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ABSTRACT

Given a hyperspectral image, unmixing tries to estimate the
spectral responses of the latent constituent materials and their
corresponding fractions. Recently, Nonnegative Matrix Fac-
torization (NMF) has been widely applied to solve the hyper-
spectral unmixing problem because of its plausible physical
interpretation. In this paper, we propose a novel method, Mul-
tilayer Manifold and Sparsity constrained Nonnegative Ma-
trix Factorization (MMSNMF), for hyperspectral unmixing.
In this approach, Multilayer NMF decomposes a hyperspec-
tral image iteratively at several layers. In order to consider
both the manifold structure of hyperspectral image and the
sparsity of abundance matrix, we impose a graph regulariza-
tion term and a sparsity regularization term on both the spec-
tral signature matrix and the abundance matrix. Experimental
results on both synthetic and real data validate the effective-
ness of the proposed method in hyperspectral unmixing.

Index Terms— NMF, hyperspectral unmixing, sparsity,
manifold structure,graph regularization

1. INTRODUCTION

Unmixing has played an important role in the preprocessing
step of hyperspectral image analysis due to the limited spa-
tial resolution of imaging sensors[1]. This technique has at-
tracted more and more attention in both remote sensing and
ground-based applications[2, 3]. The goal of hyperspectral
unmixing is to decompose an image into a collection of spec-
tral signatures, called endmembers, and their corresponding
proportion, called abundance, at each spatial location.

Nonnegative Matrix Factorization (NMF)[4, 5] is a pop-
ular linear unmixing method to deal with the blind source
separation (BSS) problem, which has been widely applied to
hyperspectral unmixing. NMF-based hyperspectral unmixing
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tries to estimate an endmember matrix and an abundance ma-
trix, and uses their product to approximate to the original hy-
perspectral image. In order to make use of prior knowledge,
various constraints have been imposed on NMF approaches to
achieve different goals. Minimum volume constrained NMF
(MVCNMF)[6] was proposed from a convex geometric point
of view to drive the virtual endmembers to enclose the data
cloud but with minimum volume. Wang et al.[7] employed
endmembers dissimilarity as a constraint, which is used to
measure the difference between endmember signatures and to
force the signatures to be smooth. In order to take advantage
of the sparsity of abundances in hyperspectral image, Qian et
al.[8] proposed a sparsity constrained NMF (SNMF) unmix-
ing method. In SNMF, each mixing pixel can be represented
by a linear combination of only few endmembers by applying
a L1/2 regularizer on the abundance matrix. Jia et al.[9] also
imposed sparsity constraints on the NMF model, but further
incorporated a piecewise smoothness term.

Alternatively, to consider the geometric data structure
of hyperspectral images, Lu et al.[10] proposed a graph-
regularized L1/2-NMF (GLNMF) method for hyperspectral
unmixing. GLNMF tries to impose the manifold regular-
ization and sparseness constraints on the abundance matrix.
Cichocki et al.[11] proposed a multilayer NMF (MNMF), in
which multilayer structure is used to decompose the original
data matrix. Rajabi et al.[12] further extended this approach
by adding a sparsity constraint to both spectral and abundance
matrix in each layer. However, one of the disadvantages in
this approach is that it has neglected the geometric manifold
structure of both spectral signatures and abundance fractions
in each layer, which is an important property of the hyper-
spectral data.

In this paper, we propose a novel unmixing method,
namely Multilayer Manifold and Sparsity constrained Non-
negative Matrix Factorization (MMSNMF), which takes full
advantage of the latent manifold structure and sparseness of
hyperspectral images, simultaneously. In each layer, we in-



corporate dual Laplacian graphs that capture manifold struc-
tures in both spectral and spatial domain, and an L1/2 sparsity
constraint for spectral signatures as well as abundance frac-
tions. Experimental results show that the proposed method
can obtain promising performance in hyperspectral unmixing.

The rest of the paper is organized as follows. Section 2 in-
troduces the background of hyperspectral unmixing based on
NMF. Section 3 presents the MMSNMF approach. To verify
the effectiveness of the proposed method, the experimental
evaluations are presented in Section 4. Finally, conclusions
are drawn in Section 5.

2. RELATED WORK

In this section, we introduce how to employ NMF to linearly
unmix the hyperspectral image.

Suppose that a hyperspectral image X ∈ RL×I contains
c spectral signatures where xi ∈ RL×1 is an observed vec-
tor at i-th pixel with L spectral bands. NMF aims to find
an endmember matrix A ∈ RL×N and an abundance matrix
M ∈ RN×I to approximate the origin nonnegative matrix
using a linear mixing model:

X = AM + E (1)

where E ∈ RL×I denotes the additive noise, and N is the
number of endmembers. Thus, the objective function of NMF
can be expressed as:

min
A,M

O(A,M) = 1
2 ‖X −AM‖

2
F

s.t. A ≥ 0,M ≥ 0
(2)

where ‖·‖F denotes the Frobenius norm. NMF has been eas-
ily extended by adding different constraints, such as MVC-
NMF, SNMF, GLNMF and DGNMF[13]. Similarly, our
method is also based on the standard NMF.

3. THE PROPOSED METHOD

In this section, we first describe the structure of Multilayer
NMF[11, 12]. Then the objective function of the proposed
method and the corresponding iterative updating rules are de-
scribed.

3.1. The Multilayer Structure

In multilayer structure, the optimization sub-problem in each
layer can provide more accurate estimation than the initial es-
timation of endmembers and abundance matrices by VCA. It
can also avoid getting stuck in local minima during optimiza-
tion process[11]. In the first layer, the original data matrix is
decomposed into matrices A1 and M1. Then the result of the
first layer (M1) is used as the input data for the second layer,
which is further decomposed into A2 and M2. This decom-
position process is repeated to reach the maximum number of

layers (P ). Fig.1 shows the structure of the multilayer NMF.
Meanwhile, we can give the mathematical definition of mul-
tilayer NMF as follows:

X = A1M1, M1 = A2M2, ..., MP−1 = APMP (3)

Thus, the endmember signature matrix and the abundances
matrix can be written as follows:{

A = A1A2...AP
M = MP

(4)

Fig. 1 The structure of multilayer NMF

3.2. MMSNMF

Previous studies[14, 15] have shown that not only data points,
but also features are sampled from some low-dimensional
manifolds in many pattern recognition tasks. Meanwhile, it
has been pointed out that hyperspectral data lies on a low-
dimensional submanifold embedded in the high-dimensional
ambient space[10]. Thus, not only the abundances lie on
a nonlinear low dimensional manifold, namely abundance
manifold, but also the endmembers lie on a nonlinear man-
ifold, namely endmember manifold. Therefore, we employ
two graphs, i.e., abundance graph and endmember graph to
characterize the geometric structures of the two manifolds,
respectively.

Given a data set X = [ x1, · · · , xI ] ∈ RL×I , an abun-
dance graph GA = {X,WA} can be constructed with data
set X , where WA denotes a weighted matrix. The elements
of the matrix WA can be defined as:

WA
ij =

{
1 if xi ∈ Np(xj) or xj ∈ Np(xi)
0 otherwise (5)

where Np(xj) is the set of p nearest neighbors of xj , LA =
DA −WA is the Laplacian matrix, DA is a diagonal matrix
and DA

ii
=
∑
jW

A
ij .

Meanwhile, we also need to construct an endmember
graph GM = {XT ,WM} whose vertices correspond to
XT = [xT1 , · · · , xTL] ∈ RI×L. Thus, the elements of the
weighted matrix WM can be defined as:

WM
ij =

{
1 if xTi ∈ Np(xTj ) or xTj ∈ Np(xTj )
0 otherwise

(6)



where LM = DM −WM is the Laplacian matrix, DM de-
notes a diagonal matrix and DM

ii =
∑
jW

M
ij .

To take the manifold structure of the abundance fractions
and the spectral signature into account, the dual graph regu-
larization and L1/2 regularizer are incorporated to into multi-
layer NMF. As a result, the objective function of MMSNMF
for the l-th layer can be represented as follows:

Ol = 1
2 ‖Xl −AlMl‖2F + λA ‖Al‖1/2 + λM ‖Ml‖1/2

+ βA
2 Tr(A

TLAl A) + βM
2 Tr(MTLMl M)

(7)
where λA and λM denote the regularization parameters to
balance the sparsity of the spectral signature and the abun-
dance fractions. βA and βM are the dual graph regularization
parameters. In this model, the first term is used to measure
the reconstruction error. The second and third terms are de-
signed to force the sparseness of the endmember matrix and
the abundance matrix. The last two terms are used to explore
both the abundance manifold and the endmember manifold of
hyperspectral images.

Let (ψik)l and (ϕjk)l be the Lagrange multipliers for con-
straints (Aik)l ≥ 0and (Mjk)l ≥ 0, respectively. We take the
partial derivatives of Lagrange Ll over Al and Sl of Eq. (7)
as follows:

∂Ll
∂Al

= −XlM
T
l +AlM

T
l Ml + +

λA
2
A

− 1
2

l + βAL
A
l Al + Ψ

(8)
∂Ll
∂Ml

= −ATl Xl +ATl AlMl +
λM
2
M

− 1
2

l + βML
M
l Ml + Φ

(9)
Using Karush-Kuhn-Tucker conditions (ψikAik)l = 0 and
(ϕjkMjk)l = 0, we can obtain:

(−XlM
T
l +AlM

T
l Ml + +

λA
2
A

− 1
2

l + βAL
A
l Al). ∗Al = 0

(10)

(−ATl Xl +ATl AlMl +
λM
2
M

− 1
2

l + βML
M
l Ml). ∗Ml = 0

(11)
From Eq. (10) and Eq. (11), the following update rules can
be derived:

Al ← Al. ∗
XlM

T
l + βAAlW

A
l

AlMT
l Ml + λA

2 A
− 1

2

l + βAAlDA
l

(12)

Ml ←Ml. ∗
ATl Xl + βMMlW

M
l

ATl AlMl + λM
2 M

− 1
2

l + βMMlDM
l

(13)

4. EXPERIMENTS

In this section, we carry out some experiments to verify the
effectiveness of the proposed method in hyperspectral unmix-
ing. The proposed method is compared with VCA[16], NMF,
L1/2-NMF[8] and Multilayer NMF (MNMF)[12]. The Spec-
tral Angle Distance (SAD) and Abundance Angle Distance

(AAD) are used to evaluate the performance of the unmixing
methods. Their detailed definitions can be found in[12].

4.1. Synthetic Data

We first evaluated the proposed method on a synthetic data.
To generate the synthetic data, we randomly selected six spec-
tral signatures from the USGS digital spectral library[17].
This synthetic data are generated by the following steps.
First, we generate a 64× 64 image and then divide it into 8×
8 blocks Second, each block is filled up by only one type of
signature randomly chosen from the candidate signatures, and
then a low pass filter of size 9× 9 is applied to generate the
mixed data. For pixels with abundances larger than 80%, the
abundances are replaced with a mixture of all endmembers
with equally distributed abundances.

To evaluate the robustness of the proposed method in the
presence of noise, a zero-mean Gaussian noise is added to the
synthetic data. The signal-to-noise ratio (SNR) can be defined
as:

SNR = 10 log10

E[xTx]

E[eT e]

where x and e represent the observation and noise of a pixel,
respectively and E[·] denotes the expectation operator.

In the first experiment, we evaluate the performances of
all methods in hyperspectral unmixing under the same noise.
Here, the signal-to-noise ratio (SNR) is set to 20. Similar
to MNMF, the sparseness regularization parameter λA of the
proposed method is set as:

λA = λ0e
−−t

τ

where t denotes the number of iterations and τ is a constant
parameter. In this experiment, we set the parameters as fol-
lows: λ0=0.1, τ =25, P=10, Tmax =300, λM = 2λA and
βA = βM = 0.5. The experimental process is repeated 10
times and then the average performance is taken as the final
result. Fig. 2 shows the unmixing results in terms of mean
and standard deviation of the criteria. It can be seen that the
proposed method has achieved the best performance among
all methods.

In the second experiment, we evaluate the performance of
the proposed method under different noise. Table 1 shows the
results of all methods under different SNR. It can be found
that the root mean square errors of both SAD and AAD of the
proposed method are superior to those from the other methods
no matter how the SNR changes.

4.2. Real Remote Sensing Data

The third experiment is carried out on the Jasper Ridge
dataset[18]. We conduct the unmixing experiment on a
subimage with 100×100 pixels whose ground truth is given[19].
The first pixel corresponds to the pixel (105, 269) in the orig-
inal image. After we remove some water absorption bands,



(a) SAD

(b) AAD
Fig. 2 Performances of different methods

such as 1–3, 108–112, 154–166 and 220–224, 198 bands
are left in the subimage. In total, 4 types of endmembers
including road, soil, water and tree are used.

In this experiment, the setting of the parameters is the
same as the previous experiments. Fig. 3 shows the results
of abundance estimation on the Jasper Ridge data. From the
1st to the 4th column, they are the abundances of road, wa-
ter, tree and soil. The first row displays the ground truth for
the abundance fractions of the endmembers, and the second
row shows the abundance maps of endmembers estimated by
our method. Both figures are in grayscale, in which a dark
pixel indicates that the abundance of the relative endmember
is low, and vice versa. Table 2 shows the root mean square er-
rors of SAD of the endmember estimation with all the unmix-
ing methods. The results demonstrate that the average perfor-
mance of the proposed method is better than other compari-
son methods. The main reason is that our proposed method
not only takes into account the sparsity of hyperspectral im-
age, but also discovers the manifold structure of the spectral
signatures and the abundance fractions in each layer.

5. CONCLUSION

In this paper, a novel method, called multilayer manifold
and sparsity constrained nonnegative matrix factorization, is
proposed to take advantage of intrinsic manifold structure

Table 1 The result of different SNR

(a) SAD

SNR VCA NMF L1/2-NMF MNMF MMSNMF
15 0.4481 0.1111 0.1038 0.0917 0.0903
20 0.4295 0.0715 0.0662 0.0698 0.0647
25 0.468 0.0882 0.0832 0.0809 0.0773
30 0.3916 0.0926 0.0900 0.0814 0.0797
35 0.5049 0.0744 0.0716 0.0635 0.0613
40 0.5129 0.0443 0.0430 0.0429 0.0396

Avg 0.4592 0.0804 0.0763 0.0717 0.0688

(b) AAD

SNR VCA NMF L1/2-NMF MNMF MMSNMF
15 0.5576 0.3640 0.3665 0.3656 0.3618
20 0.4695 0.3263 0.3256 0.3272 0.3246
25 0.5078 0.3468 0.3461 0.3444 0.3432
30 0.3211 0.1920 0.1919 0.1909 0.1903
35 0.3477 0.1822 0.1819 0.1811 0.1803
40 0.4032 0.2465 0.2325 0.2332 0.2314

Avg 0.4345 0.2763 0.2741 0.2737 0.2719

Fig.3 Abundance maps of different endmembers

of the hyperspectral images. In each layer, the proposed
method enforces both manifold and sparsity constraints on
the spectral signatures and abundance fractions. Compared
with other state-of-the-art methods, the superiority of the pro-
posed method in hyperspectral unmixing has been validated
on both synthetic and real data.
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