3]

E(x,y,P)+E(xY,P)+E(X,y,P) —E(X,y,P) <2 7

holds for any four pairs of distantly performed measurenmoteduresx,y),
(x,¥), (X,y) and(X,y'), whereE(x,y,P) := S ap—+1ab p(a,b|x,y,P).

It is now well known that not only do the predictions of stardiguantum me-
chanics violate such Bell inequalities: so does naiureZ4R, Hence, our world is
Bell-nonseparable, and one or more of the three properti&sgs. [3){(b) must be
relaxed in any underlying model thereof.

It is worth noting that the existence of a Bell separable rhad@er Eq.[(), for
some given set of joint measurement proceddi(gsy) } and preparation procedure
P, is also equivalent to the existence of a formal joint pralitstdistribution for any
finite subsetxy, ..., Xm, Y1, ..Yn) — whether or not this subset has an experimental
jointimplementation. In particular, one may defihel[21]

m
pF(ala"'7amabla"'bn|xla"'7M7y17"'yn7P) :/d)\ p(/\|P) I_Ilp(aJ|/\7XJ7P)
=

=}

<[] p(oclA, Y, P). (8)
1

=
Il

Bell inequalities correspond to boundary inequalitiestfe space (polytope) of
such formal joint probability distribution5[6, 25,126,127]

3 Why ‘quantum nonlocality’ is bad terminology

The violation of Bell inequalities by quantum systems i®ofteferred to as ‘quan-
tum nonlocality’ or ‘Bell nonlocality’. To do so is quite mM&ading, however, as it
implicitly — and incorrectly — suggests that some sort of myi®us action-at-a-
distance is necessarily involved in quantum correlations.
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In particular, onlyoneof the three assumptions in Sdct.]2.2 makes reference to
notions of locality:statistical localityrequires that a distant measurement proce-
dure cannot be identified from local statistics. The other&ssumptions, statistical
completeness and measurement dependence, do not requinetaon of acausal
information transfer between distant regions (as showtia@tty in Sects[4 an@s).
Hence, by dropping either one of these two assumptions,iBegdjuality violations
may be modelled in a perfectly local manner.

Further, the property of statistical locality is automalig satisfied in standard
quantum mechanics, via the usual tensor product repregamta

EX=Ei0E (9)

of the POVM in Eq.[(2) for measurements in separated reg@fiisiHence, quantum
mechanics is in fadbcal, with respect to the only sense in which this concept makes
an appearance in the derivation of Bell inequalities!

This has led Mermin to conclude that use of the term ‘quantomiotality’ is
no more than “fashion at a distanc€”[29], and Kent to lameasia “confusingly
oxymoronic phrase” that conflicts with the notion of locglit quantum field theory
[30]. An extended critique has been given recentlyZokowksi and Brukner [31]
(see also Ref[[32]).

While ‘Bell nonlocality’ is preferable to ‘quantum nonldis’, insofar as the
adjective vaguely implies some sort of special qualifiggtiessentially the same
criticisms apply. Moreover, since quantum communicatiostqrols that rely on
the violation of Bell inequalitiesequire the assumption of statisticlicality (and
measurement independence), to ensure indeterminism €13, it is similarly
‘confusingly oxymoronic’ to assert that such protocolyreh Bell nonlocality, as
is commonly don€e [6].

| therefore strongly urge adoption of the more neutral teBell'nonseparability’.

4 Local deterministic models of quantum correlations

4.1 Relaxing measurement independence

As noted previously, violation of a Bell inequality, and lkerof Bell separability,
implies that at least one of the properties in Eg$. [B)-(5stnine relaxed in any
underlying model. The degree to which these properties teebd individually or
jointly relaxed, relative to various measures, has beesntcreviewed[11].

For example, the standard quantum mechanics model satisfipsoperty of sta-
tistical locality in Eq.[#), as noted in the previous sesti€omparison of Eqsi{2)
and [3) shows that it also satisfies the property of measureindependence.
Hence, since it predicts violations of Bell inequalitigsfallows that the standard
quantum mechanics model must relax the property of stistompleteness. This
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is indeed so: the joint probabilitgg(a, b|A,x,y,P) in Eq. (2) is only guaranteed to
factorise, as per Ed.](3), for tensor product states A; @ A,.

A major contribution by Brans was to provide, in contrasg finst explicitlocal
deterministicmodel of quantum correlations, by instead relaxing the ragsion
of measurement independentce [7]. The existence of suchyachusal model for
Bell-nonseparable correlations further emphasises tim pade in Seck]3, that the
properties of statistical completeness and measurendgpéndence do not rely on
any concept of localitper se

Brans’ model for the singlet state of two spiri2lparticles or qubits, together
with two subsequent models, are briefly described in $e8f.before discussing
the generalisation of Brans’ model to arbitrary quantunralations in Sec{_413.
However, it is of interest to first quantify the degree of megament dependence
of any given model, so as to be able to make quantitative casgues between
different models.

Several measures of measurement independence have beessdisin the lit-
erature[[9[ 10, 11,12, 1B, 14,115,/ 16]. Attention here willcoafined to the ‘mea-
surement dependence capacity’, which directly quantifiescorrelation between
the joint measurement procedure and underlying varialtierms of the maximum
mutual information between theimn [10]:

: : ' P(A,xyIP)
Cwvp : ;)ESH(A :XY) ps()t:g/d/\dxdy p(A,x,y|P)log, 50 P oY) (20)

Here the supremum is over all possible probability derssitig, y) for the joint mea-
surement procedurkl(A : X,Y) denotes the mutual information; apth , x,y, |P) :=
p(A|x,Y,P) p(x,y). Note that the mutual information quantifies the averagerinf
mation gained about the measurement procedure from knge/leitthe underlying
variable, and vice versa, in terms of the number of bits meglio represent the
information [33].

The above measure vanishes if and only the measuremeneindepce condi-
tion in Eq. [B) is satisfied. A useful upper bound follows VA4

Cup = SUp [H A]— /dxdy PO Y) iy (A) | < Hmax(A) — inf Hyy(A),  (11)
p(Xy) xy

whereH (A) denotes the entropy of the underlying variablevith maximum pos-
sible valueHmax(/ ), andHyy(A) denotes the entropy @f{A |x,y, P).

4.2 Singlet state models

Brans model: Letting Ps denote a preparation procedure for the singlet $téie
the Brans model in its simplest form corresponds to choogirg (A1,A;), with
A1,A2 = +1, and identifying the labelg andy with measurement of spin in the



8 Michael J. W. Hall

corresponding unit directionsandy. The corresponding probabilities in EQl (1) are
then specified, via Eq. (11) of Refl[7], by

1—/\1/\2x-y

2 (12)

pB(aa bl/\ XY, PS) = a,A 60,)\27 pB(/\ |X7 Y, PS) =

This trivially reproduces the correct singlet state pralitzs p(a,b|x,y,Ps) =
(1—abx-y)/4, via Eq. [1). The model is deterministic, and clearly $@tisthe
properties of statistical completeness and statistiaality in Eqgs. [B) and[{4) —
but not the measurement independence property in[Eq. (BhsBiurther showed
that the correlation existing between the underlying \@dea and the measure-
ment proceduresandy can be simulated causally and deterministically [7], as wil
be discussed in Seél. 5.

To evaluateCyp for this model, note first thak takes only 4 distinct values,
implying thatHmax(A ) =log, 4 = 2 bits. A straightforward calculation further gives

Hxy(A) = log,2+h(x-y) > 1 bit,

whereh(a) denotes the entropy of the probability distributipfi +a)/2}. Hence,
using Eq.[(I11), the degree of measurement dependence iE@ds(bounded by
1 bit of correlation. It is straightforward to check thatgtiound is achieved by the
choicep(x,y) = [0(x+Y) + d(x—y)]/(8m) in Eq. (10), wherexandy range over all
directions on the unit sphere, yielding

CBp =1hit (13)
Thus, no more than one bit of correlation is required in tharBrmodel for the
singlet state. This result is generalised in Jedl. 4.3.

Degorre et al. model: The local deterministic model of the singlet state due to
Degorreet al. takes the underlying variablgé to be a point on the unit sphere,

with [8]

A-X
Po (&, bA, XY, Ps) 1= O3 A x) Ob.8(Ay)» Po (A [X,Y, Ps) 1= %7 (14)
whereA(A,x) := signA -x andB(A,y) := —signA -y determine the local outcomes.

Thus, these outcomes correspond to the projections osickalsspin vectors) and
—A, onto the measurement directionandy respectively. As in the Brans model,
the properties of statistical completeness and statidticality are clearly satisfied,
while the property of measurement independence is cleatlyNote from Eq.[(T4)
thatA is only correlated witloneof the local measurement directiossThis model
was also independently put forward by Barrett and Gisin.[10]

To calculateCyp for the Degorreet al. model, note that the entropy of the un-
derlying variable is maximised by a uniform distributionepthe unit sphere, with
Hmax(/A) = log, 4. Further, lettingd denote the angle betwednandx, one has
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= log, 2me*/?.

T 2m o |cosf| |cosO|
Hx’y(/\)_—/0 dG'O dgsinf o log, o

Hence, the upper bound in EG.{11) is & /€. This bound is achieved, for exam-
ple, by p(x,y) = (4m)~'p(y), yielding [10]

Chp = log, — ~ 0.279 bits (15)

2
Ve
Thus, noting Eq.[(1I3), the Degoret al. model requires less correlation between
the measurement directions and the underlying variabnmimparison to the Brans
model. Moreover, this correlation is only required betw@eandoneof the local
measurement directions.

Hall model: Finally, it is of interest to consider a local deterministimdel with

an even smaller degree of measurement dependghce [9]. Heelying variable
is again a point on the unit sphere, corresponding to a ‘idaléspin vector, and
again the local outcomes are determined by the projectighi®fpin vector onto
the local measurement directions, via

PH (3, b[A, XY, Ps) := 8 ax x) Fo.B(A y)» (16)

with A(A,x) = signA -x andB(A,y) = —signA -y as for the Degorret al. model.
However, in contrast to the latter model,

1 1+ (X-y)sign[(A -x)(A -y)]

PHAXYPS) = 2 T T 2gy/msign[(t (A V)]’ 0

wheregq,y € [0, 11} denotes the angle between directiarandy.
The interesting aspect of this model is its low degree of measent depen-
dence, with[[11]
CHip ~ 0.0663 bits (18)

Thus, in comparison to Eq$. (13) and](15), a remarkably logreleof correlation,
less than 115 of a bit, is required to model the singlet state.

4.3 Generalising the Brans model to arbitrary quantum states

While the Brans model of the singlet state is not optimal wépect to the degree of
measurement dependence required, it does have the sighdideantage of being
easily generalisable to a local deterministic modekfibguantum correlations, with
a corresponding simple upper bound for the degree of measmtedependence
required.

In particular, consider a preparation proced@mrresponding to some quantum
density operatop describing two quantum systems, where these systems ftave a
dimensional and @,-dimensional Hilbert space respectively. Further, comsih
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arbitrary joint measurement of two Hermitian observabi@s\dy, on these systems,
with corresponding POVME;g}. The joint outcoméa, b) may be labelled by ele-
ments of the se® := {1,2,...,d1} x {1,2,...,d»}, without any loss of generality.
To construct a corresponding local deterministic modelciveose the underlying
variable to bed = (A1,A2) € O, and generalise EJ._(112) to

pB(a7 b|A XY, P) = a1 6D,A27 Ps (/\ |X7 Y, P) = tr[pE;\(z)\z] (19)

Substitution into Eq.[{1) immediately recovers the quanfumbability density
p(a,blx,y,P) = tr[pE}}], as required.

To obtain an upper bound for the degree of measurement depeadequired in
this model, note that & H(A) < log, d;dy, with the upper bound corresponding to
a uniform distribution ovei . Hence, from Eq[{11), one immediately has the upper
bound

Cyip < log,di +log, d> (20)

for the degree of measurement independence. In particwdamore than 2logd
bits of correlation are required to model the statisticslbHarmitian observables
on two d-dimensional quantum systems. Note that the bound holésgerctive of
whether the corresponding POVMs factorise as per[Eq. (oltld be of interest
to determine whether the bound also holds for non-Hermilaservables, i.e., for
arbitrary joint POVMs.

5 Questions of causality and free will

5.1 Causality in measurement dependent models

Brans did more than give the first explicit local and deteistio model for singlet
state correlations. He also showed that the correspondigppility distribution
pe(A |x,y, P) was compatible with a fully causal explanation, and thaidtrat con-
tradict the notion of ‘experimental free will’ in any opei@ial sens€[7]. The causal
aspect will be discussed here, and the free will aspect ih &t The surprising
existence of a local deterministic model fauperluminalcorrelations is given in
Sect[5.B.

The violation of measurement independence, i.e., a ctigelauch that

P(A[X,Y,P) # p(A[P),

may at first sight suggest that the joint measurement proeddyy) has a causal
effect on the statistics of. However, this is not so: using Bayes rule the above
equation can equivalently be written in either of the forms

P(XYIA,P) # p(x,yIP),  p(A,xYIP) # p(A|P)p(x,y|P),
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where the latter form is seen to be perfectly symmetricathwéspect to the mea-
surement procedure aidd Correlation does not specify causation.

In fact, for any measurement-dependent correlaf |x,y, P) # po(A|P) say,
and any distribution of joint measurement procedumsy,y|P) say, the corre-
sponding probability densityo(x,y|A,P) # po(x,y|P) is uniquely determined by
the laws of probability. It is straightforward to constructcausal model for this
probability density, of the form

Po(YIA.P) = [ dutp(x{40) pylu) p(KIA.P), @y

whereu is a further underlying variable. Itis clear from this eqaatthat the corre-
lation can be causally implemented via generation of thigibigion of u by A and
P, with subsequent local generation of the distribution eftfreasurement subpro-
cedurex andy by u, with no retrocausal or superluminal propagation required

As an explicit example, chooge= (1, 2), where(us, U2) labels the set of pos-
sible joint measurement procedurds,y)}, with p(x|u) := d(x— 1), p(y|u) :=
5(y— Hz), and

Po(A [Ha, k2, P) po(H1, Hz|P)
AP) = . 22
PIA.F) J [ duadpz po(A |1, 2, P) po( 1, p2|P) (2)
It is straighforward to check that these choices reprodugdZl), as desired. Thus
no violation of causality is required by measurement depahdiodels, such as
those in Sect.]4.

5.2 Freewill and conspiracy

Brans noted that the assumption of measurement indepemdeioadamentally in-
consistent with a fully deterministic world][7]. In such argbeven the preparation
procedureP, along with the measuremelt = (x,y) and the outcomes = (a,b),
will be predetermined by suitable underlying variables] hence are generically all
correlated. Thus, in a superdeterministic world, assurttiagx andy arenot cor-
related with the underlying variables, i.e., measuremah¢pendence, amounts to
conspiracy! In such a world, measurement dependence — aue tiee possibility
of Bell inequality violation — is only to be expected[34].

However, as previously remarked, measurement indepeadetygpically justi-
fied by an appeal to ‘experimental free will’: surely the stilen of measurement
procedures is independent of any underlying physical béggathat determine the
outcomes? For if they were not, surely this would compromigseperception of
having the free will to make such a selection?

There are several responses that can be made in this regadgdition to the
obvious point that the subjective experience of free wikksloot imply its objectiv-
ity. The first is practical: in actual tests of Bell nonsesliy and Bell inequalities,
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physical systems rather than physicists are used to ‘ralydseiect measurement
procedured[23, 24]. This fact has practical relevancehfeisecurity of commercial
quantum cryptographic devices that contain such systeowschn we trust random
number generators built by a third party?][13] [14, 15]. Weately do not expect

these devices to have ‘free will’, and their degree of meam@nt dependence is
easily manipulated by the device manufacturer.

The second is operational: there is no experimental digtim¢hat can be made
between models satisfying measurement independence atelswehich do nof{]7]
— at least, under the proviso that the distribution of measiemt procedures is in-
dependent of the preparation procedy, y|P) = p(x,y). In such a case, all that
is operationally accessible to the ‘free will’ of the expaeinter(s) in this regard is
the choice ofp(x,y). However,any such choice is compatible with measurement-
dependent models: it merely implies that the operatioriatigcessible joint distri-
bution p(A,x,y|P) is given byp(A |x,y,P) p(x,y) [11].

The third is rhetorical: suppose that experimenters wetgrnimed that there was
a physical quantity they could not change: no matter whatcelsoof preparation
and measurement procedures they made, using their ‘fréetthdé quantity myste-
riously came out to be the same — even for joint measuremergisdcelike sepa-
rated regions. Would this necessarily represent a lackreé ‘will'? No, not if the
quantity was the total energy! Conservation laws are nosiciened to be conspir-
atorial. This suggests the intriguing possibility of a Ibdaterministic model for
quantum systems in whigh(x,y) emerges as a conserved quanfity [35].

Thus, there is na priori reason why the behaviour of experimenters or random
generators shouldot be statistically correlated with a given system to someeegr
reflecting a common causal dependence on some underlyirablgreven in the
absence of superdeterminism and/or in the presence offiteeHowever, it must
be admitted that a measurement-dependent model in wiicly) emerged as a
conserved quantity would be far more compelling than thossgnted in Sedi] 4.

5.3 Local deterministic modelsof superluminal correlations

It is remarkable to note that even correlations which appeailow superluminal
signalling can be modelled in a local and deterministic neanhy relaxing the
assumption of measurement independence.

For example, consider some preparation proceBued two joint measurement
procedure$/ = (x,y) andM’ = (X, y), with corresponding experimental joint prob-
ability distributions satisfying

p(blx,y,P) # p(b|X.y,P). (23)

Thus, knowledge of the local outcome distribution of praged provides infor-
mation about whether the procedwer X' was performed. This is an example of
a ‘signalling’ correlation. Such a correlation is not susprg in the case that the
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measurement subprocedyrés performed in the future lightcone of subprocedure
x or X — this would simply represent the possiblity of signallingrh the past
to the future. However, such a correlation would be very ssirm in the case of
spacelike-separated subprocedurandy, as it would appear to amount to the pos-
sibility of superluminal signalling.

Surprisingly, perhaps, a local deterministic model forrssignalling correlations
is easily obtained, via a straightforward adaptation of éktended Brans model
discussed in Sedi. 4.3. In particular, for a given set of @rpental joint probability
distributions{ pe(a, b|x,y,P)}, choose the underlying variable to range over the set
of possible joint measurement outcomes, with- (A1,A2) € {(a,b)}, and define

p(a,b|/\,X,y, P) = a,A1 50,)\za p()\ |Xaya P) = pE()\la)\2|X7y7 P) (24)

This model is explicitly deterministic, and clearly sagsfiboth statistical com-
pleteness and statistical localityhether or nothe experimental correlations are
signalling! Further, a causal description of the measurgrdependent correlation
p(A|x,y,P) can always be given, as per the discussion in §edt. 5.1 above.

The resolution of this paradoxical result is that the veryiaroof ‘signalling’
logically requires some degree of measurement indeperdéinne has, for exam-
ple, no control at all over the choice of measuremeat X' in Eq. (23), then one
has no ability at all to signal — e.g., ‘buy’ or ‘sell’ — via shi@ choice[[14].

It follows that one should not refer to ‘no-signalling’ oigsal locality’ without
a simultaneous commitment to measurement independencestl necant having
done so previously11]). Moreover, a simple tweak of thevatrmodel implies that
it is possible to replace any underlying model that violdkesproperty of statisti-
cal locality by one that instead violates measurement iaddence. Indeed, in this
regard Barrett and Gisin have previously shown that any tlyidg deterministic
model that requires at mostbits of superluminal communication can be replaced
by one that requireSyp < mbits of measurement-dependent correlation [10].

6 Conclusions

One of the most remarkable discoveries in physics is thatiai of Bell separabil-
ity by quantum phenomena: any underlying model of such pimema must relax
at least one of the properties of statistical completerstatistical locality or mea-
surement independence. There is a strong intuition amowgigkts that perfect
correlations between distant measurement outcomes, susinglet state correla-
tions, should be deterministically and locally mediatedigpendently of the joint
measurement procedure. However, this intuition fails anltght of Bell inequality
violation.

Given that standard quantum mechanics satisfies statistiedity and measure-
ment independence, Occam’s razor suggests that it is thidamtbehind determin-
ism (and thus statistical completeness) that must be gipei®ua the other hand,
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it may be argued that relaxing measurement dependencet/eqf far more ef-
ficient: only 1/15 of a bit of measurement dependence is required to model the
singlet state, in comparison to 1 bit of communication inlooal models, and 1 bit
of shared randomness in nondeterministic models [11].drtid, however, whether
or not one’s personal preference is guided by simplicityfficiency, the consider-
ation of all three properties cannot be avoided — and is oftral relevance in
assessing the reliability of device-independent quantommaunication protocols.

It is a pleasure to be able to acknowledge the seminal cativibof Carl Brans
to this ongoing debate, as part of this Festschrift to mask8aith birthday. His
explicit local deterministic model for quantum correlatsohas led to a better un-
derstanding of the significance of measurement (in)depw®j@and has stimulated
many new results and ideas. He will no doubt be pleased tlebbthe latter[[18]
may lead to an experimental connection with his many cosgicéd interests: the
recent proposal to test measurement independence in anBgliality experiment
by using the light from distant quasars that have never beeausal contact.
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