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1 Theoretical Background of the Wavelet Power
Spectrum Technique

Fourier transform and Fourier power spectral techniques
have been employed to analyze signals for many years. In
particular, the power spectrum and bispectrum have been
successfully used to study chaos and signal behavior in
Refs. 1-7. Note that the Fourier power spectral technique is
optimally used when the signal is statistically invariant, i.e.,
for stationary signals. Mathematically, the Fourier trans-
form, power spectrum, and bispectrum of an input signal
x(t) are given as’

X(w)= f_:x(t)exp(—jwt)dt, (1)
P(0)=X(0)X*(0)=|X(w)|%, (2)
B(w;,0,)=X(w)X(0,)X*(0,+ 0,), 3)

where x(t) is the input signal, )2((») is its Fourier trans-
form, P(w) is the power spectrum, B(w;,w,) is the
bispectrum, and w is a frequency variable in radians per-
second.

When the signal is nonstationary, time-frequency power
spectral and wavelet transform techniques should be em-
ployed. The short-time Fourier transform (STFT) has been
employed to study nonstationary signals with great
success. However, there is a trade-off between time and
frequency resolutions since the STFT uses a window to
“slice” the signal waveform to smaller segments and each
segment is approximately assumed to be stationary. This
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can be identified as the major disadvantage of the STFT.
The time-frequency power spectrum and the wavelet trans-
form have been successfully shown to be useful tools to
study multicomponent nonstationary signals in Refs. 8-20.
All time-frequency power spectra are governed by the gen-
eral Cohen equation, which is given by®?2

1 + + + oo
P(t,w)=—2j f f exp(—jOt—jrw+j6u)
471' — — — o0
X®(6,7)R, (t,7)du d7dé, (C))]

where R, ;(z,7) is the local autocorrelation function, ®(6,7)
is the kernel function, u = ¢+ 7/2, 7is the lag parameter, and
¢ is the running time variable. The range of ¢ is 0=t=<1¢,
where t is the signal window size over which the power
spectrum of a nonstationary signal is estimated.

The STFT has been studied extensively in Ref. 8, there-
fore, the main purpose of the paper is not comparing the
STFT with the new hyperbolic wavelet power spectrum
(WPS) technique of various signals. Instead, this paper pre-
sents early results on signal analysis by using the new tech-
nique. Further quantitative work on the new technique will
be presented in future publications. The wavelet transform
(WT) of an input signal x(¢) is given by’

+oo t—b
. WT(a,b)=f_wx(t)¢ e dr, (5)

where (t—b/a) is the wavelet function, and a and b are
scale and time indices, respectively. To be a valid wavelet,
a function must have a zero area under its curve. This con-
dition is satisfied by all sinusoids including sym3 and the
hyperbolic wavelet, which is given by
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Yny(6)=(—1)nB[sech(BO)1"{n—(n+1 )[sech(ﬁa)]zgé)

where B is a control parameter that can be varied. Further
work on the hyperbolic wavelet and other symmetrical
wavelets can be found in Ref. 21.

van Milligen et al.?>?? showed how the WPS and wave-
let bispectral techniques were used to study chaos and tur-
bulence, which provide the foundation for the research re-
ported in this paper. In their studies, they showed that the
wavelet bispectrum could be utilized to effectively study
chaos. They showed that the main problem with the wave-
let bispectrum was that there are four dimensions that must
be simultaneously expressed. Thus, the concept of slicing
the wavelet bispectrum at different separate frequencies
was employed, which was shown to be successful provided
that the behavior of the signal could be partially predicted.
Farge et al.'? showed that the WT method could be used to
study turbulence by detecting edgy behavior in its time-
frequency spectrum. Similar to the Fourier power spectrum
and bispectrum, the WPS and bispectrum are given by

WPS(t,w)=WT(t,0) WT*(t,0) = |WT(1,0)|?, (7
WPS(t,w) =WT(t,0,)WT(t,0,) WT[1,(w; + ©,)]. (8)

The WPS technique is much simpler than the wavelet
bispectrum technique since there are only three quantities,
i.e., time, scale, and magnitude, that must be simulta-
neously displayed. One major advantage of the WPS tech-
nique over the Fourier power spectrum technique is that the
signal energy distribution is shown in 3-D graphs, which do
not suppress the phase information as is the case of the
power spectrum, i.e., the phase information is included as a
function of time. Jubran et al.** used the Gaussian WT to
study the behavior of flow-induced vibration and cross-flow
in a cylinder. They compared the performance of a number
of different mother wavelets including the Morlet wavelet,
Daubechies wavelets, and the Gaussian wavelet, and then
concluded that the Gaussian wavelet was the most suitable
wavelet for this particular application. In that paper, only
the WT of the input data was estimated, while the WPS and
bispectrum techniques were not considered.

The main difference between the WT and the Fourier
transform is that the WT examines the frequency contents
of the signal over a short time period since its mother
wavelet function has finite-time support. By contrast, the
Fourier transform averages the frequency contents of the
signal over an infinite time interval by the effects of sin(-)
and cos(-) functions. The time-support range of most wave-
let functions (the hyperbolic, the Choi-Williams, or
Mexican-hat and Morlet wavelets, for example) is an ap-
proximately 10- to 20-unit time index (as was seen in Ref.
21). Thus, by employing the WT, it is possible to observe
instantaneous behavior of the signal, which is vital in
studying the signal characteristics and predicting its future
behavior. In addition, the WPS technique gives the energy
density of the input signal in both the time and frequency
domains, whereas the Fourier power spectrum displays the
energy contents of the signal in the frequency domain only.
The combination of time and frequency domains yields lo-
cal images of the input signal energy contents and thus it is
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possible to carry out an in-depth study of the signal by
examining its instantaneous behavior. Since many different
wavelet functions exist, the corresponding WTs also exist
and each wavelet function has different characteristics,
which means that they can be used for different specific
applications. The hyperbolic wavelet function, which was
proposed in Ref. 21, is employed in this paper to further
demonstrate the usefulness of the hyperbolic kernel family.
The hyperbolic wavelet has been shown to have a fine scale
resolution, which is suitable for studying signals that do not
have broad power spectra such as transients, which was
concluded in Ref. 21. The hyperbolic wavelet function also
has a small number of computed scales, which means it can
be used for compression purposes, which reduces the com-
putational burden of the hyperbolic wavelet power spec-
trum.

The main aim of this paper is to first demonstrate that
the hyperbolic WPS technique is a valid and effective tech-
flique to study nonstationary signals. The sym3 WPS tech-
nique and Fourier power spectral techniques are employed
solely to qualitatively show the hyperbolic wavelet effec-
tiveness and validity in signal processing. Second, the pa-
per qualitatively presents early results on the main charac-
teristics of a number of important signals including
electrocardiogram (ECG), music, Duffing chaotic oscilla-
tor, and speech. Quantitative studies on these signals using
the new technique, especially the ECG, which has potential
in medical applications, and quantitative comparisons of
the hyperbolic WPS technique with other techniques such
as STFT will be presented in future publications and there-
fore are not strongly emphasized in the paper. The main
reason that the sym3 wavelet is used in conjunction with
the hyperbolic wavelet is that it is a simple and symmetrical
wavelet. Therefore, quantitative comparisons between the
two wavelets are not strongly emphasized in this work,
which appears to be qualitative. Furthermore, other wave-
lets could be used to successfully validate the hyperbolic
wavelet. However, we believe that the sym3 wavelet is a
well-chosen wavelet. Unlike the work done by Milligen
and others, the work reported in this paper explores further
the effectiveness and usefulness of the WPS technique us-
ing the hyperbolic wavelet by studying instantaneous be-
havior and energy distributions of nonstationary signals.
The paper is organized as follows. The WPS of a periodic
sinusoidal signal is studied first in Sec. 2 as this is the most
common and well-known signal in signal processing. Sec-
tion 3 examines the popular exponential signal exp(—1).
Section 4 calculates the WPS of an exponentially decaying
sinusoid sin(f)exp(—f). The Duffing oscillator is studied in
Sec. 5 including periods 1, 2, and 4 and the chaotic state.
Section 6 shows that the hyperbolic WPS technique can be
used to study the ECG qualitatively. Sections 7 and 8 ex-
amine music and speech waveforms. The Fourier power
spectra of these signals are also given to validate results
drawn by using the hyperbolic WPS technique.

2 WPS of a Sinusoid

In this section, contour plots of WPSyn3 and WPS,,, of a
periodic sinusoid sin(27rt) are given in Figs. 1 and 2, re-
spectively, in which periodicity can be identified by the
following points:
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Fig. 1 Contour plot of the WPSgn; of @ sin(27rt) signal.

1. There is a clear boundary between the peaks of the
signal, which indicates strong periodic behavior. In
addition, the energy is mainly concentrated at har-
monic peaks and there is no broad energy distribution
over a wide scale range. The harmonic peaks are lo-
cated at the approximate scale of a=50.

2. Contour curves are closely spaced and there are a
large number of bounded small-radius contours to-
ward the harmonic peaks.

3. The energy is discretely and uniformly distributed.
The most important and recognizable feature of a pe-
riodic signal is that its energy distribution is repeti-
tive. It can be seen that the discrete peaks of the input
signal are clearly displayed by the WPS technique.
Thus, it is evident that for periodic signals, their
wavelet power spectra are not broad and smeared but
discontinuous and exhibit distinctive peaks.

The WPS,,, in Fig. 2 shows distinctive peaks, which
indicate strong periodic behavior of the signal, as expected.
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Fig. 2 Contour plot of the WPS;,,, of a sin(2rt) signal.

Compared with the WPS,; given in Fig. 1, the WPS;,y,
requires a smaller number of scales, which improves the
computational efficiency of the hyperbolic time-frequency
power spectrum. From Figs. 1 and 2, the scale ranges of a
harmonic peak using the sym3 and hyperbolic wavelets are
approximately 20<a <130 and S<ap,<45 respec-
tively, where a3 and ay,, are the scale indices of the
sym3 and hyperbolic wavelets, respectively. As we can see,
the WPSyy,3 and WPSyy, are consistent, which validates
the hyperbolic wavelet and therefore the hyperbolic WPS
technique.

The relationship between the center scale @cepe and the
frequency of the signal fgna is given by

® 1 0 1

acenter="fM T or fsignal'_'isamp_0 —, 9
2mwf wsamp f signal 27f, wsamp @ center
where fiysamp» fsamp» a0d @q are the wavelet sampling fre-
quency, the sampling frequency of the signal, and the cen-
ter frequency of the wavelet, respectively. Note that the
center frequency is the center of the innermost eclipse con-
tour with the highest scale.

From Eq. (9), the signal frequency fggna can be esti-
mated based on the center scale @enr specified by the
WPS. The sampling frequency of the signal f,p, is usually
about 100 times larger than the wavelet sampling frequency
fuwsamp» since the number of required sampling points for a
wavelet function is much smaller than that for a signal, as
discussed in Ref. 21. For a sinusoidal input signal of
sin(277), using the sym3 wavelet with the center frequency
wo=3 1ad/s, dener~50, Fig. 1 and Eq. (9), the signal fre-
quency fgnal Can be approximately estimated as

(100)(3) 1
signal ™ T %~0.96 Hz. (10)

Similarly, the signal frequency fgena Of the signal
sin(27r) can be approximately estimated using the hyper-
bolic wavelet with the center frequency wo=[S=1rad/s,
@ oenier™ 13, Fig. 2, and Eq. (9), we obtain

100)(1) 1
Signdz%ﬁwl‘2 Hz. (11)
From the calculations performed in Eqgs. (10) and (11), it
is clear that the frequency of the signal can be estimated.
Note that the percent error could be as high as 20% [Eq.
(11)] as in the case of the hyperbolic wavelet. Thus, quan-
titatively, the signal frequency can be more accurately esti-

mated by using the Fourier power spectrum technique.

3 WPS of an Exponential Transient Signal

Exponential signals are common responses of first- and
second-order linear circuits. This is the main reason why it
is included in this research. The WPSg,3 of a transient
signal exp(—1?) is given in Fig. 3.

The WPS,y,5 of an exponential signal exp(—1) is broad
and there seems to exist one distinctive peak represented by
the smallest-radius contour curve with a large contour scale
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Fig. 3 Contour plot of the WPS, 3 of the exp(—1) signal.

in Fig. 3. The contour plot of the exponential transient sig-
nal is not closely spaced, as it was in the case of a sinusoid.
In fact, the number of closed contours is less than that of
the sinusoid even though they both have dominant peak(s).
The decay rate or time constant of the exponential signal is
approximately the scale difference between the centers of
two adjacent contours. From Fig. 3, the scale difference
between the innermost contour curve and the second inner-
most curve is about 60, which corresponds to the decay rate
of 0.8 by using Eq. (9). The accuracy of the estimation can
be improved by taking the scale-difference average of all
adjacent-contour pairs, which yields the time constant of
about 0.99. This is the expected time constant of the inves-
tigated exponential signal. Note that the energy of an expo-
nential signal is not concentrated at one particular scale, but
instead, spreads over a wide scale range, as can be seen in
Fig. 3. The exponential energy tends to form closed con-
tours, but this process appears to be very slow, i.e., contour
curves have nearly infinitely large radii, which reflect the

The WES, of exp()
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Fig. 4 Contour plot of the WPS;,,, of an exp(—1) signal.
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Time Darmain Wavefarm of the exp(-)sin(2af)

Fig. 5 Time-domain waveform and contour plot of the WPSg 5 of
an exponentially decaying sinusoid exp(—#sin(271). The WPS,, is
very similar to the WPS; 3.

nature of exponential transient signals. The WPS,,; is given
in Fig. 4.

The time constant of the exponential signal can be simi-
larly estimated using the same method applied to the hy-
perbolic wavelet. From Fig. 4, the scale difference between
two innermost adjacent contour curves is approximately 20,
which corresponds to the time constant of 0.78. By taking
the scale-difference average, we obtain the estimated time
constant of the exponential signal of about 0.95, which is
close to the expected result. Even though the time constant
of a transient signal can be estimated with reasonable pre-
cision, it is still hard to estimate since the center of each
contour curve is sometimes hard to determine. For ex-
ample, for the case of the sym3 wavelet, since the centers
of all contour curves cannot be clearly displayed, the dis-
tance between two adjacent curves along the vertical line is
taken instead. For the hyperbolic wavelet, since most of the
curves are clearly displayed, the scale difference between
two adjacent centers can be effectively estimated. Second,
this process is lengthy and tedious since the average value
of the scale differences of all contour curves must be cal-
culated. The WPS,,, in Fig. 4 is consistent with the
WPS,y,,3 given in Fig. 3, in which large-radius contours are
detected. The peak is detected by the smallest contour
curve. Even though the peak contour curve has a high scale,
it is not filled, which illustrates the main difference between
sinusoidal signals and exponential signals. For the former,
all peak contour curves are filled, whereas that is not the
case for the latter. If the contour curves are filled, then the
signal energy tends to be more concentrated around the
peak, which implies periodic characteristics. Note also that
the WPS,,,, is calculated over a smaller scale range than
that of the WPSy 3.

4 WPS of an Exponentially Decaying Sinusoidal
Signal

This section examines the WPS of an exponentially decay-
ing sinusoidal signal exp(—?)sin(27f). The periodic and
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Fig. 6 Contour plot of the WPSg,;5 of the sin(2mflexp(—1)+3 signal.

transient components of this signal were separately studied
in Secs. 2 and 3, respectively. The contour plot of its
WPS,yp3 is given in Fig. 5. The WPS,, is similar to the
WPS,y3 and is not given in this case.

It is expected that this signal has a combination of tran-
sient and periodic characteristics, which hopefully can be
detected by the WPS technique. From Fig. 5, it is evident
that the energy density is densely concentrated at the scale
of about 100 for three harmonic peaks and decays to 0 as
the signal reaches steady state. There are three dominant
and distinctive peaks in the signal, whose positions corre-
spond to those shown by the time-domain waveform. These
peaks are clearly detected by using the WPS technique and
indicated by three closed contours, which represent peri-
odic characteristics of the signal. The diminishing of energy
as the signal reaches steady state indicates that the final
value of the signal is 0. Note also that the number of con-
tour curves surrounding the peaks decreases as the time
index increases, which reflects transient characteristics in
the signal. In particular, the number of contour curves in
the third peak is only two at low scales compared with nine
curves at high scales for the first and second peaks. Thus, it
might be suggested that exponentially decaying sinusoidal
signals with a zero final value can be well recognized by
using the WPS technique. If the final value of an exponen-
tially decaying sinusoidal signal is nonzero, its WPS is ex-
pected to be broad since the peaks are now smoothened by
a broad energy distribution of the dc component.?® As a
result, the WPS of an exponentially decaying sinusoid with
a nonzero final value has only one major peak whose con-
tours are not closely spaced, as can be seen in Fig. 6. Note
that the transient characteristics of the signal are indicated
by large-radius contour curves, as was seen in Sec. 3 for the
case of an exponential signal. The main difference between
an exponentially decaying sinusoid with a nonzero final
value and an exponential signal is that for the former, the
radii of energy contours are not infinitely large but finite.
This reflects periodic characteristics in the former signal
whose WPS tends to form islands of closed contour curves.
For comparison purposes, the WPS,, of the signal
sin(2mt)exp(—1)+3 is shown in Fig. 7.

Time Domain Waveform af 8in(2.« exp(-l) + 3

i

25 i L i ; L i H H
0 50 100 150 200 250 300 350 400 450 500
The WPSM' of sin{2pit)exp(-t) +3
1000 T T T T T T T T T

- o P A NN TN b 08
= g P TN h 2 - !

800 |5 SRS RN PP AAL
L R 08

g 600 " . S %0 i 1 3 ‘\“‘w'mw‘.
§ 400 , 04

02
50 100 150 200 250 300 350 400 450 500
Time Index

Fig. 7 Time-domain waveform and contour plot of the WPS,,, of the
sin(2mt)exp(—1)+3 signal.

From Fig. 7, the upper parts of the contour curves have
thick edges, which indicate an energy-smearing phenom-
enon. It should not be incorrectly concluded that the signal
is chaotic since the contour curves are densely located in
the time-frequency plane, which indicates discrete energy
distribution. These features enable distinctive differentia-
tion between exponentially decaying sinusoids with a non-
zero final value and chaotic signals such as the ECG, which
is examined later. The scale ranges in Figs. 6 and 7 are
different since the WPSy,, in Fig. 7 is magnified so that its
contour curves can be clearly displayed. It is clear that the
hyperbolic wavelet is more efficient than the sym3 wavelet
in which more contour curves are displayed over the same
scale range. In Ref. 21, it was reported that the hyperbolic
wavelet is most suitable for transient signals. By comparing
Figs. 6 and 7, it is clear that the WPSy,, can display more
contour curves than the WPSg,3 due to the fact that the
former has a finer scale resolution and a smaller total num-
ber of calculated scales. This fact was also shown in Ref.
21 when calculating the hyperbolic, Morlet and Choi-
Williams wavelet power spectra of the English vowel “e”.
In addition, by comparing Figs. 3 and 4 and Figs. 6 and 7,
it might be suggested that the hyperbolic wavelet is a sym-
metrical function whose wavelet power spectra are per-
fectly symmetrical about the vertical line. Thus, graphical
representations of the hyperbolic wavelet power spectra are
better displayed than using the sym3 wavelet. As a result, it
is easier to differentiate the exponential signal from the
exponentially decaying sinusoidal signals with zero and
nonzero values by using the hyperbolic WPS. Further, one
advantage of the hyperbolic wavelet over the sym3 wavelet
is that the former can reveal more information over an iden-
tical scale range than the latter due to the compression abil-
ity of the hyperbolic wavelet of having a smaller total num-
ber of calculated scales. This also increases the efficiency
of the hyperbolic WPS calculation process.

Optical Engineering, Vol. 42 No. 10, October 2003 3021
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Fig. 8 Time-domain waveform and contour plot of the WPSg 5 of
Duffing period 1. The WPS,,,, of a Duffing period 1 waveform is very
similar to the WPS,,,; except that it is displayed on a different scale
range.

5 WPS of the Duffing Oscillator

The Duffing oscillator has been popular in signal process-
ing because of its simplicity.5 In this section, the Duffing
oscillator is studied by calculating its wavelet power spec-
tra of periods 1, 2, and 4 and the chaotic state. From this, it
is possible to determine how its energy is distributed and
therefore deduce the system characteristics and detect pos-
sible transition(s) into the chaotic region. The equation
governing Duffing oscillator is given as

i+ yi—0.5(u—u)=F cos(wt), (12)

where y=0.168, w=1, u(¢) is the displacement function of
the time ¢, and F is the driving function. For period 1, F;
=0.05; for period 2, F,=0.178; for period 4, F4,=0.197;
and for the chaotic state, F ,,s=0.21. The initial condi-
tions used for the system were [u u]=[01].

5.1 Duffing Period 1

A Duffing period 1 waveform can be regarded as a genuine
periodic signal whose energy is concentrated over the high-
frequency range (low-scale range). A Duffing period 1
time-domain waveform and its WPS using the hyperbolic
and sym3 wavelets are given in Fig. 8. Note that the energy
is uniformly and repetitively distributed over the whole
range of the time index, which means each segment of the
input data points is almost identical. This means that there
is no degree of disorder or chaos in a Duffing period 1
waveform.

From Fig. 8, periodic (harmonic) peaks of the Duffing
period 1 waveform are clearly separated, which is similar to
the case of the sinusoidal signal sin(z) studied in Sec. 2.
Apart from a minor drift of the signal at the beginning
where the time index is roughly »=<300, there is no differ-
ence in the amount of energy density over time, which sug-
gests that a Duffing period 1 waveform is nearly periodic.
The duration during which the periodic peak occupies is
short, which suggests that the signal energy is highly con-

3022 Optical Engineering, Vol. 42 No. 10, October 2003
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Fig. 9 Time-domain waveform of a Duffing period 2 and contour
plot of its WPSgn3.

centrated. This fact has been well known and extensively
reported in the literature.® Thus the correctness and consis-
tency of the proposed WPS technique are validated.

5.2 Duffing Period 2

The driving force used for the Duffing period 2 waveform
in Eq. (12) is F,=0.178. The time-domain waveform and
its WPS,, 3 are displayed in Fig. 9. The WPS,,; of a Duf-
fing period 2 waveform is given in Fig. 10.

The time-domain waveform of Duffing period 2 shows
an early sign of deviation from periodicity in which the
number of detected subharmonics is large. The signal re-
gains its near-periodic characteristics at the time index b
~=1400. For b=1400, the signal exhibits similar character-
istics to those of the Duffing period 1 waveform, which
suggests that periodicity is dominant. However, since -its
contour scale is lower than that of the Duffing period 1
waveform, it can be suggested that the Duffing period 2
waveform does not completely regain its periodicity, as can

(@) Duffing Period 2 Waveform
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Fig. 10 Time-domain waveform and contour plot of the WPS,,, of
the Duffing period 2.
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Fig. 11 Duffing period 4 time-domain waveform and contour plot of
its WPSgym3 -

be seen in Fig. 9. The near periodicity of a Duffing period
2 waveform is detected by a series of closed and filled
contours (at high scales) with repetitive patterns over time.
Although there are discrete and filled contours, more sub-
harmonics are detected by the WPS technique in a Duffing
period 2 waveform than in a Duffing period 1 waveform. In
addition, the contour scale of the WPS of a Duffing period
2 waveform is lower than that of a Duffing period 1 wave-
form, which suggests that the former has a broader energy
distribution than that of the latter.

Note that the WPSg;,3 and WPS,,, are consistent and
can be employed to successfully detect periodicity and de-
viation from periodicity of the Duffing period 2 waveform.

5.3 Duffing Period 4

A Duffing period 4 waveform can be regarded as a transi-
tion state from periodicity to chaos,® which hopefully will

(a) Duffing Period 4 Waveform
1 v T
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L L
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(k) The WPG"’F of Dutfing Period 4
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Fig. 12 Time-domain waveform and contour plot of the WPS,, of
Duffing Period 4.
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Fig. 13 Magnified contour plots of the WPS 3 and WPSy,, of a
Duffing period 4 waveform, which shows the transition into the cha-
otic region at b~700. For b=700, the Duffing period 4 waveform
partially regains its periodicity by having repetitive closed contour
curves. However, these curves have low contour scales, which sug-
gests that their energy is not densely distributed. Thus, the wave-
form is vulnerable to chaotic behavior.

be detected by using the WPS technique. The time-domain
waveform and its WPS5 of a Duffing period 4 waveform
are given in Fig. 11. The WPS,, is given in Fig. 12.
Similar to the Duffing period 2 waveform, the Duffing
period 4 waveform exhibits early deviation from periodic-
ity with two major harmonics and a number of subharmon-
ics for b=<700. Transitions into the chaotic region is sig-
naled by continuous closed contours at b~700 with a
wider scale range, as can be seen in Fig. 11. The continuity
of energy indicates that the waveform has entered into the
chaotic region. However, chaotic components of the wave-
form are not strong enough since periodic components are
still present. For 5=700, the signal partially regains its
periodicity with low-contour-scale curves. All of the pre-
ceding features can be clearly seen in the magnified contour
plots of the WPS,; and WPS,,, shown in Fig. 13. From
Figs. 11 and 12, it can be seen that the hyperbolic and sym3
wavelet power spectra of a Duffing period 4 waveform are
consistent in which the transition into the chaotic region is
detected at b~700. For b <700, near-periodic behavior is
detected in the waveform, and for »>700 a mixture of
chaotic and periodic components are detected. However,
due to the compression effects of the hyperbolic wavelet,
some subharmonics are suppressed. Note that by using the
WPS time-frequency technique, it is possible to determine
when the waveform enters into the chaotic region hence the
transition region of the waveform can be clearly identified.

5.4 Duffing Chaos

For a Duffing chaotic waveform, the driving force has the
value of F,,s=0.21. The time-domain waveform and its
WPS,yn3 are shown in Fig. 14. The WPS,,; is given in Fig.
15. The magnified versions of these figures are given in
Figs. 16 and 17, respectively.

From Figs. 14 and 15, a Duffing chaotic waveform ex-
hibits early deviation from periodicity as was detected in
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(a) Dutfing Chactic Wevefarm
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(b) The WP‘S.,..; of Dutfing Cheos
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Fig. 14 Time-domain waveform of Duffing chaos and contour plot of
its WPSsyms .

Duffing period 2 and 4 waveforms. However, instead of
regaining its periodicity, the Duffing chaotic waveform re-
mains chaotic after the transition into its chaotic region.
The Duffing chaotic state is signaled by a nonrepetitive and
broad energy distribution in which distinctive peaks are un-
evenly distributed for a time index less than 1100, which is
the transition region of the waveform. All of these features
can be seen in Figs. 16(a) and 17(a). From Figs. 14 and 16,
for a time index greater than 1100, it is evident that the
waveform has entirely entered into the chaotic state in
which its fundamental periodic components have disap-
peared as compared to Duffing period 1, 2, and 4 wave-
forms. The energy is unevenly distributed over the scale
range of 20 to 250. There is no particular energy concen-
tration in any reglon of the spectrum (due to low contour
scales), which is broadly distributed [approximately at the
time indices of 1100, 1700 and 2500 in Fig. 15(b)], which
strongly suggests that the waveform is chaotic. Note that in
this case, even though the curves have low contour scales,
they still represent repetitive energy patterns, which means

(@) Time Domain Waveform of Dutfing Chaos
T T T

1] S00 1000 1500 2000 2500 3000

Scale Index

() The WPSM of Duling Chaos

1000 1500
Time index

Fig. 15 Time-domain waveform and contour plot of the WPS,,, of
Duffing chaos.
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Fig. 16 Magnified version of Fig. 14(b).

o 8 88 8

that for a time index greater than 1100, a Duffing chaotic
waveform still possesses weak periodicity. Thus, it can be
suggested that a Duffing chaotic waveform is superposition
of periodic and chaotic components. The main difference
between a Duffing period 4 waveform and a Duffing cha-
otic waveform is that there are no disordered energy pat-
terns in the former, whereas the contour scales of the latter
vary with time, which suggests disordered characteristics.
Figures 16(b) and 17(b) clearly show the magnified energy
distribution of the waveform for a time index greater than
1100.

6 WPS of ECG Signal

The practical ECG (human electrocardiogram) is examined
in this section due to its importance in medical diagnosis.
The hyperbolic wavelet power spectrum is used to study
the ECG with the prime purpose of revealing its chaotic
nature. The work in this paper presents early results on
basic characteristics of the ECG by using the hyperbolic
WPS technique. Thus this section does not deal with the
ECG from a medical point of view. Further studies are done
to show that the hyperbolic WPS can provide quantitative
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Fig. 17 Magnified version of Fig. 15(b).
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Magnified Time Domain of the 1,024 sample ECG Signal
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Fig. 18 Time-domain waveform of an ECG.

details from the ECG, which are valuable for predicting
patients symptoms. The ECG has also been studied exten-
sively in Refs. 16 and 27-29 using time-frequency tech-
niques and the bispectrum.’

The time-domain waveform of the ECG signal is dis-
played in Fig. 18. The WPS,y3 of an ECG signal, which is
shown in Fig. 19 in a 3-D plot and in Fig. 20 in a contour
plot, is similar to that of the exponential signal shown in
Sec. 3 and quite similar to the WPS,,,;; of the exponen-
tially decaying sinusoid with a nonzero dc component
shown in Sec. 4. For periodic and exponentially decaying
sinusoidal signals, their WPSs all have dominant peaks and
large-radius contours. The WPS,3 of the ECG does not
have identifiable peaks and its contours have very large
radii, which suggests that the ECG might be a transient
type. The energy distribution of the ECG is spread over a
wide scale range, as can be seen in Fig. 20. In addition,
ECG contours are not sharp but thick in width. The scale
range of contour curves is worked out by estimating the
corresponding scales of the lowest and the highest con-
tours. For example, in Fig. 20, the scale range of the sym3

Wavelet Power Spectrum of 1024 point ECG, scale = 1:4096

1500
1000

Scale index LU

Time Index

F

g. 19 3-D mesh plot of the WPS;,3 of a 1024-point ECG.
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Scale index

-
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Fig. 20 Contour plot of the WPSg 5 of a 1024-point ECG signal.

wavelet power spectrum will be 900<a, not 2000=a,
since the lower contour stretches down to the scale of 900
and 2000 is its starting point. This method was used in this
paper to work out the scale range of various WPSs. From
Fig. 19, the ECG energy distribution is smooth and there
are no abrupt changes in its energy density over the high-
and low-valued region of the scale and time indices. By
comparing the WPS,,.; in Fig. 6 (the exponentially decay-
ing sinusoid with a nonzero final value) and Fig. 20 (ECG
signal), it is evident that the energy density of the ECG is
broader and distributed over a larger scale range of 900
<a=<3500 than that of an exponentially decaying sinusoid
with a nonzero dc component (500<a<1800).

In addition, the innermost contour curve has the scale
range of 1800<a=<3700 for the ECG and 900<a <1300
(smaller scale range than the ECG) for the exponential sig-
nal, which suggests that the former might exhibit chaotic
characteristics. However, since the energy patterns pro-
vided by the WPS technique are almost similar, it is diffi-
cult to distinguish between these signals.

For comparison purposes, the WPSy,, is shown in Fig.
21, in which it is symmetrically displayed about the vertical

WPG,”olmeEw for the first 1024 samples

2000 T T T T T T v T T T 8
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Fig. 21 Contour plot of the WPS;,, of an ECG.
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Fourier Power Spectrum of the ECG
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Fig. 22 Fourier power spectrum of an ECG signal. The frequency is
normalized by dividing every frequency bin by the largest frequency
bin in the signal spectrum.

axis at the time index b=>500. The center of the eclipse
with the highest scale is located at (a,b)=(500,500) on the
time-scale plane, as can be seen in Fig. 21. From Sec. 4 the
WPS,,,,, of an exponentially decaying sinusoid with a non-
zero final value is very similar to that of the ECG. The only
difference between the two WPSs is that the occupied scale
range of the ECG (120<a=<1800 in Fig. 21) is wider than
that of an exponentially decaying sinusoidal signal with a
nonzero final value (70<a <2850 in Fig. 7). This suggests
that the ECG energy distribution is broader than that of the
exponentially decaying sinusoid signal, as explained earlier.
In addition, the WPS of the exponential signal has more
contour curves over the same scale range than those of the
ECG WPS, which further supports the preceding statement.

The scale ranges of the ECG and an exponentially sinu-
soidal signals, using the hyperbolic wavelet, are clearly dif-
ferent compared with those observed using the near-
symmetric sym3 wavelet, which makes the differentiation
of these signals easier. This indicates the usefulness of a
perfectly symmetrical wavelet such as the hyperbolic wave-
let. Thus, the hyperbolic wavelet power spectrum technique
can be used to study the ECG signal by examining the
occupied scale range of its WPS. In general, however, the
WPS technique is not very effective in studying the ECG
signal since it cannot clearly differentiate between an expo-
nentially decaying signal and the ECG signal due to their
identical WPSs. This is a disadvantage of the WPS tech-
nique compared with the Fourier power spectrum tech-
nique. Although the WPSs of the ECG and exp(—1)sin(¢)
+3 signals are very similar, their Fourier power spectra,
given in Figs. 22 and 23, respectively, are quite different,
which shows that the Fourier technique is more effective
than the WPS technique in this case. Thus, depending on
the particular application, the WPS technique or the Fourier
power spectrum technique should be used to reveal the sig-
nal characteristics. In this case, it might be suggested that
the ECG signal can be effectively studied using the Fourier
power spectrum technique. This conclusion is consistent
with the findings in Ref. 3. From Fig. 22, it is evident that
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Fig. 23 Fourier power spectra of exp(—f) and exp(—f)sin(f)+3 sig-
nals.

the ECG signal has a broad power spectrum, which sug-
gests that it is not periodic. This is consistent with the con-
clusions drawn by using the WPS technique from Figs. 19
to 21. The transient characteristics of the ECG signal, how-
ever, are not effectively detected by using the Fourier
power spectrum technique, but can be detected by using the
WPS technique.

From Fig. 23, there is a minor discrepancy with
the magnitude of the power spectrum of the f(¢)
=exp(—#)sin(r)+3 signal at dc condition. The power of the
signal [f(¢)]* at dc condition is 9, which corresponds to
about 101og;4(9.0)~9.5dB. The signal power calculated
by MATLAB gives a value of about 30 dB. To work out the
power at a dc condition, we take the magnitude of the
power spectrum at dc, which is 30 dB, and divide that by
V27, which yields about 12 dB. This corresponds to a
percent age error of about 26% with respect to 9.5 dB. Note
that this method of power spectral estimation by MATLAB
is only approximate. In addition, it is the qualitative infor-
mation of the graph that is of importance, not the quantita-
tive details. However, to provide a satisfactory result, the
Welch method of power spectral estimation can be used to
obtain the power spectrum of the signal. This method yields
the dc power of about 9.6 dB, which corresponds to about
0.1% error. However, calculation of the Fourier power
spectra of signals is not the main emphasis of this paper
and we stop the discussion about power spectral estimation
at this point. Table 1 summarizes notable characteristics of
an exponential signal exp(—f), an exponentially decaying
sinusoidal signal with a zero final value exp(—#)sin(#), an
exponentially decaying sinusoidal signal with a nonzero fi-
nal value exp(—1#)sin(r)+3, and the ECG signal.

Throughout this paper, comparisons between the hyper-
bolic and sym3 WPSs have been made. It can be seen that
the WPS,,, of most signals have a smaller scale range than
that of the WPS,,,,3, which significantly reduces the WPS
computational burden. In addition, the WPS,,, converges
faster than the WPS,; in the case of an exponential signal
in which the signal energy distribution is more clearly dis-
played by using the hyperbolic wavelet than by using the
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Table 1 Characteristics of exp(—1), exp(—tsin(f), exp(—Hsin(f)+3,
and ECG signals.

Signal Characteristics

exp(—1) Exhibits transient behavior,
periodicity is not present, bounded energy.

Exhibits transient and periodic behavior,
strong sinusoidal decaying characteristics,
bounded energy, WPS contour curves have
small radii; energy smearing is not present.

sin(flexp(—f)+3 Exhibits transient behavior, bounded energy
due to closed contour curves. The density of
contour curves is high, which suggests that the
signal is not chaotic. WPS contour curves have
large radii; energy smearing is not present.

ECG Exhibits transient and chaotic behavior,
bounded energy, WPS contour curves have large
radii, energy smearing is present. The occupied
WPS scale range of the ECG signal is wider
than that of the sin(f)exp(—f)+3 signal.

sin(fexp(~1)

sym3 wavelet. One advantage of the WPS,3 over the
WPS,,,,, is that the former can clearly display all subhar-
monics of signals, whereas, some subharmonics are miss-
ing if the latter is used due to the compression effects?! as
is also demonstrated in the following sections. This can be
seen as a trade-off between efficiency and fine-detail dis-
play of the hyperbolic and sym3 wavelets.

7 WPSs of Music

Music signals are studied in detail using the hyperbolic
WPS technique. Musical sounds have been studied by a
number of researchers on music multidimensional scale
analysis,30‘32 music classiﬁcation,”‘36 music
identification,>” and music recognition by using the con-
tinuous wavelet transform.*® Classifying different piano
sounds was studied by Delf and Jondral by using a number
of time-frequency techniques such as the STFT and the
Wigner-Ville time-frequency distribution. Hamdy et al.>*
and Lambrou et al.* reported a music classification method
using a statistical technique of calculating skewness; en-
tropy; and the first- and second-order statistics of different
musical sounds such as jazz, rock, pop and then estimated
the appropriate threshold so that these sounds can be
clearly distinguished. The main limitation of this method is
that it does not make use of the instantaneous information
of the signal, which yields its characteristics and hence en-
ables effective signal classification. Olmo et al.*® designed
the new wavelet, called the log-Morlet wavelet, then
showed that the new wavelet was capable of recognizing
different harmonics and tones in music waveforms by using
the continuous WT. This method used the same principle in
detecting edges and abrupt changes in an input signal as
was reported in Ref. 14. The main difference of this work
from our work is that we employ the hyperbolic WPS for
music recognition and to study music characteristics. Al-
though time and frequency localization was employed in
Ref. 38, it was not as strongly emphasised as in this paper.
In particular, all harmonics and subharmonics will be iden-
tified in both time and frequency domains, which enables
effective music recognition. Note that a harmonic peak can
be identified by having a color contour scale of larger than

(8) Music Wavefarm acch32 det, 1024*5:1024*7
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Fig. 24 Time-domain waveform and contour plot of the WPSg,; of
the accordion music; data samples are in the range of 1024
X5:1024X7.

0.7 and a subharmonic peak that has a contour scale of
smaller than 0.7, but usually, it is less than 0.5. The lower
the order of a subharmonic, the lower the contour scale.
This method was also employed by Olmo et al.*® and Sus-
saman and Karsh®® by means of energy separation. The
terms ‘‘harmonic” and ‘“‘subharmonic” describe behavior of
the signal at specific scales given the locations of wavelet
coefficients on contour graphs. These terms are used be-
cause of their popularity in signal processing.

7.1 WPS of an Accordion Music Signal

Various segments of the accordion music signal are exam-
ined in this section so that its instantaneous behavior can be
detected. For data samples from 1024X5 to 1024X7 and
from 1024X30 to 1024X32, the WPSs of each set are
given in Figs. 24 and 25, respectively.

Music Waveform acch32.det, 1024*30:1024*32

T T T T T T

0s5¢

Value
o
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The WPSWW acch32 Music Signel
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Time Index x10*

Fig. 25 Time-domain waveform and contour plot of the WPSg3 of

the accordion music signal for data samples from 30x1024 to 32
X1024.
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Fig. 26 Contour plots of the WPS,,, of the accordion music signal
of the two data sets.

As we can see from Figs. 24 and 25, the 2048-sample
music sets seem to exhibit periodic behavior in which their
WPSs show repetitive energy patterns over time. The en-
ergy is mainly concentrated at the harmonic peaks and there
are three subharmonics that can be clearly identified. This
information can be used to classify the specific characteris-
tics of the accordion signal. Thus, sounds from different
musical instrument can be distinguished by examining their
WPSs. The WPS,,, of the accordion music signal of the
previous data sets are given in Fig. 26.

As we can see from Fig. 26, the hyperbolic WPSs of the
accordion music signal are consistent with the WPS 3
given in Figs. 24 and 25 in which instantaneous periodic
characteristics of the signal are successfully detected with
bounded contours and repetitive patterns. The WPS;,,, and
WPS,,,3 are both very similar, which suggests that this
music signal can be effectively studied using the hyperbolic
and sym3 WPS techniques. From simulations, since the
WPSs of various sets of the signal are very similar, it might
be suggested that the musical accordion signal is periodic.
To validate this conclusion, the WPSy 3 of the entire mu-
sic signal is calculated and given in Fig. 27.

As we can see from Fig. 27, there are three main peaks
present in the wavelet power spectrum of the signal. For the
first 30,000 samples, periodic behavior is dominant as the
peaks are clearly shown and the signal energy is evenly
distributed, as seen in the time-index magnified versions of
Fig. 27, which are Figs. 24 and 25. The third peak (located
at the scale a~ 80) disappears after the first 30,000 samples
and there is uneven matching in energy distribution be-
tween the two strongest peaks (approximately located at
scales of 60 and 100), which reflects the instability of the
signal. From Figs. 27 and 34 in Sec. 7.2 (Fourier power
spectrum of the accordion signal) it might be suggested that
the music signal has entered into the chaotic region due to
its broad and continuous Fourier power spectrum and un-
even energy density as the time index increases.

The WPS,,,,, of the accordion music signal, given in Fig.
28, agrees with the WPSy,,3 given in Fig. 27 in which both
wavelets can detect instantaneous periodic characteristics
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Fig. 27 Contour plot of the WPS,m3 of the accordion music signal
for the time index from 1 to 44,100.

of the signal by having high contour scales. Note that the
compression ratio of about 250/38~6.5 is observed in Fig.
28, which results in a smaller scale range in this figure.
From Fig. 28, the WPS,,, consists of energy-density layers
(approximately having the same center) at different scales.
Especially, the harmonic peak (represented by the inner-
most layer) approximately terminates at the time index &
~30,000, which reflects the discontinuity of this musical
signal. Other harmonic peaks (at lower scales due to a
brighter color on the color scale) of the signal subsequently
terminate at the time indices of 35,000 and 38,000. How-
ever, the subharmonic peaks (at very low scales) are
present in the WPS, for all time indices. As seen from
Figs. 27 and 28, the WPS of the accordion signal varies for
different values of time index, i.e., harmonic peaks decay
over time, which indicates uneven energy density and dis-
continuity in the signal. In addition, different segments of
the signal, which were recorded from one musical instru-
ment, have different WPSs. Thus, although the signal ap-

WPSMoﬂhe acch32 music signel, dete set 1024*1:1024*41

Fig. 28 Contour plot of the WPS,,,, of the accordion music signal.
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Fig. 29 Time-domain waveform (a) of the clarinet music data samples from 1024X20 to 102422
samples and contour plot of its WPS;, ., (b). The magnified contour plots of WPS,,3 are given in (c)

and (d).

pears to be periodic in its time-domain waveforms, it is
disordered or chaotic, as it has been shown in this paper
and in other findings.*~*

7.2 WPS of a Clarinet Music Signal

The WPSs of various segments of the clarinet signal are
given in Figs. 29 and 30. The first data set is chosen from

(8) clab42 Signal, 40k £ b 5 42

41 415 42 4.25 4.3

x10*
(c) 40k$ bS 4k

150

Scale index

0
44 412 414 416 418
x10*

Time Index b

the 1024X20 sample to the 1024X22 sample. As we can
see in Fig. 29, the WPS consists of two distinctive peaks,
which suggest that this set of the signal is periodic. There
are two harmonic peaks and three subharmonics in ‘“‘one
period” of the waveform of about 80 samples or 1.8 ms. In
Figs. 29(c) and 29(d), the peaks (which can be identified by
high contour scales in the graph) are located at the scale of

wum The WRS, _, of clabé2 Signal

0
41 415 42

(d) 41k S bS 42K

Scale Index

420 43
x10*

D
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Time Index

Fig. 30 Time-domain waveform of the 1024 x40 to 1024 x42 samples (a) and contour plot of WPSgym3
(b) of the clarinet musical signal. The magnified graphs of (b) are given in (c) and (d).
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Fig. 31 Contour plots of the WPSy,, of two separate sets of the clarinet music signal. The time index
is expanded so that the WPSy,, can be clearly displayed.

a~70 and the subharmonics at the scale of a~20. There is
also continuity of energy because one peak and one subhar-
monic are located at the same time index.

The second data set is chosen from the 1024 X40 sample
to 1024x42 sample. This set, as seen in Fig. 30, exhibits
similar characteristics to those of the first set, except that
the energy concentration at the main harmonic peak is re-
duced due to a lower contour scale. The energy patterns of
the harmonics and subharmonics are unchanged. The
WPS,,,, of two separate data sets 1024x20:1024X22 and
1024X40:1024 X42 are given in Figs. 31(a), 31(b), 31(c),
and 31(d), respectively.

The WPSy,, of this data set is consistent with its
WPS,yp3 in which major harmonic and subharmonic peaks
are successfully detected. However, as seen from Fig. 31,
the WPS,,,, cannot display some subharmonics of the clari-
net music signal as it can in the case of the accordion sig-
nal. The WPS,,,3 successfully displays all fine details of
the signal, as we can see in Fig. 29. This is one disadvan-
tage of the hyperbolic wavelet compared with the sym3
wavelet. However, the WPS;, is compressed to the highest
scale of 25, which is about six times smaller than that of the
WPS,ym3 . Thus, calculation time of the WPSyy, can be sig-
nificantly reduced, which makes it more efficient than the
WPSym3 -

From Fig. 32, the WPS,y,,;; shows early “periodic” be-
havior due to high-contour color scales of the energy den-
sity, which represents one rapidly decaying peak. This can
be understood as a burst of energy or an abrupt change in
the signal energy. After that, there is no major harmonic
peak in the signal and subharmonic peaks at low-contour
scales, indicated by blue areas on the graph, which corre-
spond to the maximum scale of 0.3, are dominant. At the
sample 15,000, a change in energy is detected. From the
time index of 25,000 onward, subharmonics are discontin-
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ued and they completely terminate at the time index b
~37,000. This might suggest that the signal is disordered
since its components vary in a disorderedly manner with
time. The contour scale of this figure is similar to that given
in Fig. 30. Figure 33 displays the WPSy, of the clarinet
music signal. From Figs. 32 and 33, it can be suggested that
the hyperbolic and sym3 wavelets can successfully detect
early periodic characteristics of the clarinet music signal.
Then, periodicity decays away, which causes the WPSs of
subsequent segments of the waveform to be unsymmetrical.
Similar to the accordion musical signal, different segments
of the clarinet music signal have different WPSs, which
reflects its disordered characteristics. Section 7.1 and this
section investigated the characteristics of two different mu-
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Fig. 32 Time-domain waveform and contour plot of the WPSgp3 of
the clarinet signal.
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Fig. 33 Contour plot of the WPS,,, of the clarinet music signal.
Periodic components are clearly displayed in the scale range of 1 to
8 compared with 10 to 30 in Fig. 32.

sical signals, accordion and clarinet, using the hyperbolic
and sym3 WPS techniques in which the disordered charac-
teristics of both signals have been successfully revealed.
Their WPSs were instantaneously displayed so that their
behavior could be effectively monitored. The results found
in this paper also agree with results found by other
researchers.*>**~*3 The Fourier power spectra of music sig-
nals are given next to validate the results drawn by using
the WPS technique.

From Fig. 34, we can be seen that the Fourier power
spectrum of the accordion signal is broad with harmonic
peaks over the low-frequency range. These peaks, as ex-
plained before, are fundamental components of the signal.
The true behavior of the signal is based on the high-
frequency components. In this case, the high-frequency
spectrum is broad, which suggests that the signal exhibit
chaotic behavior. The power spectrum of the clarinet music

Power Spectrum of the Music Fila acch32 dat

Power Spectrum Magnitude (dB)
o

80 ; i i i i H ; i
0 01 0.2 03 04 as 1} D7 ae 09 1
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Fig. 34 Fourier power spectra of the accordion and clarinet music
signals. The true maximum frequency of both the accordion and
clarinet signals is 22.5 kHz.

signal has more distinctive periodic peaks than that of the
accordion signal, which means that the former is more
stable than the latter. Over the high-frequency range, the
power spectrum is broad (as it was the case for the accor-
dion signal), which suggests that the clarinet music signal
might exhibit chaotic behavior. However, due to a large
amount of periodic components over the low- and midfre-
quency ranges, chaotic behavior might not be dominant,
and the signal, in this case, can be said to be in a transition
to chaos.

In this section, the Fourier power spectrum technique
has been successtully used to study characteristics of mu-
sical signals. It is clear that the WPS technique and Fourier
power spectrum technique are consistent. However, com-
pared with the WPS, the Fourier technique does not show
instantaneous behavior of the signals over time. This is the
disadvantage of the Fourier power spectrum technique
since different segments of music signals have different
power spectra. Thus, even though the Fourier technique can
be used to study music, it is not effective compared with
the WPS technique in this aspect. Recall that the WPS was
not an effective tool to study an exponentially decaying
sinusoidal signal and the ECG but the Fourier technique
was. Therefore, depending on the input signal, the appro-
priate technique is chosen. For unknown signals, which are
often encountered in practice, both techniques should be
employed so that the most suitable technique can be iden-
tified.

By studying the instantaneous characteristics of musical
signals using the hyperbolic WPS technique, it is possible
to classify different musical sounds. The hyperbolic wave-
let power spectrum technique gives locations in time (time
index b) and frequency (inverse of the scale a) of harmonic
and subharmonic peaks, which are unique for every signal.
This is the major advantage of the WPS technique over the
statistical technique,***>~73%~** the Wigner—Ville time-
frequency power spectrum and the time-frequency STFT
techniques.®> The hyperbolic WPS technique has been
shown to be an effective tool that promises useful applica-
tions in nonstationary signal classification. The main limi-
tation on the time-frequency hyperbolic WPS technique is
that for some signals, i.e., the ECG and the exponentially
decaying sinusoid with a nonzero final value studied in Sec.
4, their WPSs are similar, even though their harmonic
peaks are located at different scales. This makes the classi-
fication process of the two signals difficult. Another limita-
tion is that the hyperbolic WPS is intensive to compute and
thus powerful computing tools are required to improve the
computation speed. This issue should be dealt with using
parallel computation techniques.*

8 WPSs of Speech

Speech signals are examined in this section using both the
WPS and the Fourier power spectrum techniques. Speech
signals have been studied using time-frequency gower
spectrum analyses to detect formants over time.*!*>46
Some popular kernels that have been used to study speech
signals are the cone-shaped kernel,*® Choi-Williams,*’ and
signal-dependent Gaussian-shaped kernels.®? This section
attempts to study characteristics of speech signals using the
new hyperbolic wavelet and the sym3 wavelet to detect
periodic and chaotic behavior. The speech signals in this
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Fig. 35 The speech time-domain waveform of the vowel “a” and
contour plot of its WPSgm3.

section are of 4096-samples long and they are the English
vowels “a”, “e”, “i”, “0”, “u”, and the sound *sh”.
Figure 35 shows the time-domain signal and the WPSg, 3
of the vowel “a”.

This speech signal exhibits strong periodic behavior by
having a concentrated energy density at the peaks. Period-
icity is strongly indicated by repetitive islands of closed
contour curves in the WPS of the signal. Each harmonic
peak is surrounded by a large number of subharmonics. The
waveform seems to indicate periodic behavior although the
energy is not completely discrete as compared with the
sinusoidal signal in Sec. 2. Also note that there are no sub-
harmonics associated with a harmonic peak simultaneously
in time as it was the case for the clarinet music signal
studied in Sec. 7.1. Thus, chaotic behavior does not exist in
this speech waveform. The WPS,5 of the vowel “e” is
given in Fig. 36. The speech signal of the vowel “e” is
genuinely considered periodic because of its uniform en-

(a) Time-Damain Waveform af the Vowel "e"

L L L A L L " "
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(h) The WF\SWJM the Vowel "e*
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Fig. 36 Speech waveform of the vowel “e” and contour plot of its
WPSgms -
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Fig. 37 Contour plots of the WPS,,, of the speech vowels “a” and

“an

ergy distribution and repetitive energy patterns over time.
The peaks are clearly displayed and their scale index loca-
tion is almost unchanged. There are two main peaks in
“one period” of the WPSy,3 of the signal, which makes it
significantly different from the vowel “a”. This might sug-
gest that the vowel *‘e” is more dlfﬁcult for speech recog-
nition due to its nonsubharmonics characteristics. The time-
index magnified WPSy,, of the vowels “a” and “e” are
given in Figs. 37(a) and 37(b), respectlvely, which clearly
show periodic peaks and subharmonics in the signals.
These were also successfully detected by the sym3 wavelet.
However, due to its compression effects compared with the
WPSSym3 , the WPS,,, could not clearly display the subhar-
monics, as can be seen in Figs. 37(b) and 36(b) for the
vowel “e”, which was reported earlier. Figure 38 shows the
WPSSym3 of the vowel “i”

As can be seen from F1g 38, the first part of the speech
signal, which corresponds to the time index of less than
1600, exhibits periodic behavior, although “minor” chaotic

(s) Time-Domsin VWavetorm of the Vowel "
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Fig. 38 Speech time-domain waveform of the vowel “i
plot of its WPSgyn3-

and contour
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Fig. 39 Speech time-domain waveform of the vowel “0” and con-
tour plot of its WPSg 3.

behavior is indicated by its broad energy distribution at a
low contour scale. In the second part of the waveform,
which corresponds to the time index of greater than 1600,
fundamental harmonics are not fully displayed but only the
subharmonics at low contour scales. Although the majority
of harmonics (contours at high scale) disappear from
sample 1600 onward, the subharmonics (contours are at
low scales) of the signal are still repetitive at regular time
intervals. In addition, the occupied scale range of 20 to 100
of the energy distribution is short, which indicates strong
periodicity in the signal. These two points suggest that the
signal is periodic. This phenomenon, however, does not
indicate chaos but indicates a change in the speech compo-
nents of the signal which can be seen by changes in the
time-domain waveform. The contour plot of the WPS 3
of the vowel “o0” is displayed in Fig. 39.

For the speech signal of the vowel “0”, the flow of
energy from sample 1500 onward indicates a change in its
components in which the scale range slightly changes and
the number of subharmonics decreases as the time index
increases. The energy distribution of the signal is repetitive
over regular time intervals, which might suggest that the
signal is largely dominated by periodic components. Also
note that the occupied scale range of the energy distribution
is short, which indicates strong periodicity, as was the case
of the vowels “a”, “e”, and ““i” investigated earlier. The
energy concentration at the peaks remains almost un-
changed which further validates the preceding statement.
The WPS,,,, of the vowels ““i”” and “0” are shown in Figs.
40(a) and 40(b) respectlvely

As expected, the WPS;, . of the vowels “i”” and “o” are
consistent with the WPS3 given in Figs. 38 and 39 in
which periodicity is successfully detected. The energy pat-
terns of the vowels “i”” and “‘0”", which are shown by using
the hyperbolic wavelet, are consistent with those obtained
by using the sym3 wavelet. The occupied scale ranges of
the WPS,,, of the vowels “i”” and “0” are short, which
once again indicates strong periodic characteristics. Note
also that there are no changes in the scale range of the
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il
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Flg 40 Contour plots of the WPSy,,, of the speech vowels “i” and

@

spectral components of the WPS,, ., of the vowels “i”" and
“0”, as it is the case for the WPSy,3. This is an ad "antage
of the hyperbolic wavelet to the sym3 wavelet, which is
mainly due to its perfect symmetry. Note also that if the
energy density of a signal is distributed over a narrow scale
range and even though there is component variation in the
signal, the signal is likely not chaotic, since its energy is
not broadly distributed. This fact should be clearly under-
stood since there are a number of signals that have
component-variation characteristics, however, are not cha-
otic. The WPS,,;; of the vowel “u” is given in Fig. 41.
The WPS,,,,; of the vowel *“u” is discrete in which fun-
damental peaks at high contour scales are clearly shown,
which shows strong periodicity in the signal. This signal
can be regarded as similar to Duffing period 1 waveform
except that there are three subharmonics associated with the
main harmonic located at the approximate scale of 100. The

(a) Time-Domain Wavetorm af the Vowel “u”
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Fig. 41 Speech time-domain of the vowel “u” and contour plot of its
WPSgyms -
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Fig. 42 Speech time-domain waveform of the sound “sh” and con-
tour plot of its WPSgm3.

energy distribution is repetitive over regular time intervals.
The WPS,,3 of the vowels “u” and “e” (given in Fig. 36)
are similar in which both wavelet power spectra do not
consist of subharmonics, which might suggest that they are
difficult for speech recognition. The contour plot of the
WPS,m3 of the “sh” sound is given in Fig. 42 and the
magnified plot is given in Fig. 43. Figures 42 and 43 have
identical contour scales.

The sound “sh”, due to its nature, is very fast and noisy.
As can be seen from Fig. 42, the usual discrete spectral
components, as seen from the previous cases, disappear.
Instead, there appears chaotic behavior similar to Duffing
period 4 and Duffing chaotic waveforms studied in Secs.
5.3 and 5.4. However, harmonic peaks at very high scales
(about larger than 500) are detected as can be seen in Fig.
42, which suggests that the signal is not chaotic. The main
characteristics of the signal are determined by the low-scale
energy patterns whose magnified plot is given in Fig. 43 in
which the energy is unevenly distributed at the beginning
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Fig. 43 Magnified contour plot of the WPSg,,3 of the speech sound
“ghy”,
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Fig. 44 Contour plots of the WPS,, of the speech vowel “u” and
the speech sound “sh”.

of the signal. The samples in the middle of the signal are
partly periodic and chaotic and there are no repetitive pat-
terns in the WPS. This might suggest that the waveform is
not periodic as it is usually the case for speech signals.

A comparison of Fig. 43 with Fig. 17 (Duffing chaotic
waveform) shows that the “sh” sound speech signal is not
chaotic since its energy patterns are sharp and discontinu-
ous, whereas the Duffing chaotic energy patterns are
smooth. The sharp and fast-rising energy patterns of the
“sh” sound signal do not indicate chaotic behavior, but
instead, indicate considerable subharmonics variation in the
waveform. The fundamental peak of the sound at a high
contour scale of a~500 (Fig. 42) is still present at b
~550, which validates the preceding suggestion that this
signal is periodic, i.e., energy is still distributed at one scale
of a=500 and at a lower scale of a=10 at intervals of b
=550, 1100, 1650, etc., as can be seen in Fig. 43. In addi-
tion, the scale range of this speech is short, which strongly
suggests that it is not chaotic. The wavelet power spectrum
of the sound “sh” is similar to that of the vowel “i” (but
having fewer harmonic peaks) in which spectral
component-variation is present. Contour plots of the
WPS,,, of the vowel “u” and the sound “sh’ are shown in
Figs. 44(a) and 44(b), respectively.

The WPSy,,, of the vowel “‘u” is similar to the WPS3
in which three associated subharmonics are detected. Al-
though periodic peaks are not clearly presented in the
WPS,,,,. the speech “sh” waveform is not chaotic since its
energy distribution is not smooth and distributed over a
narrow scale range, as can be seen in Fig. 44(b). The en-
ergy of the “sh” sound signal appears to flow in bursts at
uneven time intervals which means there is component-
variation in the signal. The new WPS technique, in particu-
lar using the hyperbolic and sym3 wavelets, has been ef-
fectively used to study speech signals. It has been shown
that true characteristics of various musical and speech sig-
nals can be effectively studied by examining their hyper-
bolic and sym3 WPSs. The Fourier power spectrum tech-
nique is now employed to examine these signals so that the

—_—
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Fig. 45 Fourier power spectra of the vowels “a”, “e”, “i”, and “0”.

effectiveness of each technique can be clearly identified. periodic. Typical examples are a sinusoidal signal in
The Fourier power spectra of all the speech vowels and the Sec. 2, Duffing period 1 and 2 waveforms in Sec. 5,
sound “sh” are shown in Figs. 45 and 46, respectively. speech signals in Sec. 8. Music hyperbolic wavelet

As can be seen from Figs. 45 and 46, the Fourier power power spectra are repetitive locally, however, the en-
spectra of speech signals exhibit distinctive peaks, which ergy pattern changes over the time index.
suggests that they are periodic. This conclusion is consis- 2. If the contour plot of the WPS consists of one peak

tent with the results obtained using the WPS technique. The
“sh” sound, although has a broad Fourier power spectrum,
still does have one distinctive peak at a high contour scale.
Evidently, by using the Fourier power spectrum technique,
it is not possible to detect instantaneous behavior of the
signal as it can be done using the WPS technique. This
makes the WT method more applicable and effective than
the Fourier transform method.

and the contour curves have very large radii, which
indicate a slow converging rate, then it is of a tran-
sient type. A typical example is an exponential signal
in Sec. 3. If a small number of islands of distinctive
closed contour curves are present, then the signal is
transient-periodic, e.g., an exponentially decaying si-
nusoid with a zero final value in Sec. 4.

3. If the contour plot of the WPS consists of bounded
contour curves with large radii (these radii are

Remark . . .
9 Re ) S ) ) o smaller than those discussed in case 2) then the signal
Seven different signals have been studied in detail in this is either transient-periodic (quasi periodic), e.g., an
paper including a sinusoid, an exponential transient, an ex- exponentially decaying sinusoid with a nonzero dc
ponentially decaying sinusoid with a zero and nonzero dc component in Sec. 4, or chaotic, e.g., the ECG. To
component, Duffing oscillator, the EC;G, music, and differentiate between these two cases, the occupied
speech. We employed contour plots of their wavelet power scale ranges of their WPSs are used.
. . s . _
spectra to recognize the presence of periodic, transient, and 4. 1f the WPS of the signal covers a large scale range

chaotic characteristics. The following remarks are drawn

from the numerical simulation and analysis in this paper (approximately larger than 2000 scales), then the sig-

nal is chaotic, e.g., the ECG. Otherwise, it is

1. If the contour plot of the WPS consists of a repetitive transient-periodic.
and discrete sequence of islands of closed and filled 5. If the WPS is continuous (ECG signal) and there are
contour curves at high scales, then it is effectively changes in its energy patterns, i.e., the energy distri-
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Fig. 46 Fourier power spectra of the vowel “u” and the sound “sh”. The frequency of each signal is
normalized by dividing every frequency bin by the largest frequency bin of the signal spectrum. Thus,
the shape of the power spectrum will not be changed by the normalization process.

bution varies for different data segments, that means
the signal is possibly in the transition into the chaotic
region, e.g., Duffing period 4 waveform and music in
Sec. 7.

6. If the contour plot of the WPS is nonrepetitive and
contour curves have low scales, then the signal has
entered into the chaotic region, e.g., Duffing chaotic
waveform. Note that for cases 4 and 5, the occupied
wavelet power spectral scale range of the signal is
wide and its energy density is broad and continuous.

10 Conclusions

The contribution of this paper is to establish a gallery of the
proposed WPSy, . Seven signals were examined including
a sinusoid, an exponential transient, an exponentially de-
caying sinusoid with a zero and nonzero dc component, a
Duffing oscillator, the ECG, music, and speech. The Fou-
rier power spectra of these signals were also displayed and
compared with their hyperbolic WPSs. The Duffing oscil-
lator was examined in detail and the observed results are
consistent with previous results reported in the literature.
The ECG signal appears to exhibit chaotic behavior in
which smooth, broad, and no major harmonic peaks were
detected in its WPS. Music signals behave chaotically even
though the WPSs of different sets of the signals appear to
be instantaneously periodic. This can be explained by the
fact that harmonic peaks of musical signals abruptly disap-
pear over time, which reflects the disordered characteristics
of these signals. The findings in this P%per agree with re-
sults found by other researchers,**-3%3739-43 Speech signals
were found to be periodic with strong harmonic peaks and
several subharmonics. It was shown that remarks drawn by
using the WPS and Fourier power spectrum techniques are
consistent. Some speech signals exhibit component varia-
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tion but they are not chaotic since their wavelet power
spectra are not broad and occupy narrow scale ranges. The
WPS technique seems to be more effective than the Fourier
power spectrum technique in studying music and speech
signals. Although the WPS technique has the advantage
(over the Fourier technique) of showing signal energy dis-
tributions in time and frequency domains, it is not effective
when examining the ECG signal. In fact, the WPS,,, and
WPS,ym3 of the ECG and the exponentially decaying sinu-
soid with a nonzero dc component signals were almost
identical. In contrast, the Fourier power spectra of these
signals can be differentiated which is the disadvantage of
the WPS technique. The hyperbolic wavelet has also been
shown to be more effective than the sym3 wavelet in terms
of having a smaller total number of scales, which results in
less computational burden. In addition, the hyperbolic
wavelet also can detect energy components at very low
scales. However, the sym3 wavelet is more effective when
displaying fine subharmonics, as was seen in cases of
speech signals. Early results of signal analysis presented in
this paper using the hyperbolic WPS technique form a
foundation for future quantitative work including compari-
sons of the new technique with other techniques, quantita-
tive studies of the ECG for medical purposes, and more
detailed and advanced work on music and speech signals
for pattern recognition.
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