Autonomous Forms of Motivation Underpinning Injury Prevention and Rehabilitation among Police Officers: An Application of the Trans-Contextual Model

Derwin King-Chung Chan

University of Nottingham, UK

Martin S. Hagger

Curtin University, Australia

Author Note

Derwin K.-C. Chan, Personality, Social Psychology, and Health Research Group, School of Psychology, University of Nottingham, Nottingham, UK; Martin S. Hagger, School of Psychology and Speech Pathology, Curtin University, Perth, Australia.

Correspondence concerning this article should be addressed to Derwin K.-C. Chan, Personality, Social Psychology, and Health Research Group, School of Psychology, University of Nottingham, University Park, Nottingham, Nottinghamshire, NG7 2RD, United Kingdom, email: lpxdkc@nottingham.ac.uk or kc.derwin@gmail.com, tel +44 07531626672 fax +44 115 9515324
Abstract

The present study applied the trans-contextual model (TCM) to understand the motivational processes underpinning workers’ injury prevention and rehabilitation intentions and behavior. Full-time police officers (N=207; M age=37.24, SD=9.93) completed questionnaire measures of the TCM variables. Covariance-based SEM for the full sample revealed that the effect of autonomy support from supervisor on autonomous motivation for injury prevention (M-injury) was fully mediated by autonomous work motivation (M-work), and the effect of M-injury on intention was fully mediated by attitude and subjective norm. Variance-based SEM for the 87 participants who had recent occupational injury showed that the effect of autonomy support from supervisor on autonomous treatment motivation (M-treatment) was partially mediated by M-work, and the effect of perceived autonomy support from physician on treatment adherence was fully mediated by M-treatment. There was no effect of treatment adherence on recovery length. Findings support the motivational sequence of the TCM in an occupational context.

Keywords: self-determination theory; theory of planned behavior; occupational injury; autonomy support; treatment motivation; intention
Autonomous Forms of Motivation Underpinning Injury Prevention and Rehabilitation among Police Officers: An Application of the Trans-Contextual Model

Physical injuries resulting from overuse, accidents, and environmental hazards frequently occur in the workplace (Health and Safety Executive, 2010). The increasing evidence that loss in life years and quality of life resulting from injury are comparable to that of cancer, stroke, and heart disease has resulted in injury prevention and rehabilitation receiving increased attention in national public health departments in recent years (British Medical Association, 2001; PRC Standing Committee of the National People's Congress, 2002). Although the public health sectors have put forward substantial financial resources and legislation to reduce the environmental risk factors for injury and improve the quality of medical services to treat injury (Corso, Finkelstein, Miller, Fiebelkorn, & Zaloshnja, 2006), workers’ non-compliance to safety guidelines (Laurence, 2005; Runyan, Dal Santo, Schulman, Lipscomb, & Harris, 2006) and musculoskeletal injured patients’ poor adherence to prescribed treatment (Bassett & Prapavessis, 2007) are still frequently reported. These non-compliant behaviors may eventually lead to higher risk of injury, re-injury, and impaired/extended recovery. These social phenomena may imply that enhancing medical or injury preventive resources, or setting up legislation for occupational safety, might not be sufficient to ensure workers’ full compliance to safety and medical recommendations, because injury prevention and rehabilitation behaviors are relatively volitional actions that often require
great deal of self-discipline, compliance, and personal awareness to maintain (Burstyn, Jonasi, & Wild, 2010; Chan, Lonsdale, Ho, Yung, & Chan, 2009). As such, it is important for researchers to investigate the psychological factors that contribute to individuals’ compliance to health and safety guidelines with respect to injury (Gielen & Sleet, 2003).

Motivation is regarded as one of the crucial psychological factors impacting behavioral engagement, compliance, and persistence for volitional behaviors in health and medical contexts (Chan, et al., 2009; Rundmo & Hale, 2003; Williams, Lynch, & Glasgow, 2007) and this factor has been central to many social psychological models adopted to explain behavior in these contexts (Conner & Norman, 2005; Orbell, 2007). The present study applied the trans-contextual model (TCM; Hagger, Chatzisarantis, Barkoukis, Wang, & Baranowski, 2005; Hagger, et al., 2009) to understand the motivational dynamics and psychosocial factors (e.g., perceived autonomy support) that influence police officers’ intentions for injury prevention and rehabilitation adherence of occupational injury.

The Trans-Contextual Model

The central premise of the TCM is that motivation in one context (e.g., physical education) can be transferred to motivation in another related context (e.g., leisure time physical activity; Hagger & Chatzisarantis, 2009; Hagger, et al., 2005). The model was developed through the integration of two prominent theories in social psychology: self-determination theory (SDT;
Deci & Ryan, 1985, 2008) and the theory of planned behavior (TPB; Ajzen, 1985, 1991). The component theories and the bases for the integration within the TCM will be presented in the next sections.

Self-determination theory. SDT is an organismic theory derived from humanistic traditions that aims to explain human behaviors by motivation, trait characteristics, psychological needs, and goal contents (Deci & Ryan, 1985, 2008). The TCM was derived from a core premise of one of the sub-theories of SDT, the organismic integration theory, which concerns the taxonomic organization of different human motives according to their level of self-determination (Deci & Ryan, 2008). According to the theory, motivation is determined by the reasons individuals perform behaviors. These motives are regarded as behavioral regulations and their relative importance (i.e., strength) may determine the extent to which people are motivated to pursue and persist with behaviors. Central to organismic integration theory is the distinction between two forms of human motivation: autonomous and controlled.

Autonomous motivation refers to engagement in behavior for internally-referenced reasons that emanate from the self, whereas *controlled motivation* refers to the engagement in behavior for externally-referenced reasons and to attain goals based on contingencies perceived as emanating from outside the individual (Deci & Ryan, 1985, 2008). Individuals citing autonomous reasons for engaging in behavior are likely to perceive the behavior as volitional, enjoyable, exciting, optimally challenging, and meaningful to their life values, as opposed to
those acting for controlling reasons who view their actions as determined by external demands from social agents or to avoid externally-referenced outcomes such as guilt and shame.

Autonomous motivation is often referred as self-determined motivation because actions are perceived to be self-initiated. According to Deci and Ryan (1985, 2000) it is more adaptive than controlled motivation in facilitating behavioral compliance, long-term commitment, and other positive motivational outcomes (e.g., general well-being) because this self-determined form of motivation is more compatible with the human active nature of growth, integration, and development. Thus, it is important to address the antecedents of autonomous motivation. In this respect, it is proposed in SDT that if individuals perceive social agents (e.g., supervisors) in their environment to be autonomy supportive, they are more likely to endorse autonomous forms of motivation. In particular, autonomy support is characterized by social agents’ encouragement of choice and opportunity, consideration of feelings and opinions, and emphasis of communication regarding the rationale behind the advisory behaviors (Deci, Eghrari, Patrick, & Leone, 1994; Hagger et al., 2007).

The concept of autonomy support and its relationship with autonomous motivation and behavior might be somewhat in agreement with the literature suggesting that various forms of social support (e.g., emotional and instrumental support) from significant agents (e.g., medical providers) play an important role on individuals’ treatment adherence (Rundmo & Hale, 2003) and compliance to safety guidelines (Burstyn, et al., 2010; Gielen & Sleet, 2003). In addition,
the commitment to, and perceived importance of, occupational safety actions have been found
to be important factors related to intentions to engage in safety behavior and actual compliance
(Rundmo & Hale, 2003). Research findings support the proposition, derived from SDT, that
when autonomously motivated workers who recognize injury preventive behavior as something
personally meaningful and worthy to enact, they would be more committed to safety
regulations. A study by Burstyn, Jonasi, and Wild (2010) among occupational safety inspectors
explored the potential effect of autonomy support on occupational safety. Results suggested
that autonomy-supportive inspectors tended to issue fewer severe safety compliance orders, and
were more efficient in resolving problems with safety compliance in the workplace. However,
Burstyn and colleagues (2010) did not investigate the impact of autonomy support on the
motivational consequences proposed by the SDT. With regards to rehabilitation compliance,
Chan, Lonsdale, Ho, Yung, and Chan (2009) conducted a preliminarily investigation of the role
of autonomy support from physiotherapists on patients’ motivation toward, and adherence to,
home-based physiotherapy exercise. Results were consistent with SDT such that autonomy
support from physiotherapists was positively associated with autonomous treatment motivation
and adherence. Moreover, it was found that the positive association between autonomy support
and treatment adherence was fully mediated by autonomous treatment motivation. Hence, the
tenets of SDT appear useful in identifying the motivational antecedents of rehabilitative
behaviors and may potentially help explain actions involving injury prevention.
Theory of planned behavior. The aim of the TPB is to explain the psychosocial factors affecting human behavior, but focuses on the decision-making processes that lead to behavioral engagement from a social cognitive perspective (Ajzen, 1985). A concept central to TPB is intention, which represents the willingness and effort individuals plan to exert toward engaging in a target behavior in the foreseeable future (Ajzen, 1985). Intention is proposed to be the most proximal predictor of behavior and, according to TPB (Ajzen, 1985, 1991), is a function of three social cognitive and belief-based constructs, namely, attitude, subjective norm, and perceived behavioral control (PBC). Attitude reflects individuals’ positive or negative evaluation of a target behavior (Ajzen, 1985). Subjective norm refers to the perceived appropriateness or acceptability of the target behavior under the social environment encompassed by all the significant agents of the individuals (Ajzen, 1985). PBC represents how confident or difficult individuals feel with regards their participation in the target behavior (Ajzen, 1991). PBC is often regarded as synonymous to self-efficacy or confidence toward engaging in a behavior (Bandura, 1998), but it has been argued that PBC may also represent perceived control over external barriers (Rhodes & Courneya, 2003). Importantly, intention is proposed as a mediator of the effects of attitudes, subjective norms, and PBC on behavior, reflecting the reasoned, planned processes by which these factors influence action (Ajzen, 1991). According to TPB (Ajzen, 1991), however, PBC can also predict behavior directly
independent of intentions should it adequately reflect real barriers or limits to control over the behavior.

TPB has been recognized as one of the important theories that practitioners should consider when implementing behavior change interventions for injury prevention (Gielen & Sleet, 2003; Hardeman et al., 2002). However it has only been tested in a few studies in the areas of occupational safety and students’ injury preventive behavior. For example, in a prospective study of fire safety training among university staff, participants who reported higher attitude, subjective norm, and PBC were more likely to have higher intentions to attend a fire training course and heightened intentions predicted course attendance over a three-month period (Sheeran & Silverman, 2003). In addition, Lajunen and Resänän (2004) applied the TPB to predict teenagers’ intentions for the use of bicycle helmet. They found that the intention to use a helmet was positively predicted by attitude and subjective norm. Such findings highlight the utility of the TPB in explaining variance in behavior in safety and injury prevention contexts.

Trans-contextual model. The key theoretical concepts from SDT and TPB are integrated in the TCM. Such theoretical integration between SDT and TPB was consolidated in the TCM to provide a more comprehensive understanding about motivated behaviors (Hagger, et al., 2005; Hagger, Chatzisarantis, et al., 2009). SDT is an organismic theory of motivation and provides detail on the origins of constructs from the social cognitive theories (e.g., the TPB;
Deci & Ryan, 1985). However, the belief systems and decision-making processes involving human behavior are not explicitly outlined in the theory. In contrast, the processes by which behavioral, normative, and control beliefs are related to behavior are outlined in the TPB (Ajzen, 1985, 1991), but the fundamental motives behind these beliefs are not explained in the model. For instance, a behavior initiated by either one’s true sense of self (i.e., autonomous reason), as opposed to a feeling of obligation (controlled reason), could lead to a very different set of beliefs, which would further impact on the implementation of the behavior. Incorporating the two theories could therefore offer a reasonable framework for these motivational consequences. As a result, it was proposed in the TCM that autonomous motivation is a distal and formative factor that influences the proximal belief-oriented factors of behaviors from the TPB.

In particular, the social-environmental and motivational predictors of behaviors based on SDT are included in the TCM. In the model it is explicitly proposed that autonomy support and autonomous motivation are related to behavior positively and in a motivational sequence: autonomy support \rightarrow autonomous motivation \rightarrow behavior. However, the proximal decisional processes leading to behavior are further specified in the TCM through the introduction of the four variables as mediators of the relationship between motivation and engagement in future behavior. Particularly, it is proposed that the attitude, subjective norm, and PBC (i.e., constructs from the TPB) mediate the relationship between autonomous motivation and intention, and the
effects of these three variables on behavior are, in turn, mediated by intention. This means that motives to engage in behavior are important in the development of belief-based factors that lead to future behavior.

Furthermore, hypotheses from the hierarchical model of motivation (Vallerand, 1997) are incorporated in the TCM such that the endorsement of motivational regulations are governed by the three inter-connected levels of generality (Hagger, Chatzisarantis, et al., 2009), including the global level (personality or trait-like variables), contextual level (event or social environment-related variables), and situational level (time-specific variables). According to Vallerand (1997), the endorsement of motivation in a given situation is dependent not only on global-level motivation, but also on the motivation from other related contexts. As such, the TCM hypothesizes that motivation in one context can be transferred onto motivation of another related context (Hagger, Chatzisarantis, et al., 2009). Such hypothesis was initially proposed in regards to school pupils’ exercise motivation (Hagger, Chatzisarantis, Culverhouse, & Biddle, 2003).

Specifically, according to the premises of the TCM (Hagger, et al., 2003), autonomy support from teachers of physical education (PE), a social environmental factor that influence autonomous forms of motivation toward physical activity among school children in PE at the contextual level, can influence autonomous motivation toward exercise in another context (i.e., leisure time). Furthermore, autonomous motivation toward leisure-time physical activity at the
contextual level is proposed to influence intentions to engage in physical activity in the future, which reflects situational motivation toward physical activity. Tests of the TCM support these key hypotheses. In an initial test of the model, students’ autonomous motivation in PE was found to positively predict autonomous motivation for physical activity in leisure-time (Hagger, et al., 2003). Furthermore, the effect of perceived autonomy support from PE teachers on students’ autonomous motivation in leisure-time was fully mediated by students’ autonomous motivation in PE (Hagger, et al., 2003). The main premises for the TCM was further supported in samples from Singapore, Estonia, Hungary, Finland, and Greece (Hagger, et al., 2005; Hagger, Chatzisarantis, et al., 2009). These data provide a robust support for the validity of TCM, and have initiated an attempt to test the basic tenets of the model in other contexts (e.g., injury rehabilitation; Chan, Hagger, & Spray, 2011).

Application of TCM in an Injury Context

Chan, Hagger, and Spray (2011) reported two studies investigating the relationships between autonomous sport motivation and autonomous treatment motivation among sport players of different levels of ability who had experienced a variety of moderate to severe physical injuries in sport. Findings for both recreation-level and professional players consistently showed that sport participants who endorsed higher autonomous motivation in sport, in contrast to controlled motivation, were more likely to be autonomously motivated to undergo treatment for their sport injuries. In addition, the authors reported that autonomous
treatment motivation was a strong positive predictor of intentions for adhering to the prescribed treatment of sport injury in the future. With this promising finding in the sport context, Chan and colleagues (2011) proposed that TCM may potentially be applied to explain individuals’ motivation and behavior in other injury-related contexts such as occupational injury. Indeed, no studies have tested whether autonomous motivation at work can be transferred into motivation to prevent or rehabilitate from occupational injury.

In addition, Chan and colleagues (2011) did not examine whether the attitude, subjective norm, and PBC from the TPB were mediators of the relationships between autonomous treatment motivation and treatment intention as stipulated by the TCM. Such mediators are essential constructs of the TCM because behaviors or intention predicted by self-determined motivation alone does not take into account of individuals’ proximal processing (i.e., belief systems, decision-making, intention formation) regarding the target action (Chatzisarantis, Hagger, Smith, & Sage, 2006; Hagger & Chatzisarantis, 2009). A recent meta-analysis by Hagger and Chatzisarantis (2009) summarized the findings of the relationships between SDT and TPB variables in previous studies (36 studies) on health behavior (e.g., exercise, dieting, breast feeding, and condom use). The results showed that autonomous motivation exerted a significant medium-sized effect on intentions for the health behavior \(r = .52 \), but the effect was fully mediated by attitude, subjective norm, and PBC. No previous study has applied an integrated model adopting SDT and TPB to understand individuals’ engagement in injury
prevention. When attitude, subjective norm, and PBC are proposed to be the antecedents of individuals’ intentions for injury prevention (Lajunen & Resänän, 2004; Sheeran & Silverman, 2003), it is important to investigate whether they mediate the effect of self-determined motivation on intention to engage in injury-preventive behaviors in order to provide a comprehensive picture about the social cognitive processes underpinning safety actions.

The Present Study

The present study applied the TCM in a workplace context to explain the psychological and motivational factors influencing prevention of, and rehabilitation from, occupational injury. The purpose of the study was two-fold. First, we examined the relationship between the autonomous motivation for work and injury prevention, and investigated whether attitudes, subjective norms, and PBC mediate the relationship between autonomous motivation and intentions for injury prevention. Second, we examined the predictive validity of autonomous work motivation in explaining variance in autonomous treatment motivation, treatment adherence, and recovery length of a recent occupational injury. Police officers were chosen as our target population because the training and field work of police officers usually involves intensive physical activity, handling of dangerous or heavy equipment (i.e., weapons, protective gear), and long duration or night-shift working hours, where occupational injuries are more likely and prevalent in comparison to that of typical white-collar workers (Violanti, Vena, & Marshall, 1996). Also, from a theoretical perspective, police officers are more suitable
than typical blue collar workers (e.g., workers in factories or mines) because under the support of the government, inadequate resources for injury prevention (e.g., education, training, protective kits) and rehabilitation are unlikely to be the reason affecting their injury preventive intention and rehabilitation behaviors. As a consequence, we were able to test the effect of the psychological variables in the TCM on the outcome variables while minimizing the potentially confounding impact of instrumental resources, which could be highly inconsistent in commercial industries.

Based on the findings of previous studies on the TCM, SDT, and TPB (Chan, et al., 2011; Chan, et al., 2009; Hagger & Chatzisarantis, 2009), we drew the following hypotheses for the TCM applied to injury prevention and injury rehabilitation (Figure 1 depicts the two hypothesized models). In the TCM for injury prevention, we hypothesized that the direct effect of autonomy support from supervisors on autonomous motivation for injury prevention would be positive and mediated by autonomous work motivation, and the relationship between autonomous motivation for injury prevention and injury preventive intention would be positive and mediated by attitude, subjective norm, and PBC. In the TCM for injury rehabilitation, we speculated that the direct effect of autonomy support from supervisors on autonomous treatment motivation would be positive and mediated by autonomous work motivation, the effect of the autonomy support from physicians on treatment adherence would be positive and mediated by autonomous treatment motivation, and the effect of autonomous treatment
motivation on length of recovery would be negative and mediated by treatment adherence. The TPB components of the TCM, namely attitude, subjective norm, and PBC, were not tested in the recovery model due to the cross-sectional and retrospective nature of the study. Lastly, as perceived severity of health problems was found to facilitate the internalization of treatment among alcohol-addicted patients (i.e., greater autonomous motivation; Ryan, et al., 1995), perceived injury severity served as a control variable in the prediction of autonomous treatment motivation, treatment adherence, and length of recovery.

Method

Participants and Procedures

Participants were full-time police officers recruited from three police stations in the Sichuan province of China. Ethical approval for study protocol and measures was obtained from the Institutional Review Board of the University of [University omitted for masked review]. Two-hundred and thirty nine participants returned and signed informed consent forms after being supplied with preliminary information regarding the study and agreed to participate. In order to reduce the length of questionnaire and avoid the problem of common method variance (Doty & Glick, 1998), participants were instructed to complete two sets of questionnaires on two consecutive occasions, one week apart. The first questionnaire included scales measuring demographic variables (gender, age, work years, injury history), autonomous
work motivation, and perceived autonomy support from supervisors. The second questionnaire comprised items to measure motivation and TPB variables with respect to injury prevention. Those who reported experiencing an occupational injury that required medical attention were directed to an additional section comprising measures of treatment motivation, treatment adherence, and perceived autonomy support from physicians at the time of injury. Responses to this section were used to test the TCM for injury rehabilitation.

After omitting the data from 32 participants who either did not complete the second questionnaire or had more than 80% missing data, our final sample comprised 207 police officers (82.80% male; $M_{age} = 37.24, SD = 9.93; M_{years in police force} = 14.56, SD = 16.12$)

Over half of the respondents (66.4%) reported experiencing an occupational injury. Six months prior to the first data collection, participants experienced an average of 0.56 ($SD = 1.32$) occupational injuries, and reported an average of 3.07 ($SD = 11.50$) days absence, an average of 9.69 ($SD = 30.06$) days of impaired work performance, and an average of 6.36 ($SD = 22.58$) days when they were required to modify their normal working routine as a consequence of their injury. Eighty-seven (42.03%) participants reported having occupational injuries with an average lag of 1.45 years ($SD = 1.79$), including skeletal fracture (20.00%), swelling or contusion (16.40%), joint sprain or dislocation (10.90%), tear or rupture of ligament or tendon (10.90%), and others (30.90%; e.g., gun wounds, head injury), where physicians were involved in the treatment process. These participants were therefore eligible to, and completed, the
second questionnaire containing additional questions regarding the treatment experiences of their injuries. Data from these participants (89.7% male; M age = 38.27, $SD = 9.94$; M years in police force = 14.82, $SD = 10.06$) were therefore used to test the TCM for injury rehabilitation.

Measures

Perceived autonomy support. The Health Care Climate Questionnaire (HCCQ; Williams, Grow, Freedman, Ryan, & Deci, 1996) was used to measure perceived autonomy support from participants’ physician and supervisor. HCCQ is a single dimension scale that has been frequently used to measure the perceived autonomy support from significant others such as physicians (Chan, Lonsdale, Ho, Yung, & Chan, 2008), physiotherapists (Chan, et al., 2011), supervisors (Baard, 2004), and teachers (Hagger, et al., 2003). The scores of the 6-item version of HCCQ used in this study for the assessment of autonomy support from both physician (e.g., “I feel that my physician has provided me choices and options”) and supervisor (e.g., “I feel understood by my supervisor”) had reliability coefficients (Cronbach, 1951) of .91 and .92 respectively.

Autonomous motivation for treatment and injury prevention. Participants’ autonomous motivation for injury prevention and treatment was assessed by the Treatment Self Regulation Questionnaire (TSRQ; Williams et al., 1996). The TSRQ has been previously adapted for measuring patients’ motivation in physiotherapy treatment (Chan, et al., 2009) and
was found to be reliable across different behavioral contexts including smoking cessation, dieting, and exercise (D'Angelo, Reid, & Pelletier, 2007; Williams, Cox, Kouides, & Deci, 1999; Williams, et al., 1996). In order to measure autonomous treatment motivation, we used the five items (e.g., “I remained in treatment and carry out rehabilitation exercise because I felt like it's the best way to help myself”) from the physiotherapy-version of TSRQ (Chan, et al., 2009). In order to assess autonomous motivation for injury prevention, we adapted six items (e.g., “I want to prevent or avoid injury because it is an important choice I really want to make”) from the autonomous treatment motivation subscale of the smoking cessation version of TSRQ (Williams, et al., 1999). The Cronbach alphas of the scores of autonomous motivation for injury prevention and treatment were .76 and .77 respectively.

Autonomous work motivation. Autonomous work motivation was assessed using 12 items from an adapted version of the autonomous motivation sub-dimensions of the Behavioral Regulation in Sport Questionnaire (BRSQ; Lonsdale, Hodge, & Rose, 2008). We adapted items from the BRSQ, a sport domain questionnaire, rather than the typical measure of self-determined motivation in the work domain (i.e., the Blais Inventory of Motivation; Blais, Briere, Lachance, Riddle, & Vallerand, 1993) for a number of reasons. First, the nature of police officers’ job is unlike that of typical workers, and a major portion of their job duty involves the execution or training of physical tasks in the field, so the core content of the BRSQ appeared to better fit the job description of our target sample. Second, the BRSQ was developed
to measure the full complement of behavioral regulations, so its items covered all the
sub-dimensions of autonomous motivation\(^1\) of the self-determination continuum, including
intrinsic motivation, integration, and identification (Lonsdale, et al., 2008). Third, the BRSQ
has demonstrated equal or superior internal reliability and predictive validity than other
psychological instruments (e.g., the Sport Motivation Scale; Pelletier, et al., 1995) for
measuring behavioral regulations from SDT (Lonsdale, et al., 2008), and, more importantly, its
Chinese version has been shown to be reliable among participants from mainland China (Chan,
et al., 2011).

In order to fit with the police force context, the terms “sport” or “participate in sport” in the
BRSQ were replaced by “work”, “job”, or “work in the police force”. The measure included
four items for each of the intrinsic regulation (e.g., “I work for the police force because I enjoy
it”), integrated regulation (e.g., “I work for the police force because it’s a part of who I am.”),
and identified regulation (e.g., “I work for the police force because I value the benefits of my
job”) subscales. For analyses, four indicators of an autonomous work motivation scale were
formed by taking the average of each of the intrinsic, integrated, and identified regulation items.
Responses for all the above scales were made on seven-point Likert scales with anchors ranging
from “very true” (7) to “not at all true” (1). The internal consistency coefficient (Cronbach,
1951) for the scores of the autonomous work motivation scale was .87.
TPB variables. Items assessing the TPB variables were developed according to Ajzen’s (2002) recommendations. Items measuring attitude toward safety procedures was preceded by the common stem, “Following all the required safety procedures to reduce the likelihood or severity of injury in the forthcoming month is...” and participants’ responses were made on six seven-point semantic differential scales with the following bi-polar adjectives: “valuable - worthless”, “beneficial - harmful”, “pleasant - unpleasant”, “enjoyable- unenjoyable”, “good - bad”, and “virtuous - not virtuous”. Measures of subjective norm (three items; e.g., “The people in my life whose opinions I value would approve of me following all the required safety procedures to reduce the likelihood or severity of injury in the forthcoming month”), PBC (five items; e.g., “I have complete control over following all the required safety procedures to reduce the likelihood or severity of injury in the forthcoming month”), and intention (three items; e.g., “I intend to carry out all the required safety procedures to reduce the likelihood or severity of injury in the forthcoming month”) were rated on seven-point Likert-type scales ranging from “strongly agree” (7) to “strong disagree” (1). The scores of attitude, subjective norm, PBC, and intention obtained reliability coefficients (Cronbach, 1951) of .91, .79, .87, and .87 respectively. Full details for the psychometric properties of the TPB measure of injury prevention can be obtained from the first author.

Treatment adherence. We derived six items to measure self-reported treatment adherence based on a measure from a previous study on treatment adherence for home-based
physiotherapy treatment (Chan, et al., 2009). Chan and colleagues (2009) developed two items, one for assessing the completion of treatment and one for measuring the effort patients invest in their rehabilitation. In order to enhance the internal reliability of the test scores and coverage of the scale, we developed two further items for each of the completion (e.g., “I took the treatment prescribed by physicians”) and effort (e.g., “I invested effort in following the recommendations offered by my physician”) scales. The items for completion and effort were assessed on seven-point scales with scale endpoints ranging from “complete all” (7) to “complete none” (1) and “maximum effort” (7) to “minimum effort” (1) respectively. The test scores of the resulting six-item scale had a Cronbach’s alpha of .86.

Length of recovery. Participants receiving medical treatment for their injury were required to recall the length of their recovery by indicating the number of days it took to recover completely from the injury.

Injury severity. We assessed perceived severity of the injury by adapting five items (e.g., “I feared that this injury would affect my long-term career”) from the severity subscale of the Sports Injury Rehabilitation Beliefs Survey (SIRBS; Taylor & May, 1996). Responses were made on seven-point Likert-type scales ranging from “strongly agree” (7) to “strongly disagree” (1). One reversed-scaled item (i.e., “I would think that the injury was a minor interruption to my work”) was omitted from the scale because it had low inter-item correlations and the scores of the remaining scale exhibited an internal consistency coefficient (i.e., α) of .79.
Translation. All questionnaires were translated from English to Chinese (the first language of the participants) apart from the physiotherapy-version of TSRQ which was originally developed in Chinese (Chan, et al., 2009). The translation was conducted by three English-Chinese bilinguals based on the back-translation procedures of Hambleton (2005).

Analysis

We employed covariance-based structural equation modeling (CB-SEM) using the EQS 6.1 statistical software (Bentler, 2004) to test the hypothesized relationships of the TCM for injury prevention in the full sample (N = 207). To protect the model against any violation of CB-SEM’s assumption on normality, we used robust maximum likelihood estimation method (Satorra & Bentler, 1988). In addition, CB-SEM analysis is heavily dependent on sample size to ensure adequate statistical power (i.e., .80 or higher), so we also computed the statistical power of the model (MacCallum, Browne, & Sugawara, 1996).

A sample size of 100 is usually the lowest boundary for CB-SEM analysis and some recent research recommended a minimum sample size of 200 to protect the robustness of the model against non-convergence and estimation biases (Boomsma & Hoogland, 2001). Since only 87 participants were categorized as having a previous work-related injury, we employed variance-based structural equation modeling to test the premises of the TCM for injury rehabilitation in this subsample (VB-SEM; also named partial least squares path analysis) using
the SmartPLS 2.0 statistical software (Ringle, Wende, & Will, 2005). Similar to CB-SEM,

VB-SEM can also force measurement error to zero by forming latent variables (Henseler, Ringle, & Sinkovics, 2009). However, to estimate the latent factor scores and the relationships between the factors, VB-SEM relies on a partial least squares algorithm, which is theoretically distribution-free (Henseler, et al., 2009). A number of simulation studies revealed that VB-SEM analysis displayed superior consistency, robustness, and accuracy than CB-SEM analysis for studies with small sample sizea (e.g., N = 20) and non-normal data (Reinartz, Haenlein, & Henseler, 2009; Ringle, Wilson, & Götz, 2007).

The “model fit” of VB-SEM analysis can be revealed by a number of indices about the convergent validity and discriminant validity of the measurement model. Convergent validity is typically regarded as acceptable when the Cronbach’s alpha and the composite reliability of each dimension are higher than .70 (Barclay, Thompson, & Higgins, 1995), the average variance extracted (AVE) for each factor is higher than 0.50 (Chin, 1998), and the factor loading of each items on its corresponding factor is higher than .70 (Komiak & Benbasat, 2006).

Discriminant validity is generally considered adequate when the loading of an item on its own construct is higher than its loadings on the other constructs (Komiak & Benbasat, 2006) and the square-root of the AVE of any construct is higher than its correlation with other constructs (Chin, 1998). Furthermore, we utilized bootstrapping resample technique with 1000 replications to reveal the significance level of the path estimates.
For both the CB-SEM and VB-SEM analyses, we conducted a mediation analysis according to Baron and Kenny’s (1986) and Zhao, Lynch, and Chen’s (2010) criteria to test the hypothesized mediation relationships in the TCM. Detailed structures of the models analyzed by CB-SEM (i.e., the TCM of injury prevention) and VB-SEM (i.e., the TCM of injury rehabilitation) are summarized in Figures 2 and 3 respectively.

Results

TCM for Injury Prevention

CB-SEM revealed that the TCM for injury prevention yielded acceptable fit with the data $(df = 187; \chi^2 = 375.02; TLI = .903; CFI = .917; RMSEA = .070; SRMR = .075)$ and obtained very good statistical power of .957. The descriptive statistics of the variables and the standardized path coefficients in the model are displayed in Table 1 and Figure 2 respectively. In line with our hypotheses, autonomous work motivation was positively predicted by autonomy support from supervisors $(R^2 = .18)$ and was a positive predictor of autonomous motivation for injury prevention $(R^2 = .14)$. Autonomous motivation for injury prevention was positively associated with attitude $(R^2 = .29)$, subjective norm $(R^2 = .52)$, and PBC $(R^2 = .40)$. Intention $(R^2 = .65)$ for injury prevention was predicted positively by attitude and subjective norm as hypothesized, but its expected relationship with PBC was not significant.
Mediation analysis demonstrated that work motivation fully mediated the relationship between autonomy support from supervisors and autonomous motivation for injury prevention, which is in line with our hypothesis. In a similar vein, the effect of autonomous motivation for injury prevention on intention was fully mediated by attitude and subjective norm, but not by PBC because its relationship with intention was not significant. Details of the mediation analyses are shown in Table 2.

TCM for Injury Rehabilitation

The VB-SEM analysis for the TCM for injury rehabilitation revealed satisfactory goodness-of-fit indicators, which supported the convergent and discriminant validity of the model. First, acceptable Cronbach alphas (range = .769 to .926), composite reliability scores (range = .843 to .942), AVEs (range = .521 to .754), and mean item-to-corresponding-factor loadings (range = .717 to .867) were found for all latent factors. Second, the item-to-corresponding-factor loadings were higher than the item-to-other-factor loadings for all items with a mean difference of .646 (range = .519 to .826), and the $\sqrt{\text{AVE}}$ of each construct was higher than the construct’s correlations with other latent factors (mean ($\sqrt{\text{AVE}} - \text{highest factor correlation}$) = .332, range = .003 to .627). Table 1 also presents the descriptive statistics of the variables in this model.
Standardized path coefficients for the VB-SEM of the TCM for injury rehabilitation are depicted in Figure 3. Similar to the results of the CB-SEM analysis of the TCM for injury prevention, autonomous work motivation was positively predicted by autonomy support from supervisor ($R^2 = .16$). As expected, autonomous treatment motivation ($R^2 = .25$) was positively associated with autonomous work motivation and autonomy support from physicians after controlling for the effect of perceived injury severity. Congruent with our hypothesis, autonomous treatment motivation was a strong positive predictor of treatment adherence ($R^2 = .51$). However, treatment adherence was not significantly associated with length of recovery ($R^2 = .08$) when controlling for the effect of perceived injury severity.

Mediation analyses confirmed the hypothesized mediation effects in the TCM for injury rehabilitation. The only exception was the mediation of the relationship between autonomous treatment motivation and length of recovery by treatment adherence, which was not supported. The effect of autonomy support from supervisor on treatment motivation was partially mediated by autonomous work motivation. The relationship between autonomy support from physicians and treatment adherence was fully mediated by treatment motivation. Details of the mediation analyses are shown in Table 3.

Discussion
The present study applied the trans-contextual model (Hagger & Chatzisarantis, 2009; Hagger, et al., 2005; Hagger, Chatzisarantis, et al., 2009) to understand motivational factors associated with workers’ compliance to safety and rehabilitation guidelines. We tested the predictive validity of the model in workers’ intentions for injury prevention and treatment adherence for occupational injury. Indeed, the hypothesized pattern of effects in the TCM was generally supported in data from a sample of police officers, including those who had experienced a recent occupational injury.

Effects of Autonomous Work Motivation

In agreement with our hypotheses, autonomous work motivation was positively associated not only with workers’ autonomous motivation for injury prevention, but also with the autonomous treatment motivation of workers who had experienced an occupational injury. This is consistent with previous research (Chan, et al., 2011) and the hypotheses of the TCM (Hagger & Chatzisarantis, 2009; Hagger, et al., 2005; Pihu, Hein, Koka, & Hagger, 2008).

This pattern of effects addresses an important issue in behavioral regulation research in the workplace. The endorsement of autonomous work motivation has been a frequently-cited reason for workers’ work intention, perseverance, job satisfaction, job performance, and psychological well-being in the workplace (Grant, 2008; Millette & Gagné, 2008; Otis & Pelletier, 2005), as this form of motivation is incorporated within human nature for growth and
optimal functioning and well-being (Deci & Ryan, 1985). However, our findings suggest that
the predictive power of autonomous work motivation is not limited to performance-related
behaviors and adaptive well-being within the work context, but it may also extend to the
prevention and rehabilitation of occupational injury. Thus, autonomous work motivation might
be an extremely important factor indirectly related to the intentions for injury prevention among
police officers and other workers with dangerous working conditions and duties (e.g.,
construction workers, coal-mine workers, and soldiers). Enhancing workers’ enjoyment at
work, increasing their sense of belonging to work, making work consistent with their life,
values, and goals, and supporting their psychological needs (i.e., competence, relatedness, and
autonomy; Deci & Ryan, 1985), were suggested to be feasible means to facilitate workers’
autonomous motivation at work (Lynch, Plant, & Ryan, 2005). Further research should test
whether these strategies may also enhance workers’ autonomous motivation for injury
prevention and rehabilitation. Some recent research suggests that non-compliant behavior
could be the result of the depletion of behavioral energy (i.e., ego energy), but such depletion
could plausibly be slowed down by autonomous motivation (Hagger, Wood, Stiff, &
Chatzisarantis, 2009, 2010)(Hagger, 2010), so it might be interesting to investigate the effects
of ego-energy depletion on injury preventive and rehabilitation behavior, and how autonomous
motivation in the associated aspects can moderate such effects.

Autonomous Motivation for Injury Prevention and the TPB
Consistent with our hypothesis, autonomous motivation for injury prevention was a positive predictor of attitude, subjective norm, and PBC, and the percentage of variance explained for each variable was comparable to the corresponding effect sizes from Hagger and Chatzisarantis’ (2009) meta-analysis. In other words, the more autonomous reasons (i.e., pleasure, values, life goals, and personal achievement) the workers endorse for engaging in preventive behavior, the more likely the injury preventive behavior is highly valued, perceived to be highly recommended by their significant others (e.g., family, friends, and colleagues), and perceived to be achievable regardless of difficulties. According to TPB, these personal beliefs may further lead to increased intention to engage in corresponding preventive and rehabilitative behaviors in the future (Ajzen, 1985, 1991).

Nevertheless, our expected positive predictions of intention were only observed for attitude and subjective norm, which was in line with previous studies that have applied the TPB to explain safety behaviors (Lajunen & Resänän, 2004; Sheeran & Silverman, 2003). No such prediction was found for PBC. However, it is important to note that the prediction of PBC on intention to perform safety actions has been inconsistent across studies. Quine, Rutter, and Arnold (1998) found a significant positive relationship between PBC and intentions for the use of cycling helmets among school-aged children (aged 11 to 15 years). In contrast, Lajunen and Resänän (2004) found a negative relationship between PBC and intentions for the use of cycling helmets among adolescent cyclists (aged 12 to 19 years) who owned cycling helmets.
This discrepancy might be due to a number of situational factors. The difficulty of performing safety action may vary across different situations. For instance, the situational factors affecting the wearing of cycling helmets among school-aged cyclists (e.g., Quine, et al., 1998; Lajunen & Resänän, 2004) versus wearing bullet-proof vests by police officers are likely to be fundamentally different. In addition, the age/experience, education/training background, and socioeconomic status, and availability of other safety supporting resources may plausibly affect how individuals’ form intentions for the injury prevention behaviors that they felt were under their control. Thus, it is important to investigate these factors as moderators of the PBC-intention relationship in future studies.

On the other hand, it is noteworthy that subjective norm was the strongest predictor of intention, which also accounted for most of the indirect effect of autonomous motivation for injury prevention on intention. This pattern was not in line with typical findings in TPB (Hardeman, et al., 2002) and its theoretical integration with SDT (Hagger & Chatzisarantis, 2009)(Hagger, 2009), which have indicated that PBC and attitude should be more important. However, research has indicated that individual differences in the value attached to normative factors may affect the extent to which intentions are based on subjective norms relative to attitudes and PBC. For example, Trafimow and Finlay (1996) found that the predictive power of subjective norm on intention would be inflated for some normative-based behaviors and individuals. Similarly, research has found that control-orientated individuals, who tended to act
for external contingencies (e.g., money, deadlines), are more likely to adopt a normative
identity style; a style characterized by being more influenced by beliefs and values shared by
significant others (Soenens, Berzcnksy, Vansteenkiste, Beyers, & Goossens, 2005). This is
likely to mean that intentions are formed on the basis of normative rather than personal beliefs.
Also, in the police force, injury prevention is likely to be a behavior which is predominantly
influenced by normative beliefs because behavioral and control beliefs of injury prevention
might be less important for police officers who are supposed to have sufficient training,
education, and instrumental support for injury prevention. Alternatively, a salient collective self
(i.e., thoughts and the perception of self derived from social membership), which is commonly
endorsed by people from collectivistic countries like China (the population from which the
current samples were drawn) has been suggested as a trait which could strengthen the
association between subjective norm and intention (Trafimow & Finlay, 1996)(Hagger et al.,
2007). Therefore, although our findings for the subjective norms variable supported the view
that normative factors might be more strongly related to intentions for safety maintenance than
personal factors (e.g., attitudes, PBC), individual difference factors like personality traits (e.g.,
normative-based individuals, control causality orientation) and cultural differences (e.g.,
collectivist norms) should be considered in the future studies of injury prevention.

Autonomous Treatment Motivation, Treatment Adherence, and Recovery Length
In line with Chan and colleagues’ (2009) study, autonomous treatment was a positive predictor of treatment adherence and explained substantial amount of its variance. A number of studies have reported a positive relationship between autonomous motivation and treatment adherence (e.g., D'Angelo, et al., 2007; Milne, et al, 2008), but most of these studies focused on the beneficial effect of autonomous treatment motivation in the treatment of various health problems (e.g., heart disease, cancer). To our knowledge, the present study is the first attempt to test the relationship between autonomous treatment motivation and adherence to treatment in the context of occupational injury. The findings indicate that workers with occupational injury are more likely to invest effort and fully comply with prescribed treatment when autonomously motivated toward their rehabilitation.

However, treatment adherence was not significantly related to the length of recovery after controlling for perceived injury severity, which is in contrast to our hypothesis. Although the effect of treatment adherence on recovery length could potentially be masked by the effects of other external factors (e.g., effectiveness of treatment, body capacity to recover, and type of injury) and attenuated by the social desirability of self-report measures and memory loss, the effect appeared to be negative, which was in line with our prediction. This implied that better adherence may be associated with the speed of recovery to some extent. Further studies with intervention designs such as randomized controlled trials or longitudinal designs like reciprocal effects models may help to test whether the reduction of recovery length is caused by
heightened autonomous treatment motivation (Chan, et al., 2011; Chan, et al., 2009; Williams, et al., 2007).

Autonomy Support from Supervisor and Physician

Realizing the adaptive role of autonomous motivation in work and rehabilitation, it is important to highlight their antecedents. Consistent with our hypothesis and the tenets of SDT (Deci & Ryan, 1985, 2008), autonomy support from supervisors and physicians was positively related to autonomous work motivation and autonomous treatment motivation respectively. These patterns were consistent with studies that have applied SDT in occupational (Burstyn, et al., 2010; Lynch, et al., 2005; Otis & Pelletier, 2005) and health settings (Chan, et al., 2011; Chan, et al., 2009; Milne, et al., 2008). Therefore, autonomy-supportive actions such as the provision of choice, providing a rationale for safety advice, and taking individuals’ feelings and opinions into consideration with minimal pressure could have a profound effect on facilitating workers’ autonomous motivation in injury prevention and autonomous treatment motivation for those who suffered from occupational injury (c.f., Chatzisarantis, Hagger, & Brickell, 2008; Chatzisarantis, Hagger, & Smith, 2007) (McLachlan & Hagger, 2010).

Limitations and Future Directions

We must acknowledge a number of limitations of the present study. The cross-sectional design of the injury prevention model precludes evidence for the predictive validity of TCM
with regard to future injury-preventive behavior. Our injury rehabilitation model included a
behavioral measure, but the retrospective design prohibited the inclusion of the TPB variables,
which are hypothesized as predictors of future behavior. As a result, the full TCM model could
not be scrutinized in a single analysis. Further studies should test the prediction of all the TCM
variables among injured workers who are currently undertaking treatment and use longitudinal
or diary methods (Bolger, Davis, & Rafaeli, 2003) to assess their rehabilitation or injury
preventive behavior over an extended period of time (i.e., greater than one month). Also, the
effect of controlling environment and controlled motivation on individuals’ health behaviors
has received more attention in recent years (Bartholomew, Ntoumanis, & Thogersen-Ntoumani,
2010; Halvari, Halvari, Bjornebekk, & Deci, 2010), and these constructs might plausibly
represent the motivational consequences triggered by legislation and coercion (e.g., fines or
other penalties) for safety in the workplace, so it is worthwhile for future studies to develop
corresponding measures and investigate their impact on injury prevention relative to that of
autonomy support and autonomous motivation.

In addition, the use of self-report measures and retrospective recall methods may be
subject to social desirability and memory bias. Yet, these factors are unlikely to increase type-I
error because the magnified error variance and restricted true variance may attenuate rather
than inflate the path estimates in the models (Chan, et al., 2009; Williams, et al., 1996).
Likewise, this initial study made use of a number of adapted instruments (e.g., TSRQ) which
were not originally designed to measure the psychological constructs in the context of occupational safety. Although these adapted instruments displayed good convergent and predictive validity in this study, we should stress the importance of further development and examination of these measures for face validity and test-retest reliability within the context of occupational injury. This is because some environmental features and cultures within injury prevention or rehabilitation contexts could be unique and vary from one occupation to another. These factors might influence the operationalization of the psychological constructs, and also plausibly affect their relationships with behaviors. For instance, we had a majority of male police officers in our sample. Although this reflected the typical gender distribution within this occupational context in China, it could be a potential confounding factor that impaired the generalizability of our findings across both genders. Future studies with samples from various occupations and cultural backgrounds, and with a more even gender distribution, may control for these confounding variables, including objective measures of injury risk, injury severity, and the effectiveness of safety facility and medical resources.

Lastly, the correlational design did not permit the inference of causal and temporal order effects of the hypothesized predictors. Successful interventions based on TPB (Chatzisarantis, Hagger, Smith, & Phoenix, 2004) (Chatzisarantis & Hagger, 2005) and SDT (Chatzisarantis & Hagger, 2009; Williams, et al., 1999; Williams, et al., 2007) to enhance individuals’ engagement in health related behaviors, including occupational safety (Sheeran & Silverman,
2003), have been reported. Further studies should apply the principles of both theories to implement an intervention and use the TCM to predict behaviors regarding injury prevention and rehabilitation.

Conclusion

The present study extended the application of the trans-contextual model to an occupational injury prevention and rehabilitation context. The results supported the model and illustrated the importance of autonomous work motivation and autonomy support from supervisors and health and safety professionals in workers’ engagement of safety and rehabilitation behaviors.
References

health and safety: evidence for the utility of implementation intentions. *Social Science
& Medicine, 56*(10), 2153-2163.

3 Soenens, B., Berzencsky, M. D., Vansteenkiste, M., Beyers, W., & Goossens, L. (2005). Identity
styles and causality orientations: In search of the motivational underpinnings of the

with sports injury rehabilitation: An application of protection motivation theory.
Journal of Sports Sciences, 14(6), 471-482.

5 Trafimow, D., & Finlay, K. A. (1996). The importance of subjective norms for a minority of
people: Between-subjects and within-subjects analyses. *Personality and Social
Psychology Bulletin, 22*(8), 820-828.

M. P. Zanna (Ed.), *Advances in experimental social psychology* (pp. 271-359). New

A comparative risk assessment of police officers and municipal workers. *American
Journal of Industrial Medicine, 30*, 99-104.

smoking to adolescents - Effects of an autonomy-supportive style. *Archives of
Pediatrics & Adolescent Medicine, 153*(9), 959-964.

Motivational predictors of weight loss and weight-loss maintenance. *Journal of
Personality and Social Psychology, 70*(1), 115-126.

There are three different forms of autonomous motivation in SDT (Deci & Ryan, 2000, 2008): (1) Intrinsic motivation, the most self-determined form of motivation, implies behavioral engagement for the inherent pleasure in the activity; (2) Integrated motivation, a less self-determined form of autonomous motivation than intrinsic motivation, is adopted when actions are coherent with life values or other structures within the self; (3) Identified motivation, the least self-determined form of autonomous motivation, represents performing acts for personally important values, which indeed are not fully emanated from the sense of self.

There are two forms of controlled motivation in SDT (Deci & Ryan, 2000, 2008): (1) External motivation, the least self-determined form of controlled motivation, refers to behaviors executed merely for attainment of externally references rewards (e.g., money and promotion) or avoidance of negative consequences (e.g., punishment, fines); and (2) Introjected motivation, a controlled form of motivation which is somewhat more self-determined than external motivation, is adopted when we act for satisfying social obligations in order to avoid being guilty, shameful, or under-pressure.

Model goodness of fit for the CB-SEM analyses was evaluated using multiple criteria including the Tucker-Lewis index (TLI), comparative fit index (CFI), root mean square error of approximation (RMSEA), and standardized root-mean square residual (SRMR). Values for the TLI and CFI greater than .90 were considered indicative of acceptable fit (Bentler, 1990), with
values greater than .95 preferable (Hu & Bentler, 1999). RMSEA and SRMR’s values less than or equal to .06 were considered indicative of very good fit (Hu & Bentler, 1999), and values of .08 or less traditionally considered acceptable.

According to Baron and Kenny (1986), mediation is confirmed if the mediator has significant associations with both the independent variable (IV) and dependent variable (DV), the IV predicts the DV independently (i.e., the direct effect model), and this path becomes non-significant when the DV is also predicted by the mediator (i.e., the combined effects model). Partial mediation is present when the strength of IV → DV is significantly reduced in the combined effects model and the indirect effect is significant but the direct effect remains significant. On the other hand, Zhao, Lych, and Chen (2010) proposed mediation should be evidenced by significant direct and indirect effects of the IV on the DV.
Table 1

Cronbach’s alphas, correlations, means and standard deviations of the TCM for injury prevention (N = 207) and the TCM for injury rehabilitation (N = 87) variables.

<table>
<thead>
<tr>
<th>TCM for injury prevention variables</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AS from supervisor</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Auto work Mtv</td>
<td>.37*</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3. Auto Mtv for injury prevention</td>
<td>.21*</td>
<td>.30*</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4. Attitude</td>
<td>.22*</td>
<td>.17*</td>
<td>.44*</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5. Subjective norm</td>
<td>.15*</td>
<td>.28*</td>
<td>.49*</td>
<td>.33*</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6. Perceived behavioral control</td>
<td>.11</td>
<td>.31*</td>
<td>.41*</td>
<td>.37*</td>
<td>.67*</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>7. Intention</td>
<td>.15*</td>
<td>.23*</td>
<td>.45*</td>
<td>.47*</td>
<td>.72*</td>
<td>.56*</td>
<td>1</td>
</tr>
</tbody>
</table>

Cronbach’s alpha	.96	.87	.76	.91	.79	.87	.87
Mean	4.36	3.86	4.74	5.34	4.28	4.39	4.20
Standard deviation	1.37	1.14	1.23	1.43	1.37	1.27	1.49

<table>
<thead>
<tr>
<th>TCM for injury rehabilitation variables</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. AS from supervisor</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9. AS from physician</td>
<td>.49*</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10. Auto work Mtv</td>
<td>.37*</td>
<td>.18</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11. Auto treatment Mtv</td>
<td>.33*</td>
<td>.50*</td>
<td>.37*</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12. Perceived injury severity</td>
<td>-.18</td>
<td>.21</td>
<td>.05</td>
<td>.17</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13. Treatment Adherence</td>
<td>.34*</td>
<td>.43*</td>
<td>.31*</td>
<td>.67*</td>
<td>.23*</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>14. Days of recovery</td>
<td>-.05</td>
<td>.17</td>
<td>.03</td>
<td>.08</td>
<td>.14</td>
<td>-.04</td>
<td>1</td>
</tr>
</tbody>
</table>

Cronbach’s alpha	.92	.91	.87	.77	.79	.86	-
Mean	4.31	4.17	3.89	4.03	3.42	4.18	4.00
Standard deviation	1.45	1.49	1.14	1.30	1.45	1.45	94.8

Note. AS = perceived autonomy support; Auto = autonomous; Mtv = motivation.

**p < .01 2-tailed, *p < .05 2-tailed.
Table 2

Results from the mediation analyses for the TCM for injury prevention

<table>
<thead>
<tr>
<th>Paths</th>
<th>Mediator(s)</th>
<th>Direct effect (z-score)</th>
<th>Combined effects (z-score)</th>
<th>Indirect effect (z-score)</th>
<th>Total effect (t-value)</th>
<th>Indirect / Total effect</th>
<th>Type of mediation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS → M-work</td>
<td>.25***</td>
<td>.10</td>
<td>.08***</td>
<td>.14***</td>
<td>57.13%</td>
<td>Full</td>
<td></td>
</tr>
<tr>
<td>M-injury</td>
<td>(2.96)</td>
<td>(1.11)</td>
<td>(3.27)</td>
<td>(2.75)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-work → M-injury</td>
<td>.19***</td>
<td>-.10</td>
<td>.18***</td>
<td>.20**</td>
<td>92.63%</td>
<td>Full</td>
<td></td>
</tr>
<tr>
<td>Attitude</td>
<td>(2.52)</td>
<td>(.37)</td>
<td>(3.83)</td>
<td>(2.12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-work → M-injury</td>
<td>.31***</td>
<td>.02</td>
<td>.16***</td>
<td>.27***</td>
<td>58.96%</td>
<td>Full</td>
<td></td>
</tr>
<tr>
<td>Norm</td>
<td>(3.91)</td>
<td>(.30)</td>
<td>(4.03)</td>
<td>(3.82)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-work → M-injury</td>
<td>.37***</td>
<td>.00</td>
<td>.14***</td>
<td>.32***</td>
<td>44.68%</td>
<td>Full</td>
<td></td>
</tr>
<tr>
<td>PBC</td>
<td>(3.92)</td>
<td>(.06)</td>
<td>(3.79)</td>
<td>(4.29)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-injury → Attitude, Norm, PBC</td>
<td>.81***</td>
<td>.02</td>
<td>.58***<sup>a</sup></td>
<td>.68***</td>
<td>85.86%</td>
<td>Full</td>
<td></td>
</tr>
<tr>
<td>→ intention</td>
<td>(5.78)</td>
<td>(.26)</td>
<td>(7.97)</td>
<td>(8.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note. AS = autonomy support from supervisors; M-injury = autonomous motivation for injury prevention; M-work = autonomous motivation at work; Norm = subjective norm; PBC = perceived behavioral control. The indirect and total effects were computed by the resampling algorithm (replication = 5000) of Preacher and Hayes (2008). ^aThis indirect effect index represent the total indirect effect brought by the three mediators. The specific indirect effect by attitude (0.14, *p* < .01) subjective norm (0.40, *p* < .01), and perceived behavioral control (0.04, *p* > .05) Thus, perceived behavioral control was not a significant mediator.*** *p* < .01 2-tailed, ** *p* < .05 2-tailed, * *p* < .05 1-tailed.*
Table 3

Results from the mediation analyses for the TCM for injury rehabilitation

<table>
<thead>
<tr>
<th>Paths</th>
<th>Mediator(s)</th>
<th>Direct effect (t-value)</th>
<th>Combined effects (t-value)</th>
<th>Indirect effect (z-score)</th>
<th>Total effect (t-value)</th>
<th>Indirect / Total effect</th>
<th>Type of mediation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-supervisor → M-treatment</td>
<td>M-work</td>
<td>.40***</td>
<td>.28*</td>
<td>.10**</td>
<td>.29**</td>
<td>32.84%</td>
<td>Partial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.16)</td>
<td>(1.68)</td>
<td>(2.19)</td>
<td>(3.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-work → Adherence</td>
<td>M-treatment</td>
<td>.33***</td>
<td>.05</td>
<td>.32***</td>
<td>.40***</td>
<td>79.69%</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.94)</td>
<td>(0.59)</td>
<td>(3.39)</td>
<td>(2.98)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-physician → Adherence</td>
<td>M-treatment</td>
<td>.25**</td>
<td>-0.04</td>
<td>.32***</td>
<td>.42***</td>
<td>75.41%</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.08)</td>
<td>(.62)</td>
<td>(4.14)</td>
<td>(4.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-treatment → Recovery</td>
<td>Adherence</td>
<td>.13</td>
<td>.46***</td>
<td>-.03</td>
<td>.02</td>
<td>164.85%</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.12)</td>
<td>(2.61)</td>
<td>(-.96)</td>
<td>(.54)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note. AS-supervisor = perceived autonomy support from supervisor; AS-physician = autonomy support from physician; M-treatment = autonomous treatment motivation; M-work = autonomous motivation at work; Recovery = length of recovery. The indirect and total effects were computed by the resampling algorithm (replication = 5000) of Preacher and Hayes (2008).

Both the significant combined effects of the IV on the DV was caused by suppression effect (MacKinnon, Krull, & Lockwood, 2000). Therefore, no mediation was presented in this path.

*** p < .01 2-tailed, ** p < .05 2-tailed, * p < .05 1-tailed.
Figure 1. The hypothesized models of TCM in the present study. The relationship between treatment adherence and length of recovery was expected to be negative, while all other paths were proposed to be positive.
Figure 2. Path estimates for the TCM for injury prevention. Correlations between the disturbances of latent factors (attitude, subjective norm, and perceived behavioral control) are omitted from this figure. *** $p < .01$ 2-tailed, ** $p < .05$ 2-tailed, * $p < .05$ 1-tailed.
Figure 3. Path estimates for the TCM for injury rehabilitation. \(**p < .01\) 2-tailed, \(**p .05\) 2-tailed, \(*p < .05\) 1-tailed.