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Face Recognition Using Line Edge Map

Yongsheng Gao, Member, IEEE, and Maylor K.H. Leung, Member, IEEE

Abstract—The automatic recognition of human faces presents a significant challenge to the pattern recognition research community.
Typically, human faces are very similar in structure with minor differences from person to person. They are actually within one class of
“human face.” Furthermore, lighting condition changes, facial expressions, and pose variations further complicate the face recognition
task as one of the difficult problems in pattern analysis. This paper proposed a novel concept, “faces can be recognized using line edge
map.” A compact face feature, Line Edge Map (LEM), is generated for face coding and recognition. A thorough investigation on the
proposed concept is conducted which covers all aspects on human face recognition, i.e., face recognition, under 1) controlled/ideal
condition and size variation, 2) varying lighting condition, 3) varying facial expression, and 4) varying pose. The system performances
are also compared with the eigenface method, one of the best face recognition techniques, and reported experimental results of other
methods. A face prefiltering technique is proposed to speed up the searching process. It is a very encouraging finding that the

proposed face recognition technique has performed superior to the eigenface method in most of the comparison experiments. This
research demonstrates that LEM together with the proposed generic line segment Hausdorff distance measure provide a new way for

face coding and recognition.

Index Terms—Face recognition, line edge map, line segment Hausdorff distance, structural information.

1 INTRODUCTION

COMPUTERIZED human face recognition has been an active
research area for the last 20 years. It has many practical
applications, such as bankcard identification, access control,
mug shots searching, security monitoring, and surveillance
systems [1]. Face recognition is used to identify one or more
persons from still images or a video image sequence of a
scene by comparing input images with faces stored in a
database. It is a biometric system that employs automated
methods to verify or recognize the identity of a living
person based on his/her physiological characteristic. In
general, a biometric identification system makes use of
either physiological characteristics (such as a fingerprint,
iris pattern, or face) or behavior patterns (such as hand-
writing, voice, or key-stroke pattern) to identify a person.
Because of human inherent protectiveness of his/her eyes,
some people are reluctant to use eye identification systems.
Face recognition has the benefit of being a passive,
nonintrusive system to verify personal identity in a
“natural” and friendly way.

The application of face recognition technology can be
categorized into two main parts: law enforcement applica-
tion and commercial application. Face recognition technol-
ogy is primarily used in law enforcement applications,
especially mug shot albums (static matching) and video
surveillance (real-time matching by video image se-
quences). The commercial applications range from static
matching of photographs on credit cards, ATM cards,
passports, driver’s licenses, and photo ID to real-time
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matching with still images or video image sequences for
access control. Each presents different constraints in terms
of processing requirement.

To the best of our knowledge, there is hardly any
reported research work on face recognition using edge
curves of faces except the outlines of face profiles. The only
most related work was done by Takacs [2] using binary
image metrics. The face coding and matching techniques
presented in this paper are different from [2]. Takdcs used
edge map face coding and pixel-wise Hausdorff distance
template matching techniques, while this paper proposed
line-based face coding and line matching techniques to
integrate geometrical and structural features in the template
matching. A novel concept, “faces can be recognized using
line edge map,” is proposed here. A compact face feature,
Line Edge Map (LEM), is extracted for face coding and
recognition. A feasibility investigation and evaluation for
face recognition based solely on face LEM is conducted-
which covers all conditions of human face recognition, i.e.,
face recognition under controlled/ideal condition, varying
lighting condition, varying facial expression, and varying
pose. The system performances are compared with the
eigenface method, one of the best face recognition techni-
ques, and reported experimental results of other methods. It
is a very encouraging finding that the proposed face
recognition technique has performed consistently superior
to (or equally well as) the eigenface method in all the
comparison experiments except under large facial expres-
sion changes. A prefiltering scheme (two-stage identifica-
tion) is proposed to speed up the searching using a
2D prefiltering vector derived from the face LEM. This
research demonstrates that LEM together with the proposed
generic Line Segment Hausdorff Distance measure provide
a new way for face coding and recognition.

Some of the ideas presented in this paper were initially
reported in [3]. In this paper, we report the full and new
formulation and extensive experimental evaluation of our
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techniques. In the following, a literature review of face
recognition techniques is given in Section 2. Most successful
approaches to frontal face recognition, namely, eigenface,
neural network, dynamic link architecture, hidden Markov
model, geometrical feature matching, and template match-
ing are discussed. Section 3 describes the concepts of face
recognition using line edge map. A novel line segment
Hausdorff distance measure for human face recognition is
proposed in Section 4. The advantages of the proposed
approach are discussed and compared with existing pixel
wise Modified Hausdorff Distance method. In Section 5, the
system is extensively examined on face recognition under
controlled/ideal condition, size variation, varying lighting
condition, varying expression, and varying pose. The
storage and computational requirements are analyzed,
and the system performance is compared with existing
approaches. Section 6 presents a two-stage face identifica-
tion schemewhich speeds up the searching process by
filtering out part of the unlikely candidates. Finally, the
paper concludes in Section 7.

2 BACKGROUND

This section overviews the major human face recognition
techniques that apply mostly to frontal faces. The
methods considered are eigenface (eigenfeature), neural
network, dynamic link architecture, hidden Markov model,
geometrical feature matching, and template matching. The
approaches are analyzed in terms of the facial representa-
tions they used.

Eigenface is one of the most thoroughly investigated
approaches to face recognition. It is also known as Karhunen-
Loeve expansion, eigenpicture, eigenvector, and principal
component. Sirovich and Kirby [5] and Kirby et al. [6] used
principal component analysis to efficiently represent pictures
of faces. They argued that any face images could be
approximately reconstructed by a small collection of weights
for each face and a standard face picture (eigenpicture). The
weights describing each face are obtained by projecting the
face image onto the eigenpicture. Turk and Pentland [7] used
eigenfaces, which was motivated by the technique of Kirby
and Sirovich, for face detection and identification. In
mathematical terms, eigenfaces are the principal components
of the distribution of faces, or the eigenvectors of the
covariance matrix of the set of face images. The eigenvectors
are ordered to represent different amounts of the variation,
respectively, among the faces. Each face can be represented
exactly by a linear combination of the eigenfaces. It can alsobe
approximated using only the “best” eigenvectors with the
largest eigenvalues. The best M eigenfaces construct an
M dimensional space, i.e., the “face space.” The authors
reported 96 percent, 85 percent, and 64 percent correct
classifications averaged over lighting, orientation, and
size variations, respectively. Their database contained
2,500 images of 16 individuals. As the images include a large
quantity of background area, the above results are influenced
by background. The authors explained the robust perfor-
mance of the system under different lighting conditions by
significant correlation between images with changes in
illumination. However, Grudin [26] showed that the correla-
tion between images of the whole faces is not efficient for
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satisfactory recognition performance. An illumination nor-
malization [6]is usually necessary for the eigenface approach.
Zhao and Yang [4] proposed a new method to compute the
covariance matrix using three images each taken in different
lighting conditions to account for arbitrary illumination
effects, if the object is Lambertian. Pentland et al. [8] extended
their early work on eigenface to eigenfeatures corresponding
to face components, such as eyes, nose, and mouth. They used
a modular eigenspace which was composed of the above
eigenfeatures (i.e., eigeneyes, eigennose, and eigenmouth).
This method would be less sensitive to appearance changes
than the standard eigenface method. The system achieved a
recognition rate of 95 percent on the FERET database
of 7,562 images of approximately 3,000 individuals. In
summary, eigenface appears as a fast, simple, and practical
method. However, in general, it does not provide invariance
over changes in scale and lighting conditions.

The attractiveness of using neural network could be due to
its nonlinearity in the network. Hence, the feature extraction
step may be more efficient than the linear Karhunen-Loeve
methods. One of the first artificial neural network (ANN)
techniques used for face recognition is a single layer adaptive
network called WISARD which contains a separate network
for each stored individual [9]. The way in constructing a
neural network structure is crucial for successful recognition.
It is very much dependent on the intended application. For
face detection, multilayer perceptron [10] and convolutional
neural network [11] have been applied. For face verification,
Cresceptron [12] is a multiresolution pyramid structure.
Lawrence etal. [11] proposed a hybrid neural network which
combined local image sampling, a self-organizing map
(SOM) neural network, and a convolutional neural network.
The SOM provides a quantization of the image samplesintoa
topological space where inputs that are nearby in the original
space are also nearby in the output space, thereby providing
dimension reduction and invariance to minor changes in the
image sample. The convolutional network extracts succes-
sively larger features in a hierarchical set of layers and
provides partial invariance to translation, rotation, scale, and
deformation. The authors reported 96.2 percent correct
recognition on ORL database of 400 images of 40 individuals.
The classification time is less than 0.5 second, but the training
time is as long as 4 hours. Lin et al. [13] used probabilistic
decision-based neural network (PDBNN) which inherited the
modular structure from its predecessor, a decision based
neural network (DBNN) [14]. The PDBNN can be applied
effectively to 1) face detector: which finds the location of a
human face in a cluttered image, 2) eye localizer: which
determines the positions of both eyes in order to generate
meaningful feature vectors, and 3) face recognizer. A hier-
archical neural network structure with nonlinear basis
functions and a competitive credit-assignment scheme was
adopted. PDBNN-based biometric identification system has
the merits of both neural networks and statistical approaches,
and its distributed computing principle is relatively easy to
implement on parallel computer. In [13], it was reported that
PDBNN face recognizer had the capability of recognizing up
to 200 people and could achieve up to 96 percent correct
recognition rate in approximately 1 second. However, when
the number of persons increases, the computing expense will
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become more demanding. In general, neural network
approaches encounter problems when the number of classes
(i.e., individuals) increases. Moreover, they are not suitable
for a single model image recognition task because multiple
model images per person are necessary in order for training
the systems to “optimal” parameter setting.

Graph matching is another approach to face recognition.
Lades et al. [15] presented a dynamic link structure for
distortion invariant object recognition which employed
elastic graph matching to find the closest stored graph.
Dynamic link architecture is an extension to classical
artificial neural networks. Memorized objects are repre-
sented by sparse graphs, whose vertices are labeled with a
multiresolution description in terms of a local power
spectrum and whose edges are labeled with geometrical
distance vectors. Object recognition can be formulated as
elastic graph matching which is performed by stochastic
optimization of a matching cost function. They reported
good results on a database of 87 people and a small set of
office items comprising different expressions with a rotation
of 15 degrees. The matching process is computationally
expensive, taking about 25 seconds to compare with
87 stored objects on a parallel machine with 23 transputers.
Wiskott and von der Malsburg [16] extended the technique
and matched human faces against a gallery of 112 neutral
frontal view faces. Probe images were distorted due to
rotation in depth and changing facial expression. Encoura-
ging results on faces with large rotation angles were
obtained. They reported recognition rates of 86.5 percent
and 66.4 percent for the matching tests of 111 faces of 15
degree rotation and 110 faces of 30 degree rotation to a
gallery of 112 neutral frontal views. In general, dynamic
link architecture is superior to other face recognition
techniques in terms of rotation invariant; however, the
matching process is computationally expensive.

Stochastic modeling of nonstationary vector time series
based on hidden Markov models (HMM) has been very
successful for speech applications. Samaria and Fallside [27]
applied this method to human face recognition. Faces were
intuitively divided into regions such as the eyes, nose, mouth,
etc., which can be associated with the states of a hidden
Markov model. Since HMMs require a one-dimensional
observation sequence and images are two-dimensional, the
images should be converted into either 1D temporal se-
quences or 1D spatial sequences. In [28], a spatial observation
sequence was extracted from a face image by using a band
sampling technique. Each face image was represented by a
1D vector series of pixel observation. Each observation vector
is a block of L lines and there is an M lines overlap between
successive observations. An unknown test image is first
sampled to an observation sequence. Then, it is matched
against every HMMs in the model face database (each HMM
represents a different subject). The match with the highest
likelihood is considered the best match and the relevant
model reveals the identity of the test face. The recognition rate
of HMM approach is 87 percent using ORL database
consisting of 400 images of 40 individuals. A pseudo 2D
HMM [28] was reported to achieve a 95 percent recognition
rate in their preliminary experiments. Its classification time

and training time were not given (believed to be very
expensive). The choice of parameters had been based on
subjective intuition.

Geometrical feature matching techniques are based on
the computation of a set of geometrical features from the
picture of a face. The fact that face recognition is possible
even at coarse resolution as low as 8x6 pixels [17] when the
single facial features are hardly revealed in detail, implies
that the overall geometrical configuration of the face
features is sufficient for recognition. The overall configura-
tion can be described by a vector representing the position
and size of the main facial features, such as eyes and
eyebrows, nose, mouth, and the shape of face outline. One
of the pioneering works on automated face recognition by
using geometrical features was done by Kanade [19] in
1973. Their system achieved a peak performance of
75 percent recognition rate on a database of 20 people
using two images per person, one as the model and the
other as the test image. Goldstein et al. [20] and Kaya and
Kobayashi [18] showed that a face recognition program
provided with features extracted manually could perform
recognition apparently with satisfactory results. Bruneli and
Poggio [21] automatically extracted a set of geometrical
features from the picture of a face, such as nose width and
length, mouth position, and chin shape. There were
35 features extracted to form a 35 dimensional vector. The
recognition was then performed with a Bayes classifier.
They reported a recognition rate of 90 percent on a database
of 47 people. Cox et al. [22] introduced a mixture-distance
technique which achieved 95 percent recognition rate on a
query database of 685 individuals. Each face was repre-
sented by 30 manually extracted distances. Manjunath et al.
[23] used Gabor wavelet decomposition to detect feature
points for each face image which greatly reduced the
storage requirement for the database. Typically, 35-45 fea-
ture points per face were generated. The matching process
utilized the information presented in a topological graphic
representation of the feature points. After compensating for
different centroid location, two cost values, the topological
cost, and similarity cost, were evaluated. The recognition
accuracy in terms of the best match to the right person was
86 percent and 94 percent of the correct person’s face was in
the top three candidate matches. In summary, geometrical
feature matching based on precisely measured distances
between features may be most useful for finding possible
matches in a large database such as a mug shot album.
However, it will be dependent on the accuracy of the
feature location algorithms. Current automated face feature
location algorithms do not provide a high degree of
accuracy and require considerable computational time.

A simple version of template matching is that a test image
represented as a two-dimensional array of intensity values is
compared using a suitable metric, such as the Euclidean
distance, with a single template representing the whole face.
There are several other more sophisticated versions of
template matching on face recognition. One can use more
than one face template from different viewpoints to represent
an individual’s face. A face from a single viewpoint can also
be represented by a set of multiple distinctive smaller
templates [24], [21]. The face image of gray levels may also
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be properly processed before matching [25]. In [21], Bruneli
and Poggio automatically selected a set of four features
templates, i.e., the eyes, nose, mouth, and the whole face, for
all of the available faces. They compared the performance of
their geometrical matching algorithm and template matching
algorithm on the same database of faces which contains
188 images of 47 individuals. The template matching was
superior in recognition (100 percent recognition rate) to
geometrical matching (90 percent recognition rate) and was
also simpler. Since the principal components (also known as
eigenfaces or eigenfeatures) are linear combinations of the
templates in the data basis, the technique cannot achieve
better results than correlation [21], but it may be less
computationally expensive. One drawback of template
matching is its computational complexity. Another problem
lies in the description of these templates. Since the recognition
system has to be tolerant to certain discrepancies between the
template and the test image, this tolerance might average out
the differences that make individual faces unique. In general,
template-based approaches compared to feature matching
are a more logical approach.

In summary, no existing technique is free from limita-
tions. Further efforts are required to improve the perfor-
mances of face recognition techniques, especially in the
wide range of environments encountered in real world.
Edge information is a useful object representation feature
that is insensitive to illumination changes to certain extent.
Though the edge map is widely used in various pattern
recognition fields, it has been neglected in face recognition
except in recent work reported in [2]. Face recognition
employing the spatial information of edge map associated
with local structural information remains an unexplored
area. This paper proposed a novel approach that exploits
such information. The eigenface technique provides a
compact representation of the human face which is optimal
for face reconstruction. It is one of the most thoroughly
investigated approaches and has demonstrated excellent
performance. Hence, this technique is used, in this study, as
a baseline for recognition performance comparison.

3 LINE EDGE MAP

Cognitive psychological studies [48], [49] indicated that
human beings recognize line drawings as quickly and almost
asaccurately as gray-level pictures. These results might imply
that edge images of objects could be used for object
recognition and to achieve similar accuracy as gray-level
images. Takacs [2] made use of edge maps, which was
motivated by the above finding, to measure the similarity of
face images. The faces were encoded into binary edge maps
using Sobel edge detection algorithm. The Hausdorff distance
was chosen to measure the similarity of the two point sets, i.e.,
the edge maps of two faces, because the Hausdorff distance
can be calculated without an explicit pairing of points in their
respective data sets. The modified Hausdorff distance in the
formulationof h(A, B) = Ni > aea Minyep||a — b|| was used, as
it is less sensitive to noise than the maximum or kth ranked
Hausdorff distance formulations. A 92 percent accuracy was
achieved in their experiments. Takéacs argued that the process
of facerecognition might startata much earlier stage and edge
images can be used for the recognition of faces without the
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Fig. 1. An illustration of a face LEM.

involvement of high-level cognitive functions. This is in
accordance with the psychological reports of [48], [49].
However, the Hausdorff distance uses only the spatial
information of an edge map without considering the inherent
local structural characteristics inside such a map. Bruneli and
Poggio [21] argued that successful object recognition approaches
might need to combine aspects of feature-based approaches with
template matching method. This is a valuable hint for us when
proposing a Line Edge Map (LEM) approach which extracts
lines from a face edge map as features. This approach can be
considered as a combination of template matching and
geometrical feature matching. The LEM approach not only
possesses the advantages of feature-based approaches, such
as invariant to illumination and low memory requirement,
butalso has the advantage of high recognition performance of
template matching. The above three reasons together with the
fact that edges are relatively insensitive to illumination
changes motivated this research.

A novel face feature representation, Line Edge Map
(LEM), is proposed here to integrate the structural informa-
tion with spatial information of a face image by grouping
pixels of face edge map to line segments. After thinning the
edge map, a polygonal line fitting process [42] is applied to
generate the LEM of a face. An example of a human frontal
face LEM is illustrated in Fig. 1. The LEM representation,
which records only the end points of line segments on
curves, further reduces the storage requirement. Efficient
coding of faces is a very important aspect in a face
recognition system. LEM is also expected to be less sensitive
to illumination changes due to the fact that it is an
intermediate-level image representation derived from low-
level edge map representation. The basic unit of LEM is the
line segment grouped from pixels of edge map. In this
study, we explore the information of LEM and investigate
the feasibility and efficiency of human face recognition
using LEM. A novel Line Segment Hausdorff Distance
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Fig. 2. Line displacement measures.

(LHD) measure is then proposed to match LEMs of faces.
LHD has better distinctive power because it can make use
of the additional structural attributes of line orientation,
line-point association, and number disparity in LEM, i.e., it
is not encouraged to match two lines with large orientation
difference, and all the points on one line have to match to
points on another line only.

4 LINE SEGMENT HAUSDORFF DISTANCE

Anovel disparity measure, Line Segment Hausdorff Distance
(LHD), is designed to measure the similarity of face LEMs.
The LHD is a shape comparison measure based on LEMs. Itis
a distance defined between two line sets. Unlike most shape
comparison methods that build a one-to-one correspondence
between a model and a test image, LHD can be calculated
without explicit line correspondence to deal with the broken
line problem caused by segmentation error. The LHD for
LEM matching is more tolerant to perturbations in the
locations of lines than correlation techniques since it
measures proximity rather than exact superposition.

Given two LEMs M' = {m},m},...,m]} (representing a
model LEM in the database) and T" = {t{,5,...,1}} (repre-
senting an input LEM), LHD is built on the vector d(m, ")
that represents the distance between two line segments m!

and té The vector is defined as
dy (mi 1)
E(mi, tl/) = d// (mg, tll) ,
di(mh, )

where dp(mj,t}), d;(mj,t}), d.(m],t}) are the orientation

distance, parallel distance, and perpendicular distance, respec-
tively. All these three entries are independent and defined as

dy(m1}) = f<e(mg,t;.)>. 1)
dy (m ) = min(l1,0)- (2)

d, (mﬁ., tj.) =1. (3)

| \
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Fig. 3. Choices of rotation. (a) Two lines to be measured. (b) Rotate the
shorter line. (c) Rotate the longer line. (d) Rotate both lines half of their
angle difference in opposite direction. Solid lines represent lines before
rotation. Dashed lines represent lines after rotation. The line with arrows
illustrates the angle difference of the two segments.

0(m},t}) computes the smallest intersecting angle between
lines 7n} and .. f() is a nonlinear penalty function to map an
angle to a scalar. It is desirable to ignore small angle
variation but penalize heavily on large deviation. In this
study, the quadratic function f(z) = 2?/W is used, where
W is the weight to be determined by a training process. The
designs of the parallel and perpendicular displacements can
be illustrated with a simplified example of two parallel
lines, m; and ¢, as shown in Fig. 2. d;(mj,t,) is defined as
the minimum displacement to align either the left end
points or the right end points of the lines. d,(mj,t) is
simply the vertical distance between the two lines. In
general, m} and ¢/ would not be parallel, but one can rotate
the shorter line with its midpoint as rotation center to the
desirable orientation before computing d;(m/,t,) and
dy (ml, té) The shorter line is selected to rotate because this
would cause less distortion to the original line pair, as
illustrated in Fig. 3. In order to cater for the effect of broken
lines caused by segmentation error and alleviate the effect
of adding, missing, and shifting of feature points (i.e., end
points of line segments) caused by inconsistency of feature
point detection, the parallel shifts /,; and [, are reset to
zero if one line is within the range of the other, as shown in
Fig. 4. Finally, the distance between two line segments m!
and #! is defined as

() = () + () (). (1)

A primary line segment Hausdorff distance (pLHD) [3] is
defined as

Hypip (M, T) = max (h(MT'), (T, M), (5)
where
1 .
h(M',T") :T Z [,y - min d(m,l- tl) (6)

m. 7]
! iodert ’
m; mf cM! J

m{ eM!

and [, is the length of line segment m.. In the calculation of
(6), the distance contribution from each line is weighted by
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Case 1 Case 2 Case 3

Fig. 4. All cases with d(m,t) = 0.

its length. In the definition of (2), it can be found that the
displacement distance (Fig. 2) depends on the smaller
distance between the left/right end points of the two line
segments to be matched, which means the measure only
reflects the smallest shift of the two line end points. If one of
the line end points is consistently detected and the other
one shifts, the displacement distance is almost zero no
matter how far the other end point shifts. This helps to
alleviate the problem of shifting feature points.

However, the design of pLHD still has the following
weakness. Suppose T'is the LEM of a test image to be matched
and ¢; is aline segmentin 7', M. is the corresponding identical
model of T in the database, and M,, is a nonidentical model of
T in the database. If the corresponding line of ¢; in M, is
missing because of segmentation error, pLHD will take the
nearest line, m., € M., as the corresponding line of ¢;. And
d(Men, i) = ming, epr,d(me, t;) is used in the calculation of
pLHD. Similarly, the nearest line (m,,, € M,, ) of ¢, in M,, is
considered as the correspondent line of ¢;, though M,, and T
are different objects. It is possible to have d(m,t;) >>
d(mpn, t;) for the matching of complicated and similar objects
such as faces. This kind of missing lines can cause larger
disparity between T" and A/, than that between T" and A/,
though both m,,, and m,,, are actually not the corresponding
line segment of t; and both d(m,,t;) and d(my,,t;) are
relatively large. This may cause mismatch.

The number of corresponding line pairs between the input
and themodelis another measure of similarity. Thenumber of
corresponding line pairs between two identical images
should be larger than that between two images of different
objects. Hence, the problem mentioned above can be
alleviated by introducing this number information into
pLHD measure.

Assume that, for each line ¢; in the test LEM T, its
corresponding line m; in model M of the identical face should
locate near ¢; because the test image and the model have
been aligned and scale normalized by preprocessing
before matching. Therefore, a position neighborhood
N, and an angle neighborhood N, are introduced.
Similarity neighborhood N is acombination of N, and N, as:

N, = N,NN,.

If at least one line in model M locates within the similarity
neighborhood of a line ¢; in test LEM T (that is, locates in a
given position neighborhood of ¢; and their angle difference
is also within the given angle neighborhood), it is most likely
for ¢; to find a correct corresponding line among those lines
inside the similarity neighborhood. This line (¢;) is named as
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a high confident line. A high confident line ratio (R) of an image
is defined as the ratio of the number of high confident line
(Npe) to the total line number in the LEM (Niptq1).

N, he

R= .
Ntotal

(7)

Hence, a complete version of LHD integrated with number
disparity is defined as (8) by taking the effect of similarity
neighborhood into account.

Hynp(M,T) = \/H2 (M. T) + (W, D), (8)
where H,yp(M,T) is the pLHD defined in (5) and W, is
the weight of number disparity D,,. The number disparity is
defined as the average ratio, the number of lines located
outside the similarity neighborhood to the total line
number, of the two LEMs to be compared as

Ry+Rr (1—-Ry)+(1-Ry) )
2 2 ’

where R); and Ry are the high-confident line ratio of the
model and the test LEMs, respectively.

One way to determine the parameters (W, W,,, N,, N,) in
the LEM face recognition system using LHD is to select the
values with the smallest error rate of face matching using a
typical database. We use simulated annealing [29], [30] to
perform the global minimization of the error rate of face
identification. Simulated annealing is a well-known sto-
chastic optimization technique where, during the initial
stages of the search procedure, moves can be accepted
which increase the objective function. The objective is to do
enough exploration of the search space before resorting to
greedy moves in order to avoid local minima. Candidate
moves are accepted according to probability p as

Duzl_

AErr

p=e i
where Err is the error rate of face identification and ¢ is the
temperature parameter which is adjusted according to certain
cooling schedule. Exponential cooling schedule [31] is
adopted in this work. The face database [33] from the
University of Bern is used as training data and W = 30, W,, =
5, N, = 6, N, = 30 are obtained. Since the parameter selection
processis conducted offline, itis worth spending a substantial
effort to design the best LHD format (in the sense of
minimizing error rate). This can result in optimal perfor-
mance of the proposed face recognition system.

(10)

5 EXPERIMENTAL RESULTS

A thorough system performance investigation, which
covers all conditions of human face recognition, has been
conducted. They are face recognition under

controlled condition and size variation,
varying lighting condition,
varying facial expression, and

4. varying pose.
The system performances are compared with the eigenface
method [7], the edge map approach [2], and reported
experimental results of other methods studied in [32].

In this study, three face databases were tested. The
database from the University of Bern [33] (Fig. 5) was used

wh =
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Fig. 5. An example pair of faces from Bern University [33].

Fig. 6. An example pair of faces from the AR face database [34]. The two faces were taken with a two week interval.
TABLE 1

Face Recognition Results of Edge Map (EM)

[2], Eigenface (20-Eigenvectors), and LEM

Bern database

AR database

Mcthod EM Eigenface

LEM EM | Eigenface | LEM

Recognition rate | 96.7% 100%

100% | 88.4% | 55.4% 96.4%

to examine the system performances under controlled /ideal
condition and head pose variations. The database contains
frontal views of 30 people. Each person has 10 gray-level
images with different head pose variations (Two fronto-
parallel pose, two looking to the right, two looking to the left,
two looking downwards, and two looking upwards). The AR
face database [36] (Fig. 6) from Purdue University was used to
evaluate the system performances under controlled/ideal
condition, size variation, varying lighting condition, and
facial expression. The database contains color images
corresponding to 126 people’s faces (70 men and 56 women).
However, some images were found lost or corrupted after
downloading through Internet. There were 112 sets of usable
images (61 men and 51 women). No restrictions on wear
(clothes, glasses, etc.), make-up, hairstyle, etc., were imposed
to the participants. The Yale face database [35] was also tested
in this work in order to compare the proposed approach to
methods studied in [32]. The database, constructed at the Yale
Center for Computational Vision and Control, is composed of
165 images of 15 subjects. The images demonstrate variations
in lighting condition (left-light, center-light, right-light),

facial expression (normal, happy, sad, sleepy, surprised,
and wink), and with/without glasses. In all the experiments,
preprocessing to locate the faces was applied. Original
images were normalized (in scale and orientation) such that
the two eyes were aligned roughly at the same position with a
distance of 80 pixels. Then, the facial areas were cropped into
the final images for matching. Sample cropped images can be
found in Fig. 8.

5.1 Face Recognition under Controlled/Ideal
Condition and Size Variation

The face images under controlled condition in the database
of Bern University and AR database were used to evaluate
the performance of the proposed approach. Two example
pairs of the face images in the two databases are illustrated
in Figs. 5 and 6. The recognition results are summarized in
Table 1. It is found that the LEM approach performed better
than the edge map and the eigenface methods. LEM and
Eigenface achieved 100 percent accuracy for identifying
faces in the database of Bern University. However, LEM
significantly outperformed Eigenface on the AR face
database. Detailed eigenface data were tabulated in Table 2.
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TABLE 2
Performance Comparison on the AR Database

Method Recognition rate
LEM 96.43%
Eigenface (20-eigenvectors) 55.36%
Eigenface (60-cigenvectors) 71.43%
Eigenface (112-eigenvectors) 78.57%

The performance of the eigenface method depends on
the number of eigenvectors m. If this number is too small,
important information about the identity is likely to be lost.
If it is too high, the weights corresponding to small
eigenvalues might be noises. The number of eigenvectors
m is limited by the rank of the training set matrix. One
hundred and twelve is the upper bound of m in the
experiment of the AR database and, thus, 78.57 percent is
the best performance that eigenface can achieve here. One
way to interpret this is that the eigenface approach will
work well as long as the test image is “similar” to the
ensemble of images used in the calculation of eigenface [37].
And the training set should include multiple images for
each person with some variations [7] to obtain a better
performance. Here, only one image per person was used for
training and the other is used for testing. Another reason is
the difference between two identical faces is larger in the
AR database than that in the database of Bern University. In
particular, the illuminations of the input and the model are
slightly different (Fig. 6). This might be the major negative
impact to the eigenface approach as compared with LEM
since LEM is relatively insensitive to illumination changes.

In the LEM method, the proposed LHD dissimilarity
measure is also evaluated and compared with the pLHD
definition. The experimental results are summarized in Fig. 7
with three classification conditions (top1, top3, and top5). In
the top1 classification, the correct match is only counted when
the best matched face from models is the identical face of the
input. In the top3 or top5 classification, the correct match is
counted when the identical face of the input is among the best
3 or 5 matched faces from models, respectively. It was found
that for the top 1 match, LEM with pLHD performed better
than edge map with MHD [2] by 5.36 percent, and LEM with
LHD could further improve the performance of pLHD by
2.68 percent, i.e., it correctly identified 96.43 percent of the
input faces.

A sensitivity analysis to size variation was conducted
using the AR database. The size variation was generated by
applying a random scaling factor, which was uniformly
distributed within [1-10 percent, 1+10 percent], to the test
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Fig. 7. Recognition results on the AR face database.

images. Four faces with different sizes were generated from
each test image. Thus, we had 448 test faces in total with
size variations ranging from -10 percent to +10 percent. The
sizes of the 112 model images were not changed.

The experimental results are tabulated in Table 3. The
results show that the edge map approach is slightly more
sensitive to size variation than the eigenface approach. The
LEM with pLHD performs better than the eigenface
approach in the top 1 match. The proposed LEM with
LHD, which outperformed the eigenface approach by an
accuracy increment of 21.6 percent, is much more robust to
size variations than all the others in the experiments. This is
a very attractive property that can alleviate the difficulty of
precisely locating faces in the previous face detection stage.

5.2 Face Recognition under Varying Lighting
Conditions

Ideally, an object representation employed for recognition
should be invariant to lighting variations. It has been shown
theoretically that, for the general case, a function invariant to
illumination does not exist [38]. Edge maps can serve as
robust representations to illumination changes for some
classes of objects with sharp edges, such as computers, tables,
etc. However, for other objects, such as faces, part of the edges
cannot be obtained consistently. It can be shown theoretically
that edges on a smooth surface are not stable with changes in
the lighting direction [39]. The LEM is an intermediate-level
image representation derived from low-level edge map
representation. The basic unit of LEM is the line segment
grouped from pixels of the edge map. It remains an open
question whether LEM, edge map, and other possible

Fig. 8. Sample cropped images of model (leftmost) and test faces (under varying lighting and expression).
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TABLE 3
Recognition Results with Size Variations
Top 1 Top 5 Top 10
Edge map 43.3% 56.0% 64.7%
Eigenface (112-eigenvectors) 44.9% 68.8% 75.9%
LEM (pLHD) 53.8% 67.6% 71.9%
LEM (LHD) 66.5% 75.9% 79.7%

representations provide an illumination-insensitive repre-
sentation for face recognition.

The issue addressed in this section is whether the LEM
representation is sufficient or how well it performs for
recognizing faces under varying lighting condition. To
answer this question, an empirical study was performed to
evaluate the sensitivity of the LEM, and the edge map and the
eigenface representations to this appearance change through
the performances of face recognition systems. The experi-
ment was designed using face images taken under different
lighting conditions from Purdue University (Fig. 8). The faces
in neutral expression with background illumination (the
leftmost image in Fig. 8) were used as single models of the

In all the three experiments, the LEM consistently
performed better than the edge map approach with an
improvement of 10.72-19.65 percent in recognition
rate. The eigenface approach performed very badly in
these conditions. For the eigenface method, it has been
suggested that the first three principal components
are the primary components responding sensibly to
lighting variation. Thus, the system error rate can be
reduced by discarding these three most significant
principal components [32]. Though the accuracy of the
eigenface approach increased without using the first
three eigenvectors, the LEM still significantly out-
performed it.

subjects. The images under three different lighting conditions 2. The Variati(f)ns of lighI:iIng Ccl)Incllition hdid affect' .the
were used as test images. There are a total of 112 models sytstem fp f; or]Ij]lEal\I;Ice. ever’lcn eless, L :Hre}fp%lmtlog
(representing 112 individuals) and 336 test images. Note that rates o the approach were st ugh an
the experiment was based on a sinele model view acceptable. Note that the recognition rates of LEM,
p . : & . o whenonly onelight was on, stayed as high as 92.86 and
The experimental results with three different lighting 91.07 percent, respectively. In other words, the effect
conditions are 111us.trated in Tab.le 4. These experiments on recognition rates when one light was on created
reveal a number of interesting points: only 3.57 to 5.36 percent decreases in recognition
TABLE 4
Recognition Results under Varying Lighting
Testing faces Eigenface Edge map LEM
20-eigenvectors 6.25%
) 60-cigenvectors 9.82%
Left light on 82.14% 92.86%
112-eigenvectors 9.82%
112-eigenvectors w/o 1% 3 | 26.79%
20-eigenvectors 4.46%
) ) 60-cigenvectors 7.14%
Right light on 73.21% 91.07%
112-eigenvectors 7.14%
112-eigenvectors w/o 1% 3 49.11%
20-eigenvectors 1.79%
. 60-eigenvectors 2.68%
Both lights on 54.46% 74.11%
112-eigenvectors 2.68%
112-eigenvectors w/o 143 |  64.29%

Conditions “w/o 15t 3” stands for without the first three eigenvectors.
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TABLE 5
Recognition Results under Different Facial Expressions
Testing faces Eigenface EM LEM
20-eigenvectors 87.85%
i ) 60-cigenvectors 94.64%
Smiling expression - 52.68% 78.57%
112-eigenvectors 93.97%
112-eigenvectors w/o 1* 3 82.04%
20-eigenvectors 78.57%
) 60-cigenvectors 84.82%
Angry expression 81.25% 92.86%
112-eigenvectors 87.50%
112-eigenvectors w/o 13 | 73.21%
20-eigenvectors 34.82%
i 60-eigenvectors 41.96%
Screaming £ ° | 20.54% | 31.25%
expression 112-eigenvectors 45.54%
112-eigenvectors w/o 1¥3 | 32.14%

accuracy. The large number of subjects, compared
with the database used in [32], [40], made it especially
interesting. These results indicate that the proposed
LEM together with LHD provide a novel face
recognition solution which is insensitive to varying
lighting condition to certain extent.

3. It was found that the recognition rates with left light
on were always higher than that with right light on.
This could be due to the fact that the illumination on
faces from the right light was slightly stronger than
that from the left light.

4. When both lights were on, the error rates became
much higher than that of only one light on. This
evidence shows that LEM (and edge map) would
still be affected by extreme lighting condition
variations, such as overillumination, though it is
insensitive to certain extent. The overillumination
would cause strong specular reflection on the face
skin (it is no longer a Lambertian surface). Therefore,
the shape information on faces would have been
suppressed or lost which could result in the increase
of the error rate of classification.

5.3 Face Recognition under Facial Expression
Changes

Similar experiments were conducted to evaluate the effects
of different facial expressions (smile, anger, and scream) on
the system performances. The face images of different facial
expressions from Purdue University were used in the
experiments (Fig. 8). The faces in neutral expression (the
leftmost image in Fig. 8) were used as single models of the
subjects. Totally, there were 112 models (representing
112 individuals) and 336 test images.

The experimental results on faces with smile, anger and
scream expressions were summarized in Table 5. The smile
expression caused the recognition rate to drop by 17.86 per-
cent as compared to neutral expression in Table 1, while the
anger expression caused only a 3.57 percent drop of the

rate. This is because the anger expression had produced less
physical variation from neutral expression than the expres-
sion of smile. The scream expression could be the extreme
case of deformation among various human facial expres-
sions, i.e., most facial features had been distorted. The LEM
performed better than the edge map approach in all three
experiments. However, the eigenface approach is found the
least sensitive to facial expression changes. Without using
the first three significant eigenvectors, the method to reduce
the negative effect of lighting condition variation, degraded
the accuracy under facial expression changes.

5.4 View-Based Identification Experiment and
Comparison with Existing Approaches

In [32], Belhumeur et al. designed tests to determine how
different face recognition methods compared under a
different range of conditions and presented the error rates
of five different face recognition approaches (eigenfaces,
eigenfaces without the three most significant principal
components, correlation, linear subspace, and fisherface)
using the Yale face database [35]. Experiments were
performed using a “leaving-one-out” strategy: The models
were constructed with all images of a subject except one
image that was used as input.

The same strategy and database were adopted here in
order to compare the LEM and the edge map approaches to
methods studied in [32]. For comparison purposes, the
images were similarly processed as stated by Belhumeur et
al. to generate closely cropped images. Fig. 9 displays samples
of 11 cropped images of one subject from the database.

The experimental results together with the results con-
ducted by Belhumeur et al. were summarized in Table 6. A
rough comparison of the experimental results shows that
LEM is superior to all the methods except the Fisherface
method (Table 6). It is worth highlighting that, though the
performance of the edge map approach is the worst among all
the methods in Table 6, LEM has greatly improved the system
performance to ranks 2. Note that LEM is a more compact
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Fig. 9. Sample cropped faces used in our experiment.

(less storage and computational requirement) representation
than edge map. The results indicate that LEM performed
much better than the eigenface method, the widely used
baseline, and slightly better than Eigenface without the first
three eigenvectors. Fisherface is specifically designed and
only valid for applications of multiple models per person. By
complicated computation, it maximizes the difference of the
between-person variation and the within-person variation.
The test and database (leave-one-out test on 15 individuals
and 11 images/person) are “ideal” for Fisherface, whereas all
the other six methods that can be applied on single model
recognition do not get any favor.

5.5 Face Recognition under Varying Poses

The face database from Bern University is used to evaluate
the system performance on face images of different poses.
One fronto-parallel face per person was used as the model.
The system was tested using the eight poses looking to the
right, left, up, and down for each person. There are 240 test
images in total. The recognition results are summarized in

Table 7. It can be observed that pose variations degrade the
recognition rate of all the three investigated methods, but
LEM is the most robust to pose variation, while the edge
map approach performed the worst. Note that 30 is the
maximum number of eigenvectors that can be used for the
eigenface approach in this experiment. Thus, 65.12 percent
is the best average performance that the eigenface approach
can achieved here.

5.6 Storage and Computational Complexity

The storage requirement of LEM is analyzed and compared
with edge map based on the frontal face database from Bern
University. The data sizes in the experiment are listed in
Table 8. On average, a face can be represented by an LEM
with 293 feature points. Compared with the edge map, LEM
requires only 28.5 percent of its storage space.

The computational complexities of LHD and MHD [2] are
of the order O(kymyt;) and O(k,myt,), respectively. m; and ¢
are the line segment numbers of model and test LEMs, while
m, and t, are pixel numbers of model and test edge maps. k;

TABLE 6
“Leave-One-Out” Test of Yale Face Database
Method Error Rate
Edge map 26.06%
Eigenface* 24.4%
Correlation* 23.9%
Linear Subspace® 21.6%
Eigenface w/o 1% 3% 15.3%
LEM 14.55%
Fisherface* 7.3%

The values with * are from [32]

TABLE 7
Face Recognition Results under Pose Different Variations
Recognition rate
Eigenface Eigenface
Methad Fidgs map (20-eigenvectors) | (30-eigenvectors) LEM
Looks left/right | 50.00% 70.00% 75.00% 74.17%
Looks up 65.00% 51.67% 56.67% 70.00%
Looks down 67.67% 45.00% 55.00% 70.00%
Average 58.17% 59.17% 65.12% 72.09%
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TABLE 8
Average Storage Requirement of Faces in the Experiments

Edge map LEM

Average number of

2
(feature) point 1027 293

and k, are the time to compute d(m},t!) in LHD and the
Euclidean norm ||m; — ¢%|| in MHD. Table 9 shows the real
average computational time of MHD and LHD on faces of
[33]. The experiments were conducted on a SGI Octane
workstation with 300MHz CPU and 512MB RAM. The
computational time for LHD is less than 50 percent of
MHD. Since the calculation of d(m/, t}) spends much more
time than a simple Euclidean distance calculation in MHD
(that is, k; is larger than k,),

O(kymyty)
O(kymytp)

O(myt))
O(myt,) .

With some acceleration techniques (such as hardware
acceleration, look up table), the LHD computational time
can be further reduced by minimizing k;. When k; = k,, the
LHD computational time could be reduced to only about
10 percent of MHD

(ﬂ I (e8.5%) < 10%).
my &,

This is the ideal upper bound of computational time
decrement for LHD with respect to MHD.

The storage requirement for the eigenface approach is
Nm + dm (Table 10), where N is the number of faces, m is the
number of eigenvectors, and d is the dimensionality of the
image. The storage demand of LEM is Nn, where n is the
average number of feature points. n is content-based,
whereas m is fixed. Usually, LEM demands more storage
space than the eigenface approach for large N as n is larger
thanm (notalways). In this experiment, n = 293and m = 112.
Each feature point is represented by two 8-bit integers and
each eigenvalue is a 16-bit float number. But, LEM does not
need to store any vector of size d, whereas the eigenface
approach must store the projection matrix (m vectors of
dimension d). d is 160 x 160 = 25, 600 in this experiment.

The computational complexity includes three aspects,
i.e.,, matching time, training time, and updating time. The
matching time is the most important one for large database
searching. LEM requires more matching time than the
eigenface approach as n >m. However, the eigenface
approach demands a substantial amount of training time

TABLE 9
Average Computational Time of MHD and LHD on [33]

MHD
1.146s

LHD
0.503s

Computational time

775

TABLE 10
Comparison of Storage Requirements

LEM
O(Nn)

Eigenface

O(Nm A dm)

Storage space

in the order of O(N3+ N2d) to obtain a satisfactory
projection matrix. When a new individual is added into
the database, the projection matrix must be recomputed.
This incremental update retraining of O(N®+ N2d) is
another expensive operation that the LEM approach does
not need. This retraining can be avoided by assuming that
the new images do not have a significant impact on the
eigenfaces, that is, just calculate the weights for the new
images using the old projection matrix. This is only valid if
the system was initially “ideally” trained.

6 FACE PREFILTERING

In a face identification system, searching is the most
computationally expensive operation due to the large
number of images available in the database. Therefore,
efficient search algorithms are a prerequisite of identifica-
tion systems. In most systems, face features are extracted/
coded offline from the original images, and stored in the
face feature database. In identification, the same features
are extracted from the input face and the features of the
input images are compared with the features of each model
image in the database. Apart from adopting a fast face
matching algorithm, a prefiltering operation can further
speed up the search by reducing the number of candidates
and the actual face feature matching, LEM matching in this
work, should only be carried out on a subset of target
images. Due to the high similarity of human faces, fast
prefiltering based on image features is a very difficult task
and is usually neglected or avoided. This study is believed
to be the first piece of work on face image prefiltering.

Prefiltering feature selection is critical because it sig-
nificantly affects the remaining aspects of the system design
and greatly determines the filtering capability of the system.
For indexing visual features, a common approach is to
obtain numerical values of n features and then represent the
image or object as a point in the n-dimensional space. In this
work, a 2D vector derived from the LEM of a face is
proposed as the face prefiltering signature. This signature is
proven to be able to filter out certain percent of candidates
while preserving a very low false negative rate though it is a
very low dimensional vector and human faces are highly
similar.

Experimental results show that 22.02 percent of the
candidates can be filtered out while the false rejection rate
was 0.89 percent using the AR face database of Purdue
University. The experiments on the face database of Bern
University, which contains fewer variations between the
two identical faces, demonstrated much better filtering rate.
The system correctly filtered out 51.95 percent of candi-
dates, while the false rejection rate was zero.
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6.1 Prefiltering Signature

The LEM of a human face contains rich identity informa-
tion. In order to speed up the search process, a prefiltering
signature, S, is generated using the length and weighted
orientation features of a face LEM as

5= [g} (11)

where I is the total length of the face LEM and O is the
weighted orientation defined as
1

0= WZﬁl (12)
where [; is the length of the ith line segment in the face LEM
and 9; is the angle of the ith line segment if it is less than
90 degrees. The reason that only those line segments whose
¥; < 90° are taken into account of the © calculation is given
as follows.

We assume that the human face is symmetric, thus its
LEM is also symmetric. Ideally, any line segment with J;
can find its symmetric correspondent line segment with
¥; = 180° — ¥;. Therefore, the overall average of line
segment orientation tends to be 180 degrees for all faces
because the distinctive information of 9; is counteracted by
;. To prevent this compensation effect, only half of the line
segments (J; < 90°) are used to compute ©. As a whole, the
prefiltering signature S represents the richness of a face’s
edges and the orientation of the face LEM.

6.2 Prefiltering Criteria B B B
Consider two prefiltering signatures S; and S,,, where S; is a
signature vector of input face for inquiry and S,, is a signature
vector of model face in the database. The process needs to
decide whether the model face can be selected as one of the
possible candidates corresponding to the input. The error
vector (AS) between the input signature (.5;) and the model
signature (S,,) is considered as an observable value.

35255, [0-D] - [4]

0, -0, AG (13)

Error vectors are often assumed to be normally distributed
[41]. Here, we assume the errors AT’ and A© between
signatures of identical faces obey normal distribution of
zero mean. Hence, the error vector AS is a bivariate normal
distribution variable

Ag NNQ(ﬁa§>7

where

ﬁ:{ﬂl}:{ﬂ i:{"% U[(;:|:|: o? O’]U(;p:|
Ly 0|’ oo o) ogoip o |’

and the correlation coefficient

a1y

B 0109 .

Then, the density function of the error vector can be
represented as

F(AS) =

1 1/ = N\l = - -
fl/exp —§(A5—u) b (AS—M) JAS e R2.
2n|%| 72

(14)

Since |X| = o703(1 — p?), the inverse of ¥ exists if and only if
|p| < 1. Straightforward calculation shows that

1
S 1 [ o} falgg,o}

= 15
ojoy(1—p*) L —osoip o5 15)

Thus, the density function of AS becomes
f(AS) =
1 1

()
— expl{ — 5
1—p? 2(1 - p?) o]

2mo09
2 _
72p(AF_M) (AG_“‘Q) + (LG—M)) }}7AS€ R2.
oy op oy
(16)

The constant density contours for a bivariate normal are a
series of ellipses with different values of d as shown in the
following equation:

—~  NT——1,p
(AS—M) ) (AS*,u) =d’
AN 2_2 AT — i\ (AO — py
o] P (o] gg

+ (M)Q— (1 - p?).

g¢

or

(17)

The probability that AS falls in the elliptic region € of
parameter d is given by

F(d) :Pr(AE* e Q) _ / J f<A§> d(AD)d(A6) |
[ ()
,hg ) (Ma,_ Nz) (A@U; ua)

AO — )2
+ ( Me)
o]

}d(AF)d(A@).
(18)
Let

AT — AO — g
u=— v=——.

19
p p (19)
The equation of constant density contour can be rewritten as

u? = 2puv + v* = d*(1 — p?). (20)
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If p > 0, the major axis of the ellipse would be located along
the 45 degree line passing through the origin. The lengths of
the major axis and minor axis are dy/1+ p and dy/1 —p,
respectively. If p < 0, the major axis of the ellipse would
locate along the 135 degree line passing through the origin.
The lengths of the major axis and minor axis are dv/1 —p
and dv/1 + p, respectively. Let
1 = ucos45° + vsin45°,v = —usin 45° 4+ v cos 45°,

or

u = u cos(—45°) + o' sin(—45°), (1)
v = —u’'sin(—45°) + v/ cos(—45°),

i.e., rotate the ellipse of (20) such that its major axis is
coincident with either of the axes of the Cartesian
coordinate. The Jacobian of the above transformation is

1=l

cos(—45°)
— sin(—45°)

sin(—45°)
cos(—45°)

=1 (22

and one can change the integration coordinate system of
(18) by substituting (19), (20), (21), and (22) into (18) as
[Substitute (19) into (18)]

}dudv.

(23)

F(d) =
//;ex —é u? — 2puv + v
J a1 S T ’
[Substitute (21) and (22) into (23)]
1 1 o v’
F(d) = ————e¢ —— =] }|J|d d
@) /Q/Qmﬂ—pz Xp{ 2<1+,0 1—p>}| |

' 1 1{ v’
= —————expy — = | —+ du'dv'.
/Q/er/po P12 L+p 1-p

(24)

Let a =1+ p, b=+/1—p, thus, we get

me—//———i—— U Y Ly o)
= / 271_\/mexp 5\ 2 T ' dv'.

To further change the integration coordinate system, let

u =racosf, v =rbsinb, (26)

where r and 6 represent the new polar system. The Jacobian
of the transformation is

acosf bsinf

o o
" |—rasinf rbcosf

|J|—\512> o

‘ =rab.  (27)
90 00

By substituting (26) and (27) into (25), we have
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TABLE 11
AR Face Database Training Results
p < Co H, Hy
0.02 145.36 433 26.42 0.27

Finally, (28) can be rewritten for d in terms of F'(d), which is
the desired true acceptance rate of the prefiltering.

d=+/—2I[l - F(d)].

To summarize, given a desired probability F'(d), one can
obtain a constant density ellipse in the form of (17) whose d
value can be calculated by (29). The prefiltering criteria can be
described as follows: If the error vector AS between the input
and the model satisfies the equation

() (v

the model is classified as the potential identical face of the
input, and selected as the candidate for the following actual
face matching. Otherwise, the model is not considered.

(29)

6.3 Experimental Results

Experiments were conducted using two face databases from
Purdue University (AR face database) and Bern University.
Each person contains two images. One was used as model,
the other was used as input. The AR face database was used
for training to obtain the necessary values of p, 0;, and gy in
the prefiltering equation (30). Then, the prefiltering system
was tested using the above two face databases by varying
the desired true acceptance rate F'(d).

The training results are summarized in Table 11. The
near zero value of p, the correlation coefficient between the
two features, indicates that AI' and A®© are nearly
independent. Since two independent features provide the
maximum classification capability, the proposed signature
is thus the optimal selection in terms of the relationship
between the two components. The actual mean vector of the
error bivariate signature obtained from the training
database is a nonzero vector, though it is assumed zero.
This bias could be caused by the environmental changes
between acquiring the model images and the inputs. All the
inputs were taken in the second session, which is 14 days
after obtaining the model images in the first session. The
error vectors were computed as input signatures minus
model signatures. Therefore, the consistent environmental
changes between the two sessions would produce a bias on
the mean vector. In this study, we argue that the mean
vector of the error signature should be a zero vector and any
shifting from zero vector can be considered as the effect of
environmental changes but not the face signature’s features
themselves. The prefiltering criteria of (30) with a zero
bivariate mean value was adopted accordingly.

Two evaluation tests were conducted to investigate the
performance of the proposed prefiltering method. The
results are tabulated in Tables 12 and 13. The real true
acceptance rates in Table 12 were similar to, but slightly
lower than, the desired true acceptance rates (F'(d)). This
can be caused by the effect of mean vector bias in the



778 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 6, JUNE 2002

TABLE 12
Prefiltering Results on AR Face Database

TABLE 13
Prefiltering Results on Bern University Face Database

database. The system filtered out 22.02 percent of non-
identical faces while keeping 99.11 percent of identical faces
in the experiment on AR face database. A much better result
was obtained from the experiment on the face database of
Bern University. The true acceptance rates in Table 13 were
higher than the desired true acceptance rates (F(d)). The
filter out rate was as high as 51.95 percent while preserving
100 percent of the identical faces. The underlying reason is
that the identical face variation (i.e., the standard deviation)
in this database is smaller than that in the training data.
Considering the high similarity of human faces and the
extremely low dimensions (only 2 dimensions) of the
signature, the results are satisfactory.

The prefiltering algorithm is one of the preprocesses for the
LEM matching. To obtain a quick response to inquiries in
huge face databases, the prefiltering speed is strongly
required to be higher in comparison with the LEM matching
speed. Nearly 1 million matches/sec (49,952 match opera-
tions in 0.051 seconds) prefiltering speed on a SGI Octane
workstation with 300MHz and 512MB of RAM has been
achieved. This makes it possible to construct high perfor-
mance face identification systems.

7 CONCLUSION

The proposed LEM is a novel compact face feature represen-
tation generated from face edge map. It is less sensitive to
illumination changes and only requires less than 30 percent
storage space of face edge map. A novel Line Segment
Hausdorff Distance (LHD), which incorporates spatial in-
formation, structural information of line orientation and line-
point association, and number disparity, is proposed for face
dissimilarity measuring. It is a very encouraging finding that
the proposed LEM face recognition approach can achieve
higher recognition accuracy than the edge map approach with
much less storage requirement and computational time.
Experiments on frontal faces under controlled/ideal condi-
tions indicate that the proposed LEM is consistently superior
to edge map. LEM correctly identify 100 percent and
96.43 percent of the input frontal faces on face databases [33]
and [34], respectively. Compared with the eigenface method,
the most widely used baseline for face recognition, LEM
performed equally well as the eigenface method for faces
under ideal conditions and significantly superior to the
eigenface method for faces with slight appearance variations.
Moreover, The LEM approach is much more robust to size
variation than the eigenface method and the edge map
approach.

Beside the recognition under controlled /ideal condition,
this research also covers the three difficult issues in face

F(d) d’ Truc acceptance rate | Filter out rate F(d) d? True acceptance rate | Filter out rate
90% 4.61 88.39% 50.31% 90% 4.61 96.67% 61.55%
95% 5.99 92.86% 41.37% 95% 5.99 96.67% 53.91%
99% 9.21 97.32% 26.58% 96% 6.44 100% 51.95%
99.5% 10.60 99.11% 22.02%
99.7% 12.43 100% 17.06%

recognition field, i.e., recognizing a face under 1) varying
lighting condition, 2) varying facial expression, and 3) varying
pose. The sensitivity investigation on the proposed LEM to
lighting condition and facial expression shows that the LEM
and the edge map are relatively insensitive to lighting
changes to certain extent though the effect does exist. The
proposed LEM approach is more robust to lighting condition
variations than the edge map approach. The effect on
recognition rates when one light is on creates only 3.57 to
5.36 percent decrease for the LEM method but 6.25 to
15.18 percent decrease for the edge map method. It is shown
that the LEM approach performed significantly superior to
the eigenface approach for identifying faces under varying
lighting condition. The LEM approach is also less sensitive to
pose variations than the eigenface method but more sensitive
to large facial expression changes. In the identification
experiment under multiple appearance changes, the pro-
posed LEM approach performed better than the eigenface,
eigenface without the first three eigenvectors, correlation,
and linear subspace methods, while the performance of the
edge map approach was the worst.

We have proposed a face prefiltering algorithm that can be
used as a preprocess of LEM matching in face identification
applications. The prefiltering operation can speed up the
search by reducing the number of candidates and the actual
face (LEM) matching is only carried out on a subset of
remaining models. Nearly 1 million matches/sec prefiltering
speed on a SGI Octane workstation with 300MHz and 512MB
of RAM is achieved. Because of the high similarity of human
faces, fast prefiltering based on image features is a difficult
task and is usually neglected or avoided. This work has
demonstrated that face image prefiltering is indeed a
practical solution to speed up the image searching by
carefully selecting/generating proper representation fea-
tures. This is believed to be the first piece of work on face
image prefiltering. Investigations on exploring more dis-
tinctive features and efficient representation forms are
interesting future work to fine tune the approach.

In summary, this work has proven the proposed new
concept: “Faces can be recognized using Line Edge Map.” It
provides a new way for human face coding and recognition,
which is robust to lighting condition changes and size
variations. It is a very attractive finding that the proposed
face recognition technique has performed superior to the
well-known eigenface method in most of the comparison
experiments.
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