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Abstract 

Climate change vulnerability assessment is a complex form of risk assessment which 

accounts for both geophysical and socio-economic components of risk. In indicator-based 

vulnerability assessment (IBVA), indicators are used to rank the vulnerabilities of socio-

ecological systems (SESs). The predominant aggregation approach in the literature, 

sometimes based on multi-attribute utility theory (MAUT), typically builds a global-scale, 

utility function based on weighted summation, to generate rankings. However, the 

corresponding requirement for additive independence and complete knowledge of system 

interactions by analyst are rarely if ever satisfied in IBVA.  

We build an analogy between the structures of Multi-Criteria Decision Analysis (MCDA) and 

IBVA problems and show that a set of techniques called Outranking Methods, developed in 

MCDA to deal with criteria incommensurability, data uncertainty and preference 

imprecision, offer IBVA a sound alternative to additive or multiplicative aggregation. We 

reformulate IBVA problems within an outranking framework, define thresholds of difference 

and use an outranking method, ELECTRE III, to assess the relative vulnerability to heat stress 

of 15 local government areas in metropolitan Sydney. We find that the ranking outcomes 

are robust and argue that an outranking approach is better suited for assessments 

characterized by a mix of qualitative, semi-quantitative and quantitative indicators, 

threshold effects and uncertainties about the exact relationships between indicators and 

vulnerability. 

Key Words: multiple criteria analysis; climate change; vulnerability assessment; aggregation; 

outranking procedures; heat stress 
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1.0 Introduction 

Climate change adaptation is emerging as a significant field of research in a number of disciplines. It 

is premised on the fact that, even under the most optimistic scenarios of greenhouse gas emission 

reduction over the next hundred years, some degree of change in climate appears inevitable. 

Assessments of the vulnerability of a valued utility (e.g., health, shelter, security, economic 

prosperity) for a given population (e.g., locality, community, economic sector) to one or more 

climate-related hazards (e.g., heat waves, flood events, rise in sea levels) serve as planning tools in 

environmental decision-making. They help in identifying highly vulnerable communities, allocating 

adaptation resources, better understanding systemic weaknesses, monitoring the effects of 

adaptation measures, communicating risk and justifying policy to the public (Eriksen and Kelly, 2007; 

Füssel, 2007; Klein, 2003).  

A large number of climate-related vulnerability studies can be found in the literature. Some 

vulnerability studies are based on mechanistic or economic modelling, especially those evaluating 

the impacts of climate stress on specific biological systems or economic sectors, usually agricultural 

(e.g., Belliveau et al., 2006; Gbetibouo et al., 2010; Luers et al., 2003). Others, often indicator-based, 

map vulnerabilities across geographical areas at a given scale (e.g., Hahn et al., 2009; O'Brien et al., 

2004; Vincent, 2007; Wilhelmi et al., 2004). These assessments are generally meant to be precursors 

for more in-depth, impact analyses of vulnerable populations. We refer to assessments of 

vulnerability that are totally or partly based on indicators as indicator-based vulnerability 

assessments (IBVA). Although IBVA approaches have been applied to stressors other than climate 

(e.g., famine and poverty), in this paper we are concerned exclusively with climate-related stresses.  

Most vulnerability assessment frameworks recognize both the external, geophysical determinants of 

risk, called exposure to climate stressors, and the internal, socio-economic and institutional 

processes generating vulnerability, usually referred to as the system’s sensitivity to the stress in 

question and its adaptive capacity or lack thereof (Eriksen and Kelly, 2007; Klein, 2003; Parry, 2007). 

These are sometimes called the three dimensions of vulnerability and are seen as the outcome of 

the interaction of two traditions of vulnerability research in physical and social sciences—a synthesis 

that provides a better account of the contextual and social dynamics of climate hazards and the 

multiple linkages that govern their impacts (Adger, 2006; Füssel, 2007).  

Proxy indicators are customarily used to construct indices of vulnerability to different stressors 

under each one of the above dimensions. The exercise is rendered more complex by conceptual and 

heuristic difficulties (what is vulnerability? by what proxies can it represented? what are the 
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processes that reproduce it?) as well as methodological ones (poor prediction of climate variables at 

regional and local scales; quality of data; difficulty of quantifying the behaviour of socio-ecological 

systems). The usefulness of indicator-based vulnerability comparisons of nations has been called into 

question because of poor understanding of the complexity of processes generating vulnerability at 

that scale, as well as inconsistencies in data aggregation (Eriksen and Kelly, 2007; Klein, 2009).  

One of the most significant methodological challenges of vulnerability metrics is to convert a 

selected set of indicators into a ranking of comparable socio-ecological systems, according to their 

vulnerabilities to one or more climate hazards. This process of aggregation is usually performed 

through weighted summation, sometimes on the basis of multi-attribute utility theory (MAUT). 

MAUT is a member of the family of Multi-Criteria Decision Analysis (MCDA) methods and can 

provide a powerful decision analysis approach that is widely used in economics, engineering, 

decision science and development studies. However, when weighted summation is used in the 

context of IBVA, its theoretical requirements are difficult to achieve in practice. As an example, 

additive aggregation  typically converts indicators into comparable scales before building an additive 

utility function; this requires the additive independence of indicators, which is virtually impossible in 

IBVA (Clemen and Reilly, 1999). The uncertainties attached to stakeholder preference are not usually 

taken into account (Hinkel, 2011a). For example, a methodology developed by de Chazal et al. 2009 

to incorporate multiple-agents in vulnerability assessments, nevertheless makes the unlikely 

assumption of a single, coherent score from each group of stakeholders, hence overlooking variable 

and/or uncertain opinion within each group.  In fact, various sources of uncertainty in vulnerability 

assessment have been highlighted in the literature, and will be discussed below (Araújo et al., 2005; 

Barnett, 2001; Füssel and Klein, 2006; Fussel, 2010; Kelly and Adger, 2000; Malone and Brenkert, 

2008; Parry et al., 2007; Patt et al., 2005b; Vincent, 2007). While some have argued that probabilities 

of impacts ought to be used in choosing adaptation options (New et al., 2007), probability 

distributions are much more difficult to use in conjunction with the social dimensions of 

vulnerability, especially adaptive capacity (Dessai et al., 2009). 

The theoretical and practical challenges posed by aggregation of MCDA problems have been 

recognized by many authors (Böhringer and Jochem, 2007; Clemen and Reilly, 1999; Ebert and 

Welsch, 2004; Füssel, 2007; Greco, 2004; Hinkel, 2011b; Keeney and Raiffa, 1993; Klein, 2009). 

However, to the best of our knowledge, no paper on vulnerability to climate change has focused on 

this issue from an IBVA perspective, even less suggested alternatives to utility-based approaches for 

IBVA. There is clearly a need for aggregation methods that can tackle the problems discussed above 

(e.g., uncertainty, lack of common scale for indicators and absence of additive independence of 
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indicators). Our paper is concerned with this particular methodological problem. Specifically, we 

argue for a different approach to the generation of vulnerability rankings. The approach, based on a 

family of techniques known as Outranking Methods, generates rankings of comparable objects 

through structured pair-wise comparisons without resorting to a utility function. Three significant 

advantages of these methods are that they a) do not convert non-commensurate variables into a 

common scale and can hence more easily aggregate indicators of different scales (e.g. cardinal, 

ordinal, interval) and different nature (e.g., environmental, social, economic etc), b) do not require 

indicator additive independence and c) can better accommodate uncertainty in preference 

structures and imprecision in measured conditions than conventional additive aggregation 

procedures (Polatidis et al., 2006). Outranking methods, first proposed by Roy 1968, were developed 

in the field of multi-criteria decision analysis (MCDA), a sub-discipline of decision science, in order to 

aid policy-makers in choosing between different alternative actions under conflicting criteria and a 

high level of uncertainty (Brooks, 2003; Figueira. J, 2005; Hokkanen and Salminen, 1997; Kangas. A, 

2001). Outranking approaches have been criticized for axiomatic violations such as rank reversal and 

intransitivity, as well as difficult data requirements in large, complex problems (Figueira; et al., 2010; 

Wang and Triantaphyllou, 2008). Nevertheless, they appear to have strong descriptive validity and 

have been successfully deployed in a range of decision-making contexts (De Boer et al., 1998; El 

Hanandeh and El-Zein, 2010; Geldermann et al., 2000; Hokkanen and Salminen, 1997; Kangas et al., 

2001; Papadopoulos and Karagiannidis, 2008; Pohekar and Ramachandran, 2004).  

We reformulate IBVA problems within an outranking framework and apply a widely-used outranking 

method, ELECTRE-III, to assess the relative vulnerabilities to heat stress of 15 local government areas 

(LGA) in metropolitan Sydney. We compare additive and multiplicative aggregation to ELECTRE III 

aggregation and assess the robustness and sensitivity of ELECTRE III rankings.  For the remainder of 

the paper, we adopt a definition of vulnerability, generally agreed upon in the literature, as a 

measure of potential harm, in the present or future, to one or more valued attributes of a socio-

ecological system from single or multiple hazards (Brooks, 2003; Füssel, 2007; Füssel., 2004; Luers et 

al., 2003; Metzger et al., 2005). 

In the remainder of the paper, we first describe major sources of uncertainty in IBVA then present 

the problem of aggregation and the challenges emanating from it. Next, we develop an outranking 

framework for aggregation as an alternative to global-utility aggregation. We illustrate fundamental 

features of the proposed framework through a simple example. Finally, we apply the methodology 

to the assessment of vulnerability to heat of a number of 15 local councils in Sydney and compare 

rankings generated by the outranking approach to those yielded by additive and multiplicative 
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aggregations.  

2.0 Uncertainty in Indicator-Based Vulnerability Assessments 

Uncertainty in any assessment of vulnerability to climate change emanates from a number of 

sources, at both the biophysical and social ends of the analysis. The most significant uncertainty is 

arguably an epistemic one attached to predictions of global circulation models (GCMs) and due to 

processes and feedback mechanisms that are unknown, poorly understood or difficult to quantify 

(Füssel and Klein, 2006; Heal and Kriström, 2002; Patt et al., 2005a; Reilly et al., 2001). The process 

of downscaling GCM predictions to regional and local levels adds another layer of  uncertainty 

mostly due to unknown processes at these scales or poor precision due to the spatial resolution of 

GCMs, or both. All of these sources of uncertainty are important and have received significant 

attention in the literature (e.g., Adger and Vincent, 2005; Hawkins and Sutton, 2009; New et al., 

2007). However, in this paper, we are concerned with the additional uncertainty attached to 

indicator-based studies that combine the biophysical and socio-economic ends of risk assessment, 

typically represented by the three dimensions of exposure, sensitivity and adaptive capacity. These 

assessments either start from a climate-change scenario and attempt to quantify vulnerability at 

some point in the future or they might study vulnerability to climate hazards in the present. Either 

way, at least three sources of uncertainty need to be considered in the process of indicator selection 

and manipulation. Following the typology proposed by Walker et al., 2003), we distinguish between 

three major sources of uncertainty that are relevant in the context of IBVA.  

Epistemic uncertainties in contextual understanding operate at the indicator-selection stage. They 

emanate from incomplete knowledge of processes generating vulnerability, be they biophysical, 

socio-economic or institutional, and can result in significant deficiencies in indicator-based models. 

Because IBVA is quantitative, important processes may be overlooked and, for processes that have 

been identified, suitable indicators may not be available or, if they are, may not be readily 

quantifiable. 

Epistemic uncertainties in understanding model structure (fundamental uncertainties) relate to the 

exact relationship between indicators and the ‘vulnerability’ which they are supposed to represent, 

as well as the relative importance of indicators if a global utility function is used. The two problems 

are obviously related. These relationships are often unknown, or known only qualitatively. This is 

due to the combined biophysical and socio-economic nature of the assessments which leads to an 

inductive and/or normative approach to indicator selection, as opposed to deductive, theory-driven 

approaches (Hinkel, 2011b; Vincent, 2007). Deductive approaches are difficult to develop and, in 
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making them operational, researchers often come up against the problem of lack of availability of 

suitable data. As a result, it is practically impossible to select a set of additively independent 

indicators, generate a one-on-one correspondence between indicators and processes producing 

vulnerability or establish mechanistically the way indicators should be combined to reflect 

vulnerability generated by a combination of processes. Instead, the selection and aggregation of 

indicators depends in part on information provided by the stakeholders, either as a source of 

knowledge about the system or as the expression of preferences. 

Statistical uncertainty in system data (imprecision) derives from the random and non-random 

variability of indicator levels, especially if they are averaged over spatial or temporal scales and/or 

projected into the future. One particular form of imprecision is due to the relatively subjective 

process by which some indicators (or the weights attached to them, when weights are used) are 

evaluated. This can be the result of vagueness in individual judgment or variances in the judgment of 

multiple stakeholders or experts. Imprecision and subjectivity can in principle be quantified with 

probability distributions, intervals of confidence or fuzzy sets; however, the analysis framework has 

to recognize and accommodate these uncertainties. 

In this paper, the methodology we propose caters for fundamental uncertainties and imprecision. 

Although we recognize the importance of epistemic uncertainties for IBVA studies, they are beyond 

our scope here. Specifically, we show that because of the fuzzy structure of outranking methods and 

the way they build indicators around preference thresholds, incorporating uncertainty related to 

model structure and system data becomes an intrinsic part of the model building exercise and less 

likely to be omitted. 

3.0 Aggregation in Indicator-Based Vulnerability Assessment 

The problem of aggregating a number of vulnerability indicators to generate vulnerability rankings 

can be represented as follows. Let sj={s1, …., sn} be a set of n comparable socio-ecological systems 

(SES) which are to be ranked according to the vulnerability of a valued attribute to one or more 

climate hazards based on a set of m indicators Ii={I1, …, Im}. Each indicator has a linear or non-linear 

relationship to vulnerability, even though it is not always possible to characterize this relationship 

with precision. A vulnerability matrix  Iij  (i = 1, m; j = 1, n) is constructed whereby each column 

representing  an SES and each row a given indicator, with Iij  denoting the value Ii for Sj . If each 

indicator, independently from the others, yields the same ranking of SESs as all other indicators, no 

aggregation is needed. This case is of course idealistic and in IBVA, the indicators are almost always 

conflicting. Depending on the type of aggregation used, a set of weights or votes wi={w1, …., wm} may 
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be allocated to the set of indicators, with wi reflecting the importance of indicator Ii relative to other 

indicators.  

Table 1 clearly shows that the structure of IBVA problems is analogous to multi-criteria decision 

analysis (MCDA) structure, with alternatives and criteria in the latter becoming SESs and indicators  

in the former, and similar issues of incommensurability, uncertainty and multiple stakeholders found 

in both types of problems. 

The predominant approach in the literature on vulnerability assessment, based on additive or 

multiplicative utility functions, consists of converting each indicator into a normalized value on 

cardinal or ordinal scales or standardizing it relative to a mean, then generating a weighted sum or 

product as a utility function (Clemen, 1996):  

 

AMj = 1
∑ wi
m
i=1

∑ wiIi̅jm
i=1            (1) 

GMj = �∏ Ii̅jm
i=1

m           (2) 

where AMj and GMj are additive (arithmetic mean) and multiplicative (geometric mean) utility 

functions for SES j, respectively; Ii̅j is the normalized version of vulnerability matrix Iij,. Vulnerabilities 

of SESs are ranked based on the values of AMj or GMj. Henceforth, we will refer to procedures using 

(1) as Arithmetic Aggregation and those using (2) as Geometric Aggregation. This approach is not 

confined to climate research and is widely used in the literature on environmental and human 

development indices (Barnett et al., 2008; Bohle et al., 1994; Cutter et al., 2003; Preston et al., 2008; 

Rygel et al., 2006)  

The use of utility functions for building indices has generated some debate in the literature. For 

example, Ebert and Welsch, 2004 analysed both additive and multiplicative aggregations in relation 

to a specific validity criterion, namely that the resulting index should yield identical rankings when 

different normalizations or standardisations are used. They found that multiplicative aggregations 

have better validity than additive ones, and better reflect synergetic processes between indicators. 

However, multiplicative aggregation can be difficult to communicate to stakeholders and experts. 

Munda and Nardo, 2009 argued that a Condorcet approach, based on pairwise comparisons is more 

suited for building country-based environmental indices. A full review of the literature on indices is 

beyond the scope of this paper and the reader is referred to Parris and Kates, 2003, Gudmundsson, 

2003, Ebert and Welsch, 2004, Böhringer and Jochem, 2007, Barnett et al., 2008 and Munda and 
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Nardo, 2009 . Instead, we will focus specifically on IBVA.  

IBVA’s fundamental uncertainties and imprecision, discussed earlier, make requirements of additive 

independence and complete knowledge of system interactions by the analyst very difficult to satisfy. 

For example, a number of socio-economic indicators are typically selected for representing the 

adaptive capacity of a community (e.g., % of population with high-school degree, average household 

income, % of population in single-parent households); however, these indicators are often 

correlated and knowledge about the way they might combine to indicate higher or lower 

vulnerability is very difficult to generate. As a result, IBVA studies commonly use a utility function 

without providing an objective basis for its construction, especially in relation to the weights applied 

to each indicator and the assumption of complete compensation between indicators in the case of 

additive aggregation (El-Zein and Tonmoy, 2014; Hinkel, 2011a; Tonmoy and El-Zein, 2013). 

Questions such as how much an “advantage” in adaptive capacity make up for an increase in 

exposure or whether there is a limit beyond which compensation is no longer possible are crucial 

and yet largely ignored in IBVA. This problem is compounded by the subjective component of the 

assessment, especially the problem of eliciting perceptions of vulnerability from multiple 

stakeholders (which, in the MCDA analogy, corresponds to eliciting the preference structure of 

multiple decision-makers). 

We argue therefore that an outranking framework, based on a Condorcet approach and pairwise 

comparisons, may be better suited to the inherent uncertainty and imperfect knowledge that 

characterizes IBVA problems, than methods based on additive or multiplicative aggregation, because 

the theoretical requirements of the former are less stringent. We show that, when eliciting 

vulnerability perceptions from stakeholders, an outranking method recognizes and foregrounds the 

uncertainties discussed above.  

4.0 Outranking Framework for IBVA Problems 

4.1 Background 

A set of methods evolved from the late 1970s to the 1990s, called outranking procedures (OP), as an 

alternative to MAUT in infrastructure and environmental decision-making studies to deal with the 

problem of incommensurate criteria and uncertainty. Given that MCDA and IBVA have analogous 

structures and share similar features (table 1), outranking techniques developed for MCDA are 

applicable to IBVA. Rather than convert decision criteria into commensurable scales and build a 

utility function, outranking methods proceed by conducting comparisons of each pair of alternatives 
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against each criterion, based on fuzzy preference and indifference relationships, and building a 

credibility matrix which reflects, on a scale of 0 to 1, the strength of the statement “Alternative A is 

at least as good as Alternative B”. ELECTRE III is one of the most widely used outranking procedures 

in the literature especially because, compared to other outranking methods, it offers a more 

sophisticated characterization of uncertainty in preference structures. For the remainder of the 

paper, we base our formulation on ELECTRE III; however, other outranking procedures can be 

considered.  

4.2 ELECTRE III Outranking Procedure 

In ELECTRE III, (El Hanandeh and El-Zein, 2010; Hokkanen and Salminen, 1997; Roy, 1978) the degree 

to which the pairwise comparisons support the above statement (concordance) AND whether any 

criterion strongly contradicts it (discordance) are quantified. Concordance is based on a preference 

threshold, above which a difference in performance between A and B is considered significant and 

an indifference threshold below which such a difference is insignificant. Discordance is based on a 

veto threshold which caters for complete incommensurability by allowing a single, excessively high 

or low, criterion/indicator to alter the ranking of an alternative/SES, regardless of its performance 

against other criteria/indicators. Hence, by adopting fuzzy definitions of preference, non-

compensation and relative compensation, ELECTRE III goes beyond the simple Condorcet model of 

preference suggested by Munda and Nardo, 2009 and accommodates a wider range of preference 

configurations. In addition, by using two, ascending and descending ranking pre-orders, it provides 

an elegant way of eliciting incomparability, i.e. cases when the non-compensatory nature of some 

indicators yield conflicting relative ranks of two alternatives. 

On the other hand, three limitations of ELECTRE have been discussed in the literature: rank reversal, 

intransitivity and complexity (De Montis et al., 2000; Figueira; et al., 2010). First, intransitivity 

sometimes occurs in ELECTRE III, whereby decomposing a set of alternatives into smaller analysis 

sets, under otherwise identical conditions, yields a change in ranking. Figueira; et al., 2010) has 

shown that this stems from binary relations of indifference which are in fact intransitive and, hence, 

faithfully mirror decision-making. Second, rank reversal occurs if a non-optimal alternative is 

replaced with a worse one, all other things equal, and the new ranking yields, counter-intuitively, a 

change in rankings. (Rank reversal is sometimes referred to in the outranking literature as violation 

of independence with respect to irrelevant actions). Roy, 1973 and Roy and Martel, 2006 have argued 

that, rather than a numerical aberration, rank reversal is once again an authentic reflection of real 

decision-making when data quality is poor and preference structures are uncertain. The extent to 
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which rank reversal and intransitivity are present in IBVA, and whether they are acceptable 

outcomes of the analysis, will need to be considered on a case-by-case basis. It is possible, for 

example, to assess the robustness of rankings by conducting repeated analyses that test for the 

existence of rank reversal and intransitivity. 

Third, the complexity of the outranking procedure in ELECTRE can be difficult to communicate to 

stakeholders who tend to prefer simple methods and clear-cut outcomes. However, this is part of a 

bigger problem of interaction between science and decision-making, with stakeholders sometimes 

failing to see, and scientists failing to communicate, that assessment methods such as ELECTRE are 

decision-aiding rather than decision-making tools, especially under high uncertainty (De Montis et 

al., 2000).  

In what follows: 

a) We reformulate IBVA problems in an outranking framework, based on ELECTRE III, using a 

“vulnerability” notation rather than a “decision-making” one.  

b) We define thresholds of difference for vulnerability and translate them into verbal questions 

that can be used in eliciting data from stakeholders for model building, while allowing for 

the possibility of simulating non-linear relationships between vulnerability and indicators.  

Outranking Vulnerability Assessment Framework 

In the presentation below, we assume, without loss of generality, that the higher the value of the 

indicator, the more vulnerable the SES. For each pair of SESs, we can define three different 

categories of relative vulnerability: 

a) b is strictly more vulnerable than a according to criterion Ii if and only if Iib − Iia ≥ pi, 

where pi≥0 is the relative vulnerability threshold for indicator Ii; 

b) b is indifferent to a according to criterion Ii if and only if |Iib − Iia| ≤ qi, where qi≥0 is the 

indifference threshold for indicator Ii; 

c) b is weakly more vulnerable than a according to criterion Ii if and only if qi < 𝐼𝐼ib − Iia < pi. 

The ELECTRE III ranking process is conducted in three stages: 

Stage 1: Concordance and Discordance Matrices 

A concordance matrix for each indicator Ii is defined by: 
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ci(a, b) = �

0               if Iib − Iia ≥ pi
pi−(Iib−Iia)

pi−qi
   if qi < 𝐼𝐼ib − Iia < pi

1              if Iib − Iia ≤ qi

        (3) 

 ci(a,b) is a measure of the truth of the statement that “a is at least as vulnerable as b according to 

indicator I”. Note that, it may be more convenient in some cases to write equation 3 in terms of 

relative rather than absolute differences between indicators; this would require thresholds to be 

defined as percentages. Equation (3) is a representation of vulnerability as a fuzzy-set relationship 

shown in figure 1. pi and qi are usually constants; how to determine them is discussed below.  

The discordance matrix for each indicator i is defined by: 

di(a, b) = �

0                 if Iib − Iia ≤ pi
(Iib−Iia)−pi

vi−pi
   if pi < 𝐼𝐼ib − Iia < vi

1                if Iib − Iia ≥ vi

       (4) 

where vi is called dominance threshold for indicator i and reflects a difference between indicator 

values above which b becomes more vulnerable than a, regardless of the performances of a and b on 

other indicators. We will refer to qi, pi and vi collectively as thresholds of difference to emphasize that 

they provide a reference for disparities between indicators rather than the indicators themselves.  

Stage 2: Outranking Matrix 

The statement “a is at least as vulnerable as b” (denoted aVb) is considered true provided: 

i. a “majority” of indicators supports it (concordance principle); 

and 

ii. no single indicator vetoes it (discordance principle). 

The concordance principle can be measured by the following concordance index: 

C(a, b) = 1
∑ wi
m
i=1

∑ wici(a, b)m
i=1          (5) 

where wi is a vote for indicator Ii, applied to the pair-wise comparisons, rather than a weight in a 

global utility function, that is, it modifies the concordance values ci, rather than the indicators in the 

vulnerability matrix. An outranking matrix combines the concordance and discordance principles in 

order to quantify the degree to which aVb is true. It is given by: 
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S(a, b) = �

     C(a, b)                                                                 if di(a, b) ≤ C(a, b)  ∀ i = 1, m
C(a, b)∏ [1−di(a,b)]

[1−C(a,b)]i∈Iv(a,b)                                                             otherwise 

where Iv(a, b) is the set of indicators for which di(a, b) > C(a, b)
   (6)  

Stage 3: Distillation and Ranking Procedures 

The most vulnerable SES is the one that outranks the largest number of SESs and is outranked by 

least. Hence, S(a,b) is used next to build two partial, descending and ascending pre-orders D1 and D2 

as follows. A matrix T can be defined as: 

T(a, b) = �1               if S(a, b) ≥ λ− g(λ)
0                                  otherwise

       (7) 

where λ= max S(a, b) and g(λ) is a threshold of indifference applied to the outranking matrix in 

such a way that only values of S(a,b) close enough to λ yield T(a,b)=1. g(λ) is typically set at 0.15 

(Vallée and Zielniewicz, 1994) when λ=1 or, more generally, at -0.15λ+0.3. Therefore, g(λ)  

represents a cut-off point of “defuzzification”, ie the conversion of the continuous scale of the 

outranking matrix into a binary one that is used to generate final rankings. Hence, sensitivity of 

rankings to g(λ) will need to be assessed. The sum of rows in T(a,b) computes the number of SESs 

for which aVb is true, while the sum of columns is the number of SESs for which bVa is true. A vector 

Q(a) is defined as the difference between these two sums:  

Q(a) = ∑ T(a, k)m
k=1 − ∑ T(k, a)m

k=1         (8) 

Equation (8) is used to generate two ascending (D1) and descending (D2) pre-orders and a final  

ranking as D1 ∩ D2.  

4.3  Determination of Thresholds of Difference  

In aggregating indicators for an IBVA problem, the most important advantages of an outranking 

approach such as ELECTRE III are as follows: 

a) no conversion of indicators into a normalized scale is performed; pair-wise comparisons of 

SESs on each criterion are conducted instead and aggregation is performed on the outcome 

of these comparisons (concordance index) rather than a normalized indicator; 

b) the analyst is compelled to spell out assumptions about compensation and non-

compensation between indicators at the outset, through the definitions of vi and wi, with  

the possibility of specifying complete compensation, complete non-compensation, as well as 

a degree of compensation in between (discordance matrix). 
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c) the analyst is compelled to quantify fundamental uncertainties discussed above, at the 

outset, through the definitions of qi, pi and g(λ).  

The determination of thresholds qi, pi and vi , as well as the votes wi is therefore an important part of 

problem definition. In vulnerability terms, they can be defined, and determined, by the following 

questions: 

1. “All other indicators being equal, what is the difference in values of indicator Ii for two SESs 

below which the vulnerabilities of the two systems are the same?” (indifference threshold 

qi). 

2. “All other indicators being equal, what is the difference in values of indicator Ii for two SESs 

above which one system is strictly more vulnerable than the other?” (relative vulnerability 

threshold pi). 

3. “What is the difference in values of indicator Ii for two SESs above which one system is 

strictly more vulnerable than the other AND no advantage by any other indicator, or 

combination of other indicators, can compensate for it?” (dominance threshold vi). 

4. “In determining whether a ‘majority’ of indicators support the statement that one SES is at 

least as vulnerable as another, what is the strength of the ‘vote’ by indicator Ii relative to a 

reference indicator?” (vote wi).  

The preposition “All other indicators being equal” is used only for the purpose of eliciting thresholds 

for individual indicators and that, in generating rankings, the outranking analysis considers of course 

ALL indicators together. Note that we have tested questions 1 to 4 in a separate project in which we 

interviewed stakeholders in order to elicit thresholds, for the purpose of assessing vulnerability to 

sea-level rise of 8 small coastal communities south of Sydney; we will be reporting this research in 

the future. 

In the literature on MCDA, different methods for calculating the thresholds have been proposed 

(e.g.,  Roy, 1978; Rogers and Bruen, 1998; Roy et al., 1986). M. Maystre, 1994  argues that q and p 

should be interpreted as minimum and maximum margins of uncertainty, respectively. However, in 

IBVA, the two thresholds can reflect uncertainty, imprecision, subjectivity or non-linearity. For 

example, small differences between indicators may be too small to indicate differences in 

vulnerability (qi) because a) they fall within statistically random or non-random fluctuations of the 

indicator (e.g., as they are up-scaled to the spatial level of the analysis); b) stakeholders have offered 

a normative judgment about the nature of the indicator in its relationship with vulnerability or c) a 

non-linear relationship has been mechanistically established between indicator and vulnerability. 
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Which of these three approaches to setting thresholds is used will depend on the indicator in 

question and, given the mix of biophysical, institutional and socio-economic indicators in IBVA, a mix 

of approaches would be expected. More generally, the elicitation of a preference structure from 

stakeholders is subject to ongoing research in the outranking community and the reader is referred 

to Beroggi, 2000 and Kodikara et al., 2010 for more details on this. 

It is important to keep in mind that the approach we are proposing attempts to capture the 

“vulnerability” of an SES and the approach is, at least on this account, descriptive. On the other 

hand, since vulnerability depends on both “objective” risk factors (e.g., sea level rise, proximity to 

coastline, physiological or economic sensitivity of population to risk) and “subjective” or “normative” 

factors (e.g., risk perception, relative importance of valued attributes to the community), the 

proposed approach “prescribes” a way of capturing and combining these factors.  What makes an 

outranking approach attractive for vulnerability assessment, therefore, are the fuzzy and non-

compensatory properties of the methods, rather than the historical impetus for their emergence, ie 

replicating human decision-making structures. As a consequence, despite the strong “descriptive” 

element of the approach, validating it by somehow measuring vulnerability independently, is not 

possible.  

 

5.0 Illustrative Example 

Table 2 illustrates fundamental outranking relations and their effects on vulnerability assessment 

using a simple hypothetical model of 3 SESs and 3 indicators. The nine scenarios shown have the 

same vulnerability matrix but different thresholds of difference. Equal votes wi are given to the three 

indicators. Case 1 represents a scenario in which all pairwise differences between indicators are 

smaller than the relevant indifference threshold and all SESs are equally vulnerable. Moving to cases 

2-4, the thresholds for I2 and I3 remain the same, while those of I1 change. In case 2, all I1 differences 

(|I1-I2|; |I2-I3| and |I3-I1|) fall between qi and pi: vulnerability is determined by I1 and increases linearly 

with it. In case 3, qi and pi for I1 lead to both strict and weak relative vulnerabilities. If the I1 

indifference threshold is increased to 1.1, as happens in case 4, then SES2 and SES3 have equal 

vulnerabilities because |I12 – I13| <q1. In case 5, the first two indicators determine the final ranking, 

because the differences between indicators cover all three cases of indifference, weak and strict 

relative vulnerabilities. In this case, unlike the previous ones, the respective votes given to indicators 

have some impact on the outcome. Case 6 demonstrates the effect of the dominance threshold, 

now set to 3.5% for I2, whereby SES3 cannot be found to be more vulnerable than SES1, regardless 
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of the pair’s performance on other indicators. In case 7, there is vulnerability dominance of SES3 

over SES1 according to I1 and vice versa according I2. Likewise, SES2 has contradictory dominance 

relationships with SES1 and SES3. Hence, incomparability arises which reflects conflicting indicators 

AND complete absence of compensation when differences exceed the dominance threshold. Case 8 

is similar to case 7 except that incompatible dominance occurs only between SES1 and SES3 and a 

partial ranking is obtained. Finally, in case 9, all indicators influence the outcome, with various levels 

of “strict vulnerability”, “weak vulnerability” and “indifference”, as well as “dominance” occurring. 

6.0 Real-Life Application : Vulnerability to Heat Stress in Sydney 

We adapted an indicator-based model of vulnerability to climate change for 15 Local Government 

Area (LGA) in Sydney, first developed by Preston et al., 2008. The LGA is a statistical division of local 

government in Australia. The 15 LGAs, shown in Figure 2, were originally selected because they form 

a group of coastal councils interested in developing climate adaptation policies. Sydney, like other 

cities in Australia and elsewhere, suffers from higher mortality on hot days  (e.g.,  Hu et al., 2008; 

Vaneckova et al., 2008) Vulnerability to heat was represented by a set of 6 indicators representing 

exposure, 4 indicators for sensitivity and 12 indicators for adaptive capacity (see Table 3). Preston et 

al., 2008) developed a conceptual model of vulnerability to heat stress for Sydney where exposure 

and sensitivity indicators were based on predictors of heat-related mortality and morbidity from the 

epidemiological literature. Adaptive capacity indicators were based on the capacity to access 

material capital, financial resources and so on. For further details on the rationale behind the 

selection, we refer the reader to Preston et al., 2008). A measure of error for each indicator was 

inferred or collected from data descriptors and methodologies provided by the sources, and used to 

derive thresholds. The full vulnerability matrix, as well as the data sources and the thresholds, are 

given in table A1 of the Appendix for the base case. Both the Spearman’s and Pearson’s correlation 

factors were used to compare sets of rankings, although only the former is shown because the two 

factors yielded consistent results.  

The presence of rank reversal was systematically tested by re-analysing the base case with one LGA 

withdrawn at a time and rankings compared to those of the base case. This was conducted for all 

LGAs except the most and least vulnerable. The rankings were found to be robust, with the first and 

last LGA never changing and an average and minimum Spearman coefficients, relative to the base 

case, of 0.94 and 0.92, respectively. Where rank reversal did occur, it was around the middle ranks 

where the relatively small differences in scores between LGAs makes them more prone to instability. 

Sensitivity of rankings to changes in g (λ) (up to ±33%) were also tested and results were found, once 
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again, robust. 

Table 4 shows vulnerability rankings of the 15 LGAs for the base case. All three aggregation methods 

(ELECTRE III, arithmetic and geometric) identify Rockdale, Botany Bay and Randwick as the most 

vulnerable and Mosman, Pittwater and Hornsby as the least vulnerable. The former three have 

relatively low values of adaptive capacity indicators, although Botany Bay and Rockdale’s exposures 

are ranked high as well. Interestingly, Rockdale is ranked ninth in terms of sensitivity but still comes 

first overall on account of its relatively low adaptive capacity. Hornsby and Pittwater have large 

areas covered with vegetation and therefore low urban heat island effect (represented by the last 

three indicators of exposure), whereas Mosman is an LGA with a large proportion of population with 

a high socio-economic background. “Sydney”, which denotes the Central Business District, has high 

exposure as a result of the urban heat-island effect but relatively low sensitivity because its 

population does not include a large proportion of over 65 and under 4.  

Arithmetic aggregation and ELECTRE III yield similar but not identical rankings. This is expected for 

the base case because qi and pi reflect a relatively small amount of uncertainty, no non-linearity and 

no dominance (vi=∞). The differences between the rankings generated by, on the one hand,  

Geometric aggregations and, on the other hand, arithmetic and ELECTRE III aggregations, are rather 

large because the geometric aggregation is multiplicative and therefore synergetic, i.e., it penalises 

more heavily LGAs with low performance in more than one indicator, regardless of any thresholds or 

weights. Nevertheless, the same groups of the three most and three least vulnerable LGAs are 

identified by the three methods, and the variations in rankings occur in the group of LGAs that fall 

between these two extremes.  

The sensitivity of ELECTRE III rankings to thresholds of difference and to votes are shown in Table 5. 

Rankings are robust under changes of up to 100% in qi and pi. As expected, the introduction of 

dominance thresholds for all indicators has a bigger impact on rankings than changes in qi and pi, 

with a Spearman correlation factor of 0.84 when vi=2pi. The last six rows in Table 5 show the change 

in rankings when votes in ELECTRE III and weights in Arithmetic aggregation are increased by 100% 

for all indicators of one dimension at a time, while the ratios of the remaining weights in the 

weighted mean calculations are kept constant. It should be noted that, in the analyses reported in 

Table 5, all 22 indicators were lumped together (non-hierarchical aggregation) to generate 

vulnerability ranking. . Outranking results are once again robust to changes in votes, and the 

rankings of Arithmetic aggregation are more sensitive to changes in weights of sensitivity and 

adaptive capacity indicators, compared to the equivalent outranking sensitivity to votes. This is due 
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to the fact that votes in ELECTRE III are applied to the concordance matrix generated from the 

pairwise comparisons, rather than a utility function. 

7.0 Conclusions 

Additive aggregation procedures have remained dominant in the IBVA literature despite the fact that 

their theoretical requirements of additive independence and complete system knowledge are 

almost never satisfied in the context of IBVA. We have argued here that outranking procedures, 

previously only applied to decision-making problems, can be used for vulnerability assessment and 

may provide a better approach for teasing out policy-relevant information from uncertain 

vulnerability data.  

Outranking procedures implicitly recognize the quantitative and qualitative dimensions of the 

assessment and work with descriptive categories that are matched with the level of quantitative 

sophistication of available data. One interesting effect of this is that, as we showed earlier, 

outranking procedures can yield incomparability of two SESs, usually as a result of conflicting 

dominance thresholds and absence of compensation. Indeed, an outranking approach forces the 

analyst to spell out and characterize the degree of uncertainty in the relationship between indicator 

and vulnerability, while allowing for a mix of cardinal and ordinal variables to be included. The 

process of building the indicator-based model can in fact be structured around the four questions 

we proposed as a way of determining difference thresholds and votes because they provide a 

systematic way of canvassing proposed indicators and bringing to the fore assumptions underlying 

the model.  

Furthermore, outranking methods yield rankings and ranking-based scores rather than indices. This, 

we believe, is both a limitation and a strength in the context of IBVA. It is a limitation because it does 

not allow us to compare indices calculated in different studies and different contexts, albeit 

following a common, benchmarked procedure—which is what indices are meant to do. Nor does it 

tell us how vulnerable a given SES is, only whether it is more or less vulnerable than another SES. It is 

a strength because it highlights the comparative nature of index-building, and a sometimes 

forgotten fact that, while we may be able to compare vulnerabilities, we cannot measure them or 

reduce them to a single variable.  

Our research raises a number of questions. Are some outranking procedures better suited for IBVA 

than others? How can non-linearities be incorporated in the outranking aggregation process? In a 

preliminary investigation, we found that non-linear relationships between indicator and vulnerability 
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can be represented in outranking procedures by extending the definitions of relative vulnerability 

and indifference thresholds. This research is ongoing and will be reported in a separate paper. 

Developing a mathematical typology of thresholds and non-linearities in models of exposure, 

sensitivity and adaptive capacity may be another suitable starting point for such research. To our 

knowledge, very little can be found in the literature on this. On the other hand, applying outranking 

procedures in actual multi-stakeholder assessment exercises would help in further refining and 

extending the proposed approach. Of particular interest is the extent to which the four questions we 

used to define thresholds and votes are effective in eliciting them from data, experts and 

stakeholders.  
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Table 1. Analogy between IBVA and MCDA problems  

 IBVA MCDA 

Problem 
Definition 

To rank socio-ecological systems according to the 
vulnerability of a valuable attribute  to one or more 
climate hazard  

To rank decision alternatives according to their 
performances on a set of criteria 

Socio-Ecological Systems sj={s1, …., sn} Decision Alternatives Oj={o1, …., on} 

Vulnerability-Generating 
Processes  Decision Objectives  

Vulnerability Indicators Ii={I1, …, Im} Attributes/Criteria Ci={C1, …, Cm} 

Vulnerability Matrix Iij (i=1,m; j=1,n) Decision Matrix Rij (i=1,m; j=1,n) 

Indicator Weights/Votes* wi={w1, …., wm} Criteria Weights/Votes* Wi={W1, …., Wm} 

Problem 
Features 

Input from multiple experts and stakeholders Input from multiple decision-makers, experts 
and stakeholders 

Inconvertibility of indicators Incommensurability of criteria 

Uncertainties  (fundamental; fuzziness; data) Uncertainties  (benefits and impacts; fuzziness; 
data) 

Thresholds 
of 

Difference 

Indifference Threshold qi Indifference  Threshold qi 

Relative Vulnerability Threshold pi Preference Threshold pi 

Dominance Threshold vi Veto Threshold vi 

*”weights” in MAUT methods become “votes” in outranking methods 
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Table 2. Analysis Set 1: Nine Simple Scenarios and Effects of Thresholds on Rankings in ELECTRE III 
(1: most vulnerable; 3: least vulnerable) 

*SES2 more vulnerable than SES1 and SES3, but SES1 and SES3 are incomparable to each other 

Cases Indicator q p v SES1 SES2 SES3 

Case 1 
Dominated by 
indifference  

I1 5 6 ∞ 24 27 28 
I2 5% 6% ∞ 12% 11% 8% 
I3 20% 30% ∞ 50% 60% 45% 

Vulnerability Ranking 1 1 1 
Case 2 

Dominated by a single, 
linear indicator 

I1 0 8 ∞ 24 27 28 
I2 5% 6% ∞ 12% 11% 8% 
I3 20% 30% ∞ 50% 60% 45% 

Vulnerability Ranking 3 2 1 

Case 3 
Dominated by a single, 

non-linear indicator 

I1 0.8 3.5 ∞ 24 27 28 
I2 5% 6% ∞ 12% 11% 8% 
I3 20% 30% ∞ 50% 60% 45% 

Vulnerability Ranking 3 2 1 

Case 4 
Dominated by a single, 

non-linear indicator 

I1 1.1 3.5 ∞ 24 27 28 
I2 5% 6% ∞ 12% 11% 8% 
I3 20% 30% ∞ 50% 60% 45% 

Vulnerability Ranking 3 1 1 

Case 5 
Determined by two, 
non-linear indicators 

I1 1.1 3.5 ∞ 24 27 28 
I2 1% 2% ∞ 12% 11% 8% 
I3 20% 30% ∞ 50% 60% 45% 

Vulnerability Ranking 2 1 2 

Case 6 
Modified by dominance 

threshold 

 

I1 1.1 3.5 ∞ 24 27 28 
I2 1% 2% 3.5% 12% 11% 8% 
I3 20% 30% ∞ 50% 60% 45% 

Vulnerability Ranking 2 1 3 

Case 7 
Incomparable 

I1 0 0.25 0.5 24 27 28 
I2 0% 0.25% 0.5% 12% 11% 8% 
I3 0% 2.5% 5% 50% 60% 45% 

Vulnerability Ranking - - - 

Case 8 
Partly incomparable 

I1 1.1 3.5 3.8 24 27 28 
I2 1% 2% 3.5% 12% 11% 8% 
I3 20% 30% ∞ 50% 60% 45% 

Vulnerability Ranking* 2 1 2 

Case 9 
All 3 indicators 

influencing outcome 

I1 4 6 8 24 27 28 
I2 1% 2% 3.5% 12% 11% 8% 
I3 6% 11% 20% 50% 60% 45% 

Vulnerability Ranking 2 1 3 
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Table 3. Indicator-based model of vulnerability to heat for 15 local government areas in Sydney 
(2006 data unless otherwise indicated) 

Exposure Sensitivity Adaptive Capacity 

Present average January maximum 
temperature 

(2005-2010) 

% population≥65 years of age % population completing year 12 

Average January minimum 
temperature 

(2005-2010) 

% population≥65 years of age and 
living alone 

% population that speaks language 
other than English 

Number of Days > 30oC per Year 

(2005-2010) 
% population≤4 years of age Median home loan repayment 

% of impervious land cover (30 m 
grid) 

% of housing as multiunit 
dwellings 

% home ownership 

Population density 
 

Median household income 

Road density  
 

% household with internet access 

  

Current ratios of assets to 
liabilities of local council 

  

Per capita business rates of local 
council 

  

Per capita residential rates of local 
council 

  

Per capita community service 
expenses of local council 

  

Per capita environmental and 
health expenses of local council 

  

% of population requiring financial 
assistance 
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Table 4. Base case rankings  (1: most vulnerable; SCF: Spearman Correlation Factor) 
 

 
a. b. Scores for arithmetic and geometric aggregation are normalised on a scale from 0 to 1 over a range determined by the minimum and maximum values of the indicator 
for the present set of SESs. Here, the single-indicator scale transformation to the neutral 0-1 scale is linear a. Equal weights are assumed for all indicators. 

 
Arithmetic Mean 
All Dimensions a 

Geometric Mean 
All Dimensions b 

ELECTRE III 
All Dimensions a 

ELECTRE III 
Exposure a 

ELECTRE III 
Sensitivity a 

ELECTRE III 
Adaptive 
Capacity a 

SCF Relative to 
ELECTRE III All 
Dimensions 

0.95 0.76 1 0.80 0.27 0.79 

SCF Relative to 
MAUT-Arithmetic All 
Dimensions 

1 0.75 0.95 0.87 0.23 0.73 

Botany Bay 2 2 2 3 1 2 
Hornsby 14 15 13 11 15 4 
Leichhardt 8 4 9 3 13 11 
Manly 12 9 11 14 2 13 
Mosman 13 13 15 11 5 15 
North Sydney 5 7 5 8 5 6 
Pittwater 15 14 14 15 13 12 
Randwick 3 3 3 6 9 3 
Rockdale 1 1 1 2 9 1 
Sutherland 7 10 5 6 9 6 
Sydney 4 12 4 1 9 4 
Warringah 11 5 8 11 5 6 
Waverley 6 6 5 3 2 6 
Willoughby 9 8 11 8 9 10 
Woollahra 10 11 9 8 5 13 
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Table 5. Sensitivity: effects on rankings of changes in thresholds of difference, votes and weights  
(SCF: Spearman Correlation Factor) 

*In base case pi and qi are used as shown in table A1 to A3 in the supplementary material 
 

 

 

   SCF Relative to 
Base Case 
ELECTRE III 

SCF Relative to 
Base Case MAUT-

Arithmetic 

ELECTRE III 

Base Case Base Case* (vi=∞, pi and qi as 
shown in Table A1 to A3) 

1 0.94 

Sensitivity to  
Thresholds 

0.5qi; 0.5pi 0.97 0.93 
2qi; 2pi 0.94 0.93 
4qi; 4pi 0.82 0.90 
vi=4pi 0.86 0.84 
vi=2pi 0.84 0.73 
g(λ)=-0.1λ+0.2 0.99 0.90 
g(λ)=-0.2λ+0.4 0.93 0.86 

Sensitivity to  
Votes 

Exposure votes wi=2 0.95 - 
Sensitivity votes wi=2 0.94 - 
Adaptive capacity votes wi=2 0.98 - 

Arithmetic 
Mean 

Sensitivity to  
Weights 

Exposure weights wi=2 - 0.98 
Sensitivity weights wi=2 - 0.93 
Adaptive capacity weights wi=2 - 0.87 
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Figure 1. Vulnerability represented by a fuzzy-set relationship : concordance and discordance for 
(q=2, p=4, v=6)  
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Figure 2. Location of the 15 Local Government Areas referred to in the study 
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