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Abstract

In order to support both traditional short transaction and
long cooperative transactions, we propose a novel times-
tamp ordering approach. With this timestamp ordering
method, short transactions can be processed in the tra-
ditional way, as if there are no cooperative transactions,
therefore not be blocked by long transactions; cooperative
transactions will not be aborted when there is a conflict
with short transactions, rather, it will incorporate the re-
cent updates into its own processing; and the serialisabili-
ties, among short transactions, and between a cooperative
transaction (group) and other short transactions, are all
preserved.

1. Introduction

In traditional database systems, user application pro-
grams are packaged as transactions and the concurrent
data access is synchronised using concurrency control al-
gorithms such as optimistic concurrency control (OCC),
two-phase locking (2PL), and timestamp ordering (TO)
[2, 3, 15]. The traditional database transaction model is suit-
able for conventional database applications, such as bank-
ing and airlines reservation systems. Transactions for these
applications are generally simple, and are characterised as
short duration that they will be finished within minutes or
much shorter.

The traditional transaction concept has limited applica-
bility in many of advanced applications such as cooperative
work. In those environments, transactions tend to be very
long, and need to cooperate with each other. For example,
in cooperative environments, several designers might work
on the same project. Each designer may start up a coopera-
tive transaction. Those cooperative transactions joinly form
a transaction group. Cooperative transactions in the same

transaction group may read or update each others uncom-
mitted object versions. Therefore, cooperative transactions
may be interdependent.

The long transactions in traditional database systems
may be aborted due to conflict operations or deadlocks.
Aborting long transaction means the increased processing
cost[25].

Cooperative transactions have been recently addressed
in several research areas such as advanced database sys-
tems, groupware and CSCW, and workflow. [7] offers a
comprehensive review and a collection of works on ad-
vanced transaction models from the database point of view.
Saga[11], Cooperative Transaction Hierarchy[17], Coop-
erative SEE Transaction[13], DOM Transactions[4], Mul-
tilevel Transactions[14] and other transaction models [7]
have been discussed, where all of them need some degrees
of transaction cooperation and different correctness criteria
from serialisability except Split Transaction model[19] (as
Split Transaction model tries to reorganise a long transac-
tion into independent and serialisable transactions). Other
cooperative works have been conducted in the areas such as
groupware and workflow systems, where the transaction co-
operation is more evident [1, 8, 20, 21]. The major achieve-
ments in these areas are the models and some techniques to
synchronise or coordinate the cooperative operations and to
resolve the conflicts between cooperative transactions.

So far, it seems there is no work addressing the co-
existence of both traditional transactions and cooperative
transactions. In an envrironment with both traditional trans-
actions and cooperative transactions, cooperative transac-
tions should not be aborted due to conflict operations with
short transactions. On the other hand, as the quick response
is often required or preferred for short transactions, cooper-
ative transactions should not block the short transactions.

In this paper, we will focus on the synchronisation and
concurrency control between traditional transactions and
cooperative transactions. As a long and cooperative trans-
action, it may take days even months to finish. It is rea-



sonable for this long transaction to see the results of other
short transactions, no matter whether those short transac-
tions start earlier or not. Therefore, we aim at developing a
new timestamp approach to support both traditional transac-
tions and cooperative transactions. Figure 1 shows a client-
server system structure with both long and short transac-
tions. We divide transactions into short transactions (Ts)
and cooperative (or long) transactions, where long transac-
tions are grouped to a cooperative group.
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Figure 1. A system structure with both short
transactions and cooperative transactions

The proposed method has the following features: (1) it
allows both short (traditional) and cooperative transactions
co-exist; (2) short transactions can be processed in the tra-
ditional way, as if there were no cooperative transactions,
therefore not be blocked by long transactions; (3) cooper-
ative transactions will not be aborted when there is a con-
flict with short transactions, rather it will incorporate the re-
cent updates into its own processing; and (4) the f-conflict
serialisability, a general correctness criteron for advanced
transaction processing between a cooperative transaction
(group) and other short transactions is preserved. Based on
these features we believe this method is very suitable for
advanced database applications to support both short trans-
action and cooperative work.

The paper is organised as follows. In section 2, we re-
view some concepts and techniques on traditional transac-
tion processing, including transactions, conflict serialisabil-
ity and concurrency controls, especially the timestamp or-
dering approach. Section 3 develops a cooperative transac-
tion model and a general correctness theory for cooperative
transaction processing. Section 4 proposes a novel times-
tamp ordering method to deal with the interaction between
traditional transactions and cooperative transactions. In sec-

tion 5, we give some proofs on consistency and serialisabil-
ity theorems. Conclusions and future work are included in
section 6.

2. Traditional transaction processing

The database system refers to a database and the access
facilities (database management system) to the database.
One of the common objectives of database management
systems, centralised or distributed, is the control and co-
ordination of the execution of concurrent database trans-
actions. The concepts of database transactions, concur-
rency control and serialisability are the common notions in
the transaction management of centralised and distributed
database management systems. The most popular concur-
rency control approaches developed for centralised database
systems have been successfully adopted in the distributed
environments.

2.1. Transactions

A transaction could be viewed as a transformation of
a database from one consistent state to another consistent
state[5]. Usually, a transaction can be issued interactively
by users or be embedded in the application program written
in a high-level language such as C, PASCAL or COBOL
etc. A transactionis a particular execution of a program
that manipulates the database by means of read and write
operations. It can be defined as a sequence of database read
and write operations, or more formally as a partial order
of read and write operations. In addition, the transaction
contains aCommitor Abortas its last operation, to indicate
whether the execution it represents terminated successfully
or not. In general, we useri[x] (or wi[x]) to denote the
execution of a read (or write) issued by transactionTi on
data item x. In a transaction a data item can be read and/or
written at most once.

Traditionally, transactions are expected to satisfy the fol-
lowing four conditions, known as ACID properties [10],
namely, Atomicity, Consistency, Isolation and Durability.
The ACID properties can be trivially achieved by the serial
execution of transactions. However, this is not a practical
solution for the database management since it seriously im-
pairs system performance. Usually, the database systems
are operating in the multi-programming, multi-user envi-
ronments, and the transactions are expected to be executed
in the database system concurrently.

When several transactions execute concurrently, their
operations are executed in an interleaved manner. Opera-
tions from one transaction may be executed between op-
erations of other transactions. This interleaving can cause
an inconsistent database. The database system must moni-
tor and control the concurrent executions of transactions so



that overall correctness and database consistency are main-
tained.

A scheduleindicates the interleaved order in which the
operations of transactions were executed. If the operations
of various transactions are not interleaved (i.e. the exe-
cutions of transactions are ordered one after another) in a
schedule, the schedule isserial. The serial execution of a
set of transactions preserves the consistency of the database.
As serial execution does not support concurrency, the equiv-
alent schedules has been developed and applied for com-
parisons of a schedule with a serial schedule, such as view
equivalence and conflict equivalence of schedules. In gen-
eral, two schedules areequivalentif they have the same set
of operations producing the same effects in the database.

Definition 1 Two schedulesSc1; Sc2 are view equivalent
if:

1. for any transactionsTi, the data items read byTi in
both schedules are the same;

2. for each data itemx, the latest value ofx is written by
the same transaction in both schedulesSc1 andSc2.

Definition 2 Two operations are said to be inconflict if:

1. they come from different transactions;

2. they both operate on the same data item; and

3. at least one of them is a write operation.

Definition 3 Two schedulesSc1; Sc2 are conflict equiva-
lent if:

for any pair of transactionsTi; Tj in both schedules and
any two conflicting operationsoip 2 Ti andojq 2 Tj ,
such that if the execution orderoip precedesojq in a
schedule, say,Sc1, the same execution order must exist
in Sc2.

Definition 4 A schedule isconflict serialisableif it is con-
flict equivalent to a serial schedule. A schedule is view se-
rialisable if it is view equivalent to a serial schedule.

A conflict serialisable schedule is also view serialisable but
not vice versa, since definition of view serialisability ac-
cepts a schedule which may not necessarily be conflict seri-
alisable. There is no efficient mechanism to test schedules
for view serialisability. It was proven that checking for view
serialisability is NP-complete problem[18]. The conflict se-
rialisability can be verified through a conflict graph.

The conflict graph among transactions is constructed as
following: for each transactionTi, there is a node in the
graph (we also name the nodeTi). For any pair of conflict-
ing operations (oi; oj), whereoi from Ti andoj from Tj ,
respectively, andoi comes earlier thanoj , then add an arc
from Tj to Ti in the conflict graph.

Theorem 1 A schedule is conflict serialisable if and only if
its conflict graph is acyclic [3].

The serialisation order of a set of transactions can be deter-
mined by their conflicting operations in a serialisable sched-
ule.

In order to produce conflict serialisable schedules, many
concurrency control algorithms have been developed such
as Two Phase Locking (2PL), Timestamp Ordering (TO),
Optimistic Concurrency (OC) Control, etc.. As our work
is closely related to Timestamp Ordering algorithm, we will
review TO in the next subsection.

2.2. Timestamp Ordering (TO)

The timestamp ordering is a technique whereby the se-
rialisation order is determined by the unique timestamp as-
signed to each transaction before it starts. Each transaction
is assigned a timestamp by its transaction manager (TM).
The TM attaches such a timestamp to all operations issued
by the transaction. Furthermore, for each accessed data item
A, there is a read timestamptr(A) to record the timestamp
of the latest read, and a write timestamptw(A) to record the
latest write. Any write operation of a timestamp earlier than
the item’s read timestamp is rejected. Likewise, any read or
write operation earlier than the item’s write timestamp is
rejected. Rejecting an operation of a transaction leads to
transaction abort and restart. Restarted transactions adopt
new and later timestamps.

The basic TO algorithm has been proved to be a correct
method which can produce serialisable schedules[2]. The
rules of basic TO can be summerised as follows.
TO Rules: (Basic Timestamp Ordering Concurrency Con-
trol).

1. For each data itemA, there are two timestampstr and
tw, wheretr is the largest timestamp of those transac-
tions which have readA and tw is the largest times-
tamp of those transactions which have written toA.

Each transactionT has also a timestampt to record its
starting time.

2. Read operation:When a transactionT requests to read
A, observe the following rules:

(a) if t(T ) > tw(A), T readsA, and sets max(t(T ),
tr(A)) as the new value oftr(A).

(b) if t(T ) < tw(A), T cannot readA, and has to be
rolled back.

3. Write operation:WhenT requests to writeA, observe
the following three rules:

(a) if t(T ) > max(tr(A); tw(A)), the request can
be granted and the new value oft(A) is set to
t(T ).



(b) if tw(A) > t(T ) > tr(A), the write operation
needs not be performed.

(c) if t(T ) < tr(A), T cannot writeA and it has to
be rolled back.

The timestamp ordering is free from deadlock and star-
vation since there is no waiting in this algorithm. In fact
waiting is meaningless in this approach as the rejection of
an operation only depends on the greatest TO value of the
item. When an access request of a transaction is rejected,
the transaction is aborted. Other advantage of the basic
timestamp ordering method over 2PL is that it provides a
great degree of concurrency by producing some more flexi-
bility schedules.

3. Cooperative transaction processing

In traditional database applications such as banking and
airline reservation systems, transactions are short and non-
cooperative, and usually can be finished in minutes or much
shorter. The serialisability is a well accepted correctness
criterion for these applications. The cooperative transaction
processing in different applications may have different re-
quirements and require different system supports to coordi-
nate the work of multiple users and to maintain the consis-
tency. So far there is no single common accepted correct-
ness criteria and concurrency control approaches. In this
section we will give a definition of advanced or cooperative
transactions, and develop a general correctness criterion.

Regarding to cooperative transactions, one can also find
other terms in literature such as non-traditional transac-
tion, long transactions, advanced transactions and interac-
tive transactions etc.. The advanced transaction processing
or cooperative transactions processing have been investi-
gated in groupware[9, 22, 23], workflow systems[12, 20]
and advanced database transaction models[1, 7]. From
these areas, one can derive the following common proper-
ties and requirements:

1. The cooperative work involves multiple concurrent
users/transactions.

2. Exchanging and sharing of persistent data between dif-
ferent users/transactions need to be supported.

3. It needs to ensure the consistence between individual
and group.

4. The users/transactions are often distributed.

5. Activities are often performed interactively by human
and usually of long duration.

Based on these, we give the following definition:

Definition 5 An advanced transaction (cooperative trans-
action group) is defined as a set (group) of cooperative
transactionsT1; T2; :::; Tn, with the following properties:

1. each cooperative transactionTi is a sequence (or par-
tial order) of read(x) and write(y) operations;

2. for the same data item, there might be more than one
read(x), written asread1(x); read2(x), � � �, in a co-
operative transaction, each read(x) will get a different
value depending on the time and interaction with other
transactions; and

3. similarly, for each y, there might be more than one
write(y), written aswrite1(y); write2(y), � � �.

The first part shows that an advanced transaction is a co-
operative transaction group. If the size of group is one, it
will become a single transaction. Property 1 is the same as
that in the traditional transaction. Properties 2 and 3 indi-
cate some cooperative features. The first read(x) may read
other transaction’s committed or uncommitted data depend-
ing on the concurrency control employed. After the first
read operation onx, the data item might be updated by an-
other traditional transaction or another cooperative transac-
tion, then it can read the new value in the next read(x). Sim-
ilarly, after the first write operation onx, due to the coop-
erative feature, a transaction may read some new data from
other transactions, then issue another write(x) to incorpo-
rate this to the current processing. The later write(x) can
undo the previous write, or do further update to show the
new semantics.

Similar to distributed database transactions, the ad-
vanced transaction definition could be extended to a dis-
tributed advanced transaction as following:

Definition 6 A distributed advanced transaction (dis-
tributed cooperative transaction group) is defined as a set
(group) of cooperative transactionsT1; T2; :::; Tn, with the
following properties:

1. each transactionTi consists of a set of subtransactions
T
j
i at sitej, j 2 [1..m], m is the number of sites in a

distributed system. SomeT j
i might be empty ifTi has

no subtransaction at sitej;

2. each subtransaction is a sequence (or partial order) of
read(x) and write(y) operations;

3. for the same data item x, there might be more than one
read(x), written asread1(x); read2(x), � � �, in a co-
operative transaction, each read(x) will get a different
value depending on the time and interaction with other
transactions; and

4. similarly, for each y, there might be more than one
write(y), written aswrite1(y); write2(y), � � �.



Similar to that in traditional transactions, we assume that
for write operations on x, there must be a read operation be-
fore the the first write in a cooperative transaction. It is nat-
ural to read the data first before the update, ie. one’s update
may depend on the read value or one may use read opera-
tion to copy the data into the local memory, then update the
data and write it back (when commits).

In advanced transaction applications, cooperative trans-
actions could read and write a data item more than once,
which is different from traditional transactions. The reason
to read a data item more than once is to know the recent
result and therefore make the current transaction more ac-
curate. However, this will bring the problem on the seri-
alisability among cooperative transactions, as a cooperative
transaction may read a data item before another transaction
starts and also read the data updated by the same transac-
tion. If so, the schedule between these two transactions will
not be serialisable. However, from the semantic point of
view, the most important read or write on the same data item
will be the last read or write. If we give high priority on the
last read or write conflicts in developing the correctness cri-
teria, we could have an f-conflict (final conflict) graph and
therefore propose an f-conflict serialisability theorem.

Definition 7 The f-conflict graph among transactions is
constructed as following: for each transactionTi, there is a
node in the graph (we also name the nodeTi). For any pair
of final conflicting operations (oi; oj), whereoi fromTi and
oj fromTj , respectively, andoi comes earlier thanoj , add
an arc fromTj to Ti in the conflict graph.

Definition 8 A schedule is f-conflict serialisable if and only
if its f-conflict graph is acyclic.

The f-conflict serialisation order of a set of transactions
can be determined by their f-conflicting operations in a f-
conflict serialisable schedule. From the definition, one can
see the relationship between conflict serialisability and f-
conflict serialisability:

Theorem 2 If a schedule is conflict serialisable, it is also
f-conflict serialisable, the vise versa is not true.

The conflict serialisability is a special case of f-conflict se-
rialisability in traditional transaction processing.

Definition 9 A schedule of distributed advanced transac-
tions is f-conflict serialisable if and only if the following
two properties are satisfied:

1. the schedule of subtransactions at each site is f-conflict
serialisable; and

2. the f-conflict serialisation order at all sites are the
same.

Advanced transaction or cooperative transaction pro-
cessing in different applications may have different appli-
cation dependent requirements and require different system
supports to coordinate the work of multiple users and to
maintain the consistency. As a result, different synchroni-
sation, coordination and control mechanisms within a co-
operative transaction group are developed. The f-conflict
serialisability in conjunction with application dependent se-
mantics could be used for designing and testing advanced
transactions processing approaches. The application depen-
dent requirements can be reflected in the detailed transac-
tion structures. For example, when there are several write
operations on the same x, the later writes might be an undo
and then a redo of the operation (or perform a different op-
eration). The undo operations might be reverse operations
or compensating operations, and the redo operations could
be a contingency operations or new operations which may
need to keep the intention (user intention) of the original
write [21, 22], or to incorporate the new semantics.

4. A novel timestamp ordering approach

Though the cooperative transaction processing has been
addressed in several research areas, the interactivity and
long duration of cooperative transactions have not been ex-
plored thoroughly, especially their interactions with tradi-
tional transactions when both traditional transactions and
cooperative transactions co-exist. In this case, both types of
transactions co-exist, traditional (short) transactions should
not be blocked due to conflict with cooperative (long) trans-
actions, and the cooperative (long) transactions should not
be aborted due to the conflict with traditional transactions.
To explore the interactive feature, cooperative transactions
should be able to read the recent data.

For example, suppose that, a cooperative transaction
starts today, and will take a few days or maybe months to
finish, and a short conflicting transaction will only need a
few minutes or much shorter, but due to late arrival of a
write operation or conflict with a long transaction, it has
been aborted, and started again and succeeded with a later
timestamp. In such a case, the long transaction would not be
able to read this updated value when it finishes one month
later. Just imaging that a design or a result from a long
transaction is based on some old database value, which has
been updated several times already. How would one rank
the result of this long transaction, updated or obsolete? So
we argue that the result of such short transactions should
be revealed to long cooperative transactions. Due to the in-
teractivity of cooperative transactions, users should be able
to incorporate the new result into the transaction by issuing
some new operations or compensating some earlier opera-
tions.

In this section, we will discuss the relationship between



short transactions and cooperative transactions and develop
a concurrency control approach to support the coordination
between them. We consider two kinds of transactions, tra-
ditional short transactionsT and long cooperative transac-
tionsTc. To simplify the discussion we treat a cooperative
transaction group as one logical transaction to avoid the dis-
cussions on operation synchronisation within a cooperative
transaction group.

In a cooperative transaction, it is reasonable to assume
that for each write operation there must be a read operation
earlier. It is natural to read the data first before the update,
ie. one’s update can depend on the read value or use the
read operation to copy the data in the local memory, then
update the data and write it back (when commits).

Similar to the optimistic concurrency control approach,
we use a private work space for the cooperative transaction
group where all data items read or updated are stored. All
read operations are performed by copying the data items
into this work space. Write operations are performed on the
private work space. These values will be reflected to the
database after the transaction is committed.

Due to the interactive feature, a cooperative transaction
can be formed with great flexibility as an user can dynam-
ically issue an operation depending on the most current in-
formation. If a datum has been updated recently after the
first read, the cooperative transaction may wish to read the
data again due to the cooperative feature. Therefore we
assumethat in a cooperative transaction, it could read and
write the same data item more than once. It can issue an-
other read operation if knowing the datum has been changed
recently. In order to incorporate the recent changes into
its own transaction, it can perform additional operations or
compensate the previous operations. That is the flexibility
of interactive work.

4.1. Transaction interactions

We argue that the cooperative transactions and tradi-
tional transaction would not be aborted when there are con-
flicts between cooperative operations and traditional opera-
tions. When traditional transactions commit, the coopera-
tive transaction may need to read or re-read the new value
from them in order to continue the work based on the recent
results. In such a case, some partial rollback is required.
According to the order of the conflict operations with re-
spect to the commit time, and the order of the timestamps,
we consider the following six cases:

� Case (a).

As shown in Figure 2,t(Tc) < t(T ), rc(A) conflicts
with w(A), andrc(A) comes after T is committed. In
this case we will letTc continue and change the times-
tamp t(Tc) to a value t(T)+� (small value, just to indi-
cate it is bigger than t(T)).

According to the traditional timestamp ordering
method,Tc would be aborted.

t(Tc)

t(T)
w(A)

r(A)

t(Tc)

t(T)

w(A)

r(A)

 c c

continue

Figure 2. Case (a)

� Case (b).

As shown in Figure 3,t(Tc) < t(T ), rc(A) conflicts
with w(A), andw(A) comes later. In order to let the
cooperative transaction know this update, a message
needs to be sent toTc about the update when t com-
mits. Tc may need to read this new value. In such a
case, some partial rollback may be needed to incorpo-
rate this new result. If so, change the timestamp t(Tc)
to a value t(T)+�. After this, Tc’s virtual timestamp
will be bigger than T’s timestamp. According to the
traditional timestamp ordering method, both T andTc
will continue as usual, thenTc will never know this
update no matter how long it is, which does not reflect
the advantage of cooperative and interactive feature.

t(Tc)

t(T)
w(A)

t(T)

w(A)

r(A)

 c c

partial rollback

t(Tc)
r(A)

Figure 3. Case (b)

� Case (c).

As shown in Figure 4,t(Tc) > t(T ), rc(A) conflicts
with w(A), andw(A) comes later. We let T continue,
and send a message about the update toTc when T
commits.Tc may need to read this value after T com-
mits. In such a case, some partial rollback may be
needed to incorporate this new result. No change on
timestamp t(Tc) in this case.

Here the partial rollback and redo are not the same as
that in the database systems recovery, where rollback
refers to undo all the operation to a point and then redo.
Depends on the applications, we may only need to re-
read the new value and then perform some additional
operations to incorporate the changes, or undo some
affected operations and issue some new ones.

According to the traditional timestamp ordering
method, T will be aborted and restarted with a later
timestamp. When it is successfully committed, there is



still a conflict between w(A) andrc(A). This will be-
come the case in Figure 3. Following the same discus-
sion, in order to incorporate the recent changes in the
cooperative transactions, one needs to re-read A and
perform some additional operations. As this re-read
is later than the re-read case in Figure 4, it is reason-
able to say the cost is much higher in case b than that
in case a. This arguement can be supported by some
models on human’s memory, reference and correlation
ability. For two related concepts, when reading with
two different intervals t1 and t2,t1 < t2, the human’s
correlation degree is higher in the first case of t1 in-
terval. Therefore, the comprehension time is shorter.
In addition, as the interval increases, one might have
done more work which needs to be modified. There-
fore, to let T continue rather than abort is a reasonable
solution.

w(A)

t(T)

w(A)

r(A)

 c c

partial rollback

t(Tc)
r(A)t(Tc)

t(T)

Figure 4. Case (c)

� Case (d).

As shown in Figure 5,t(Tc) > t(T ), rc(A) conflicts
with w(A), andr(A) comes later.Tc will continue, and
this read will read the current value of A, the same as
that in TO.

w(A)
 c

t(Tc)

t(T)

r(A)
continue

Figure 5. Case (d)

� Case (e).

As shown in Figure 6,t(Tc) < t(T ), rc(A) conflicts
with w(A), and r(A) comes before T commits. This is
similar to case b, but the conflict is found whenrc(A)
arrives. Let the cooperative transaction continue (read
A), record the conflict information and request the sys-
tem to send the commit or abort information when T
commits. After t commits, change the timestamptc(T )
to t(T)+ �. If T aborts,Tc will need partial rollback to
this read, and re-read.

According to the traditional timestamp ordering
method,Tc will be aborted.

t(Tc)

t(T)
w(A)

t(T)

w(A)

r(A)

partial rollback

r(A)

t(Tc)
t(Tc)

if T commits

a

Figure 6. Case (e)

� Case (f).

As shown in Figure 7,t(Tc) > t(T ), rc(A) conflicts
with w(A), and rc(A) comes later, Similar to case
(e), let the cooperative transaction continue (read A),
record the conflict information, and request the system
to send the commit or abort information when T com-
mits. After t commits, change the timestamptc(T ) to
t(T)+ �. If T aborts,Tc will need partial rollback to
this read, and re-read, and request the system to send
the new result toTc after T commits.

w(A)

t(T)

w(A)

r(A)

partial rollback

t(Tc)
r(A)t(Tc)

t(T)

a

Figure 7. Case (f)

The above six cases covered all possible conflicts between
traditional transactions and cooperative transactions. Based
on these we develop a novel timestamp ordering approach
for dealing with their interactions.

4.2. The new TO algorithm

For each data itemA, we will use four timestampstr, tcr
andtw, tcw, wheretr is the largest timestamp of those trans-
actions which have readA , tcr is a virtual timestamp of the
cooperative transactions which have readA, initialised as
the starting time of the cooperative transaction group,tw is
the largest timestamp of those transactions which have writ-
ten toA, andtcw is the virtual timestamp of the cooperative
transactions which have written toA.

For the conflicts between the traditional transactions, we
will use the basic TO. For the conflicts between traditional
and cooperative transactions, we will give some new rules
based on the discussion on the above six cases.
New TO Rules: (New Timestamp Ordering Concurrency
Control).

1. Read operation:When a transactionT requests to read
A, observe the following rules:

(a) if t(T ) > tw(A), T readsA, and sets max(t(T ),
tr(A)) as the new value oftr(A).



(b) if t(T ) < tw(A), T cannot readA, and has to be
rolled back.

2. Write operation:WhenT requests to writeA, observe
the following three rules:

(a) if t(T ) > max(tr(A); tw(A)), the request can
be granted and the new value oft(A) is set to
t(T ).

i. If t(Tc) < t(T ), rc(A) conflicts with w(A),
andw(A) comes later, record the message
about the conflict and the write (need to send
to Tc when T commits).

ii. If t(Tc) > t(T ), rc(A) conflicts with w(A),
andw(A) comes later. record the message
about the conflict and the write.

(b) if tw(A) > t(T ) > tr(A), the write operation
needs not be performed.

(c) if t(T ) < tr(A), T cannot writeA and it has to
be rolled back.

3. Tc’s Read operation:

(a) If t(Tc) < t(T ), rc(A) conflicts with w(A), and
rc(A) comes after T is committed.Tc contin-
ues and changes the timestamp t(Tc) to a value
max(t(Tc, t(T)+ �).

(b) If t(Tc) < t(T ), rc(A) conflicts with w(A), and
rc(A) comes later, but before T commits, record
the conflict information, ask the system to send
the commit or abort message when T commits or
aborts. ThenTc continues (may need rollback to
re-read).

(c) If t(Tc) > t(T ), rc(A) conflicts with w(A), and
r(A) comes after t commits,Tc will continue.

(d) If t(Tc) > t(T ), rc(A) conflicts with w(A), and
rc(A) comes later, but before t commits, record
the conflict information, ask the system to send
the commit or abort message when T commits or
aborts. ThenTc continue (may be rollback late to
re-read).

4. Tc’s Write operation:When requests a write, granted,
continues the operation.

5. Commit or abort operation:this information and/or
conflict messages will be sent toTc.

6. Messages from the write transaction: WhenTc re-
ceives messages, check

(a) if T is committed,

i. If t(Tc) < t(T ), rc(A) conflicts with w(A),
andw(A) comes later.Tc may need to read
the value again, then some partial rollback
to incorporate this new result. If so, change
the timestamp t(Tc) to value t(T)+�.

ii. If t(Tc) > t(T ), rc(A) conflicts with w(A),
andw(A) comes late, some partial rollback
may be needed to incorporate this new re-
sult. No change on timestamp t(Tc).

iii. rc(A) conflicts with w(A), andw(A) comes
earlier. If so, change the timestamp t(Tc) to
max(Tc, t(T)+ �).

(b) if T is aborted,rc(A) conflicts with w(A), and
w(A) comes earlier,Tc needs some partial roll-
back to read the old value. No change on the
timestamp t(Tc).

As we assume that in cooperative transactions for each write
operation there must be a read operation before hand, we
do not need to consider the conflicts between the traditional
write operations and cooperative write operations, since the
earlier conflict treatment between cooperative read opera-
tions and traditional write operations will cover the treat-
ment on their write - write conflicts.

Based on the interactive features of some cooperative
work, the rollback techniques will be different from the
rollback in the traditional database recovery. In traditional
database, rollback is used to recover transactions from
failure[16]. In database recovery, a write-ahead log is used
to keep the records of recent updates. When recovery from
failure, a transaction may need rollback to a point or to the
beginning of the transaction, that means undoing all the op-
erations from a transaction to that point. Consequently these
operations will be redone. In database, these undo and redo
can be done automatically in the system, as all the transac-
tion semantics are fixed before submission. In cooperative
work environments, many transactions are on-line and dy-
namic. When roll back to a point, one may need to undo
only some affected operations to that point, then perform
some new operations.

5. Consistency and serialisability

In the proposed new TO algorithm, both traditional
(short) transactions and long cooperative transactions co-
exist. In addition, it has the following properties:

Theorem 3 Short transactions can be processed in the tra-
ditional way as that in the basic TO algorithm, as if there
were no cooperative transactions, therefore they will not
be blocked by cooperative transactions. The serialisability
among these transactions is preserved.



Proof: This can be shown from Rules 1 and 2, the process
of read and write operations from traditional transactions is
the same as they are in basic TO. The only extra booking
work is to record the conflicting messages with cooperative
transactions as shown in Rule 2(a) i and ii, and to send mes-
sages toTc when commit as shown in Rule 4. So they will
not be blocked by cooperative transactions. As basic TO
guarantees the serialisability of the transactions, the new
TO will also preserve the serialisability among traditional
transactions.

Theorem 4 In new TO, cooperative transactions will not
be aborted when there is a conflict with short transactions,
rather, it will incorporate the recent updates into its own
processing;

Proof: Again this can be shown directly from Rules 3, 4 and
6.

For cooperative work, the correctness criteria will de-
pend on the application and cooperative transaction pro-
cessing models employed. In the REDUCE project[22],
the correctness criteria are formalised through a CCI consis-
tency model and these criteria are achieved through a set of
synchronisation and transformation algorithms. As shown
in [24], the schedule produced from REDUCE system is
f-conflict serialisable. Furthermore, the following general
correctness of the novel TO algorithm can be shown.

Theorem 5 In the new TO algorithm, a schedule of a coop-
erative transactionTc (group) and other short transactions
committed earlier thanTc commits, produced from new TO,
is f-conflict serialisable.

Proof: To prove this theorem, we need to consider the f-
conflict graph of the schedule, and then show that the f-
conflict graph is acyclic, since that a schedule is f-conflict
serialisable if and only if its f-conflict graph is acyclic. We
now construct the conflict graph in two steps:

Step 1.

The conflict graph among traditional transactions is
constructed as following: for each transactionTi, there
is a node in the graph (we also name the nodeTi).
For any pair of conflicting operations (oi; oj), where
oi from Ti andoj from Tj , respectively, andoi comes
earlier thanoj , add an arc fromTj to Ti in the conflict
graph.

As the schedule among the traditional transactions
is serialisable, there will be no cycle among them,
and we could assume their serialisation order as
T1; T2; :::; Ti; :::; Tn (which can be done by rearrange
transactions’ subscripts).

Step 2.

Now add a nodeTc for cooperative transaction group.
Let us see how to add and maintain the arcs between
Tc and other transactions.

We only need to consider conflicting cases a, b, c and
d shown in Figures 2 - 5, as T in cases 6 and 7 are
aborted and the arcs from and to T will be deleted. For
the conflicts in cases a and d, there will be only arcs
from T to Tc, andt(Tc) is changed to a value bigger
thant(T ), it indicates thatTc can be be serialised after
T.

For the conflicts in cases b and c, there might be some
arcs fromTc to T initially as some operations fromTc
come later than the conflicting operations from T.

But when T commits, the conflicting messages will be
sent toTc. According to Rule 6,Tc will re-read the
value written by T, and redo the necessary operations
to incorporate this update. After thisTc is different
from the initial Tc, as the newTc has read the value
from T, it is now serialisable after T, that’s the reason
to changeTc’s timestamp. In the final conflict graph,
the arcs fromTc to T now need to be reversed. Hence,
there will be new arcs fromTc to any T.

Therefore, there will be no cycle, andTc is serialisable after
all the short transactions which are committed earlier than
Tc. 2

The f-conflict serialisability is a more generalised form
of the traditional conflict serialisability. The theorem can
be used for advanced transactions such as long transactions,
cooperative transactions and interactive transactions when
there are more than one read and write on the same data in
the transaction.

6. Conclusions and future work

In traditional database systems, a transaction can be
aborted due to the conflict operations. Aborting a long
transaction often means the increased cost. In order to sup-
port both traditional short transaction and long cooperative
transactions, we have proposed a novel timestamp order-
ing approach in this paper. With our new timestamp or-
dering (TO) method, short transactions can be processed in
the traditional way, as if there are no cooperative transac-
tions, therefore not be blocked by long transactions; coop-
erative transactions will not be aborted when there is a con-
flict with short transactions, rather, it will incorporate the
recent updates into its own processing; and the serialisabil-
ities, among short transactions, and between a cooperative
transaction (group) and other short transactions, are all pre-
served.



In developing the new TO method, we emphasise the
interactive features of many cooperative transactions, and
take the advantages from user interaction, which makes
our method different from other concurrency control ap-
proaches.
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