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Within quantum information, many methods have been proposed to avoid or correct the deleterious effects
of the environment on a system of interest. In this work, expanding on our earlier paper [1], we evaluate the
applicability of the quantum Zeno effect as one such method. Using the algebraic structure of stabilizer quantum
error correction codes as a unifying framework, two open-loop protocols are described which involve frequent
non-projective (i.e., weak) measurement of either the full stabilizer group or a minimal generating set thereof.
The effectiveness of the protocols is measured by the distance between the final state under the protocol and
the final state of an idealized evolution in which system and environment do not interact. Rigorous bounds on
this metric are derived which demonstrate that, under certain assumptions, a Zeno effect may be realized with
arbitrarily weak measurements, and that this effect can protect an arbitrary, unknown encoded state against the
environment arbitrarily well.
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I. INTRODUCTION

Decoherence of a quantum system of interest through inter-
action with an uncontrolled environment is a key obstacle to
realizing practical quantum information processors. A num-
ber of methods have been proposed to help deal with this prob-
lem, including error avoidance methods such as decoherence
free subspaces [2–4], closed-loop suppression methods such
as quantum error correction (QEC) [5–7], and open-loop sup-
pression methods such as dynamical decoupling (DD) [8–10]
and the quantum Zeno effect (QZE) [11–14]. The typical set-
ting for the QZE is a sequence of frequent projective measure-
ments of an observable. When the frequency of measurements
is high enough, this has the effect of forcing the evolution to
remain within the eigenspaces of the observable. With appro-
priate choices of the observable, the QZE can be exploited to
decouple the system from the environment [9, 15].

In spite of the fact that one method uses fast unitary op-
erations while the other uses frequent measurements, there is
a conceptual similarity between DD and QZE protection of
quantum states, in that both are feedback-free methods. In-
deed, in the “bang-bang” limit of arbitrarily strong and fast
pulses or measurements, it has been shown that DD and the
QZE are formally equivalent [13, 16]. However, strong pro-
jective measurements are an idealization of more realistic,
generalized measurements, and likewise, real dynamical de-
coupling pulses are subject to constraints of finite bandwidth.
It has been shown that DD can work to suppress decoherence
while allowing for universal quantum computation even with
pulses constrained by finite width and repetition rate [17–19].
Until recently, an analogous result was lacking for the QZE.

In our earlier paper [1] we showed how the assumption of
projective measurements can be relaxed and replaced with
weak, non-projective, measurements. Weak measurements
extract less information from the system than the correspond-
ing projective measurements, and consequently do not fully
collapse the state [20, 21]. In the present work, significantly
expanding on our earlier paper [1], we analyze protocols for

realizing a QZE using frequent, weak measurements that are
also non-selective, meaning that outcomes are not recorded,
with the effect that the state after measurement is the ensem-
ble average over all of the possible outcomes. We will show
that these protocols can be used to protect arbitrary, unknown
states encoded within a stabilizer QEC code, arbitrarily well.
This will be referred to as the weak measurement quantum
Zeno effect (WMQZE). Since our protocols involve measur-
ing the stabilizers of QEC codes—a capability that is taken for
granted in QEC theory [22, 23]—but we do not assume that
we can observe or use the measured syndrome, our assump-
tions are weaker than those of QEC, and hence the ability to
perform QEC implies the ability to perform our protocols.

Weak measurements are in some sense the analog of finite
bandwidth DD and are both more realistic and more general
than strong, projective measurements. They capture a large
variety of experimental imperfections and uncertainties [24].
However, here, as in our earlier analysis, the measurements
are treated as instantaneous, and a generalization to measure-
ments of finite duration is still lacking.

The paper is organized as follows. Section II gives essen-
tial background on weak measurements, reviews the WMQZE
protocols introduced in Ref. [1], and states the main result we
prove in the paper: Theorem 1, a distance bound quantifying
the performance of the protocols. Section III describes some
algebraic structures associated with stabilizer quantum error
correction codes and the behavior of weak measurements of
the stabilizer elements with respect to these structures. Sec-
tion IV is concerned with proving Theorem 1. In Section V,
some trade-offs are considered, between the number of mea-
surements M and the final time τ , as well as between M
and the measurement strength ε. Conclusions are presented
in Section VI. Several appendices offer additional supporting
mathematical details.



2

II. BACKGROUND AND STATEMENT OF MAIN RESULT

A. Weak Measurements

Consider a system with Hilbert spaceHS coupled to a bath
with Hilbert space HB . The Hilbert space of the system-
bath composite is denoted H = HS ⊗ HB . Let B(H) de-
note the space of bounded linear operators on H. A measure-
ment of the system can generally be expressed as a positive
operator-valued measure (POVM), comprising a set of “mea-
surement operators” {Mj∈ B(HS)⊗ 1 ⊂ B(H)} acting on
the system and satisfying the sum rule

∑
jM

†
jMj = 1,

which map a state % to %j = Mj%M
†
j /pj with probability

pj = Tr(Mj%M
†
j ). The observables that are to be mea-

sured in the encoded WMQZE protocols will be elements of
the stabilizer group of a given quantum error correcting code
(QECC). As such, they are unitary involutions, i.e., unitary
operators S ∈ U(HS) ⊗ 1 ⊂ U(H) such that S2 = 1, and
therefore have only two possible outcomes (eigenvalues): ±1.
The weak measurement of such an observable on a state %may
be parametrized by the measurement strength ε as [24]

PS,ε(%) = PS(ε)%PS(ε) + PS(−ε)%PS(−ε) (1)

where

PS(ε) := α+(ε)PS + α−(ε)P−S , (2a)

α±(ε) =
√

(1± tanh(ε))/2 , (2b)

and

P±S :=
1

2
(1± S) (3)

are orthogonal projections onto the ±1 eigenspaces of S.
Since PS(ε)2 + PS(−ε)2 = 1, the sum rule is satisfied, and
PS,ε is a well-defined POVM for every ε ∈ (0,∞). Moreover,
PS,ε describes a parametrized curve through POVM space that
interpolates between projective measurement of S at ε = ∞,
and no measurement at ε = 0. These weak, non-selective
measurements will form the building blocks of the WMQZE
protocols to be described herein. It may also be observed that
this 2-term POVM is unitarily equivalent [22] to the 3-term
POVM with measurement operators

M1 =

√
1− ζ
2

(1+S), M2 =

√
1− ζ
2

(1−S), M3 =
√
ζ 1

(4)
where ζ := 2α+(ε)α−(ε) = sech(ε). This three term POVM
may be interpreted as a measurement with a particularly sim-
ple classical error, in which, with probability ζ, no measure-
ment takes place, and with probability 1− ζ a projective mea-
surement of S is performed. It is a completely equivalent
description of the non-selective weak measurement PS,ε, al-
though the selective measurements corresponding to these two
POVMs are not equivalent.

B. The WMQZE Protocols

Previous WMQZE work applied mostly to particular states
[25–28], with some exceptions [29]. In order to protect an
arbitrary, unknown k-qubit state, as well as to facilitate the
analysis that is to come and to allow this WMQZE method
to dovetail easily with other protection schemes like QEC,
we encode the state into an [[n, k, d]] stabilizer quantum er-
ror correcting code (QECC) [7, 22], with stabilizer group
S = {Si}Qi=0, and where S0 ≡ 1. We assume that the code
distance d ≥ 2, i.e., the code is at least error-detecting, with
minimal generating set S̄ = {S̄i}Q̄i=1 ⊂ S, where Q̄ = n− k.
Then every stabilizer element can be uniquely decomposed as
Si =

∏Q̄
ν=1 S̄

riν
ν , where riν ∈ {0, 1}, i.e., the stabilizer el-

ements are given by all possible products of the generators,
whence Q + 1 = 2Q̄. The encoded initial state %0 com-
mutes with all stabilizer elements, and so is supported on the
simultaneous +1 eigenspace of all the elements of S. For a
given measurement strength, a weak measurement operator
PS,ε may be generated for each S ∈ S as in Eq. (1). Since the
stabilizer group S is abelian, the measurements can be per-
formed simultaneously, and simultaneous measurement of the
full stabilizer group can be described by the POVM

Pε :=
∏
S∈S

PS,ε. (5)

Similarly, we could measure just the generators S̄, whence we
define

P̄ε :=
∏
S̄∈S̄

PS̄,ε. (6)

Thus we can now define a weak stabilizer group measure-
ment protocol in which M evenly-spaced measurements of
the full group are performed over a time interval [0, τ ]. The
state of the system-environment composite then evolves as
(PεU(τ/M))

M
(%SB),

(PεU(τ/M))
M

:=

PεU (τ, τM−1)PεU (τj−1, τj−2) · · · PεU(τ1, 0), (7)

where %SB is the initial state of the system-bath composite,
{τj = jτ/M}Mj=1 are the instants at which the measurements
are applied, U(t, t′) is the unitary evolution superoperator of
free evolution over [t, t′], i.e.,

U(t, t′)(·) = T exp
(∫ t

t′
L(s)ds

)
(·) = U(t, t′)(·)U†(t, t′),

(8)

where U(t, t′) is the solution of the differential equation
d
dtU(t, t′) = −iH(t)U(t, t′), with the boundary condition
U(t, t) = 1, and T denotes time-ordering. Here H(t) is
the Hamiltonian of the system-bath composite, i.e., H(t) ∈
B(H), and the superoperator generator is L(t) = −i[H(t), ·].
Note that Pε in Eq. (7), and more generally S, has non-trivial
action on the system only.
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In QEC one measures not the full stabilizer group, but
rather its generators, in order to extract an error syndrome
[7]. It has been recognized that these syndrome measurements
implement a QZE [30, 31]. A weak stabilizer generator mea-
surement protocol comprisesM evenly-spaced measurements
of the generating set over a time interval [0, τ ], so that the state
evolves as

(
P̄εU(τ/M)

)M
(%0),(

P̄εU(τ/M)
)M

:=

P̄εU (τ, τM−1) P̄εU (τj−1, τj−2) · · · P̄εU(τ1, 0). (9)

This can obviously be an important saving over a full sta-
bilizer group measurement (Pε). If the measurement is per-
formed, e.g., by attaching an ancilla for each measured Pauli
observable (as in a typical fault-tolerant QEC implementation
[22]), then this translates into an exponential saving in the
number of such ancillas. We shall consider both protocols
in our general development below.

C. Distance Bounds

To quantify the behavior of these protocols, we use a dis-
tance metric as the figure of merit:

D[%S(τ), %0
S(τ)] =

1

2
‖%S(τ)− %0

S(τ)‖1, (10)

where the norm is the trace norm (sum of the singular values),
%S(τ) = TrB [%SB(τ)] is the reduced density matrix of the
system at time τ after application of one of the two WMQZE
protocols, and %0

S(τ) = TrB [%0
SB(τ)] is the final state of the

system under the idealized circumstance that the system re-
tains its internal Hamiltonian evolution, but does not interact
with the environment. We shall also require the Schatten ∞
operator norm ‖·‖ (the maximal singular value).

The principal results in this paper will be the proof and anal-
ysis of the following upper bound on D[%S(τ), %0

S(τ)].

Theorem 1. Assume an arbitrary pure state %S = |ψS〉〈ψS |
is encoded into an [[n, k, d]] stabilizer QECC with stabilizer
group S. Assume further that the (possibly time-dependent)
Hamiltonian H = HS + HB + HSB , where HS and HB

represent the system and bath Hamiltonians and HSB the
system-bath interaction, is such that H1 = HS + HB com-
mutes with the stabilizer (i.e., is a linear combination of sta-
bilizer elements and logical operators) and that the inter-
action term HSB =

∑
g 6=1Hg is a linear combination of

error terms detected by the code. Let J0 = 2‖H1‖ and
J1 = 2‖HSB‖, where J0 and J1 are assumed to be finite.
Finally, let Q = 2n−k − 1 and q = (Q+ 1)/2. Then the sta-
bilizer group measurement protocol (PεU(τ/M))

M protects

%S up to a deviation that converges to 0 in the large-M limit:

D[%S(τ), %0
S(τ)] ≤ [1 + Γ1(M)

]M−
Γ−(M)

Γ1(M)
[1 + Γ+(M)

]M
+ Γg(M)A+(M)γM−1

+ (M)+

Γg(M)A−(M)γM−1
− (M)− eτJ0 =: B, (11)

where the bound B can be expanded in powers of 1/M as

B =

[
eτJ0

(
Qτ2J2

1

4

)
+ eτJm

QτJ1

2
(1 + τJm)

ζq

1− ζq

]
1

M

+O

(
1

M2

)
, (12)

where

ζ := sech(ε) (13a)

β(M) :=

{
Γ1(M) J0 ≥ J1

Γg(M) J0 ≤ J1
(13b)

Γ1(M) :=
1

Q+ 1
e
τJ0
M

(
e
τQJ1
M +Qe−

τJ1
M

)
− 1 (13c)

Γg(M) :=
1

Q+ 1
e
τJ0
M

(
e
τQJ1
M − e−

τJ1
M

)
(13d)

γ±(M) :=
1

2

(
1 + β + (1 +Qβ)ζq

)
±

1

2

√(
1 + β − (1 +Qβ)ζq

)2
+ 4Qβ2ζq (13e)

A±(M) :=
Qβζq(γ± + β) + (1 + β)

[
(1 + β)− γ∓

]
β(γ± − γ∓)

(13f)

Jm := max{J0, J1} (13g)

Γ+ :=

{
Γ1(M) J0 ≥ J1

Γg(M) J0 ≤ J1
(13h)

Γ− :=

{
Γg(M) J0 ≥ J1

Γ1(M) J0 ≤ J1
. (13i)

For the generator measurement protocol
(
PεU(τ/M)

)M
, re-

place q by 1 in Eqs. (12), (13e), and (13i). In the strong-
measurement limit (ε→∞), both protocols yield the distance
bound

D[%S(τ), %0
S(τ)] ≤ eJ0τ

(Qe− J1τ
M + e

J1τQ
M

Q+ 1

)M
− 1

 .
(14)

III. STABILIZER QECCS AND INDUCED STRUCTURES

A large class of QECCs can be described by the stabilizer
formalism [7, 22], which we briefly review. A stabilizer S is
an Abelian subgroup of the Pauli group Gn on n qubits that
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does not contain the element −1. The Pauli group consists
of all possible n-fold tensor products of the Pauli matrices
σx ≡ X , σy = Y , σz = Z together with the multiplicative
factors ±1, ±i. All elements of Gn are unitary and either
Hermitian or skew-Hermitian. Since −1 /∈ S, all elements of
S must be unitary and Hermitian, and therefore are involutions
[S2 = 1 for all S ∈ S]. The stabilizer code C corresponding
to S is the subspace of all states |ψ〉 which are invariant under
the action of every operator in S (S|ψ〉 = |ψ〉, ∀S ∈ S). The
stabilizer of a code encoding k logical qubits into n physical
qubits has Q̄ = n−k generators, and S hasQ = 2Q̄ elements.
A set of errors {Ei} in Gn is correctable (detectable) by the
code if and only ifE†iEj (Ej) anticommutes for all i and j (for
all j) with at least one element of S, or otherwise belongs to
S. The normalizerN(S) := {N |NS = SN ∀S ∈ S} ⊂ Gn

is the set of logical operations on the code.
We now fix a minimal set S̄ = {S̄1, . . . , S̄Q̄} of generators

of the stabilizer group. This generating set defines a group
isomorphism B : ZQ̄2 → S by B(b1, . . . , bQ̄) =

∏Q̄
j=1 S̄

bj
j ,

where Z2 = {0, 1} is the additive group of integers mod 2.
The inverse function B−1(S) identifies the subset of genera-
tors whose product comprises S, namely generator S̄j partici-
pates in the product iff bj = 1. Define for each g ∈ S a group
homomorphism σg : S→ Z2 by

σg(S) := 〈B−1(S), B−1(g)〉 (mod 2), (15)

where 〈·, ·〉 denotes the dot product of the two binary vectors.
This homomorphism σg then counts (mod 2) the number of
generators shared by S and g. It is symmetric in that

σS(g) = σg(S). (16)

We recall some basic properties of homomorphisms of fi-
nite groups [32]. First, a group homomorphism φ : G→ H is
a map satisfying the property φ(g1g2) = φ(g1)φ(g2). This
implies, in particular, that φ(1G) = 1H . Both the ker-
nel K = φ−1(1H) ⊂ G and the image φ(G) ⊂ H of
a homomorphism are subgroups of their respective groups.
If φ(g1) = φ(g2) then φ(g1g

−1
2 ) = 1H , so if φ−1(h) is

nonempty for some h ∈ H , then φ−1(h) = Kg for any
g ∈ φ−1(h). In other words, all non-empty fibers of φ are
cosets of the kernel K. Therefore all non-empty fibers have
the same cardinality as the kernel, so either |φ−1(h)| = |K|
or |φ−1(h)| = 0.

Lemma 1.

σS(g) = 0 ∀ g ∈ S iff S = 1, (17)

and for S 6= 1,

|σ−1
S (0)| = |σ−1

S (1)| = |S|/2 = 2Q̄−1 = q. (18)

Consequently, σS = σS′ if and only if S = S′. So
{(−1)σS(·) : S ∈ S} is the set of all 2Q̄ complex irreducible
representations of S [33].

Proof. Since B(0, . . . , 0) = 1, B−1(1) = (0, . . . , 0), which
yields zero when dotted with any binary vector B−1(g). So

σ1(g) = 0 for all g. If S 6= 1, then S = S̄j1 · · · S̄jk for some
subset of distinct generators S̄j1 , . . . , S̄jk . Then σS(S̄ji) =
1 for all 1 ≤ i ≤ k. So σS(g) = 0 for all g ∈ S if and
only if S = 1. In the case S 6= 1, the image of σS is all
of Z2. Then, the fibers K = σ−1

S (0) and σ−1
S (1) are both

nonempty and therefore are cosets of the kernel K [32] and
partition the group S. Thus, |K| = |σ−1

S (0)| = |σ−1
S (1)| and

|S| = |σ−1
S (0) ∪ σ−1

S (1)| = 2|K|. Finally, if σS(g) = σS′(g)
for all g ∈ S, then

σSS′(g) = σg(SS
′) = σg(S)+σg(S

′) = σS(g)+σS′(g) = 0
(19)

for all g ∈ S, which, by the arguments above, holds if and
only if SS′ = 1, i.e., if and only if S = S′.

A. Isotypical Decompositions

The fact that the homomorphisms {(−1)σg(·) : g ∈ S} are
the irreducible representations of S ' ZQ̄2 leads to a natural
and well known orthogonal decomposition of the state space
H into code subspaces [7].

Lemma 2. The isomorphismB : ZQ̄2 → S is a faithful unitary
representation of ZQ̄2 in terms of operators on H = HS ⊗
HB , where HS ' C2n . There is then a unique isotypical
decomposition [33] ofH into subspaces

H =
⊕
g∈S

Vg, Vg = V̂ ⊕agg , ag = 2k dim(HB), (20)

where each Vg is an invariant subspace of the representation
B and the projection ofB onto any one-dimensional subspace
V̂g thereof is the irreducible representation (−1)σg(·), i.e., for
any |ψ〉 ∈ Vg , S|ψ〉 = (−1)σg(S)|ψ〉. Since each V̂g is one-
dimensional (because S ' ZQ̄2 is abelian), the exponent ag
is the dimension of the subspace Vg . With Tr(1) = 2n and
all other elements of S traceless, ag = 2n−Q̄ dim(HB) =
2k dim(HB) for all g. The 2k dim(HB)-dimensional sub-
spaces Vg are all orthogonal, and V1 is the subspace stabi-
lized by S.

Proof. The isotypical decomposition is a standard result in
representation theory, following from Schur’s lemma [33]. If
|ψ〉 ∈ Vg, then S|ψ〉 = (−1)σg(S)|ψ〉 because (−1)σg(·) is the
irreducible representation associated to Vg . By [33, Corollary
2.16],

ag =
1

2Q̄

∑
S∈S

Tr(S)(−1)σg(S) = 2n−Q̄ dim(HB)

= 2k dim(HB) (21)

using the fact that S = 1 has Tr(1) = 2n, and all other
S ∈ S have zero trace. If |ψg〉 ∈ Vg and |ψh〉 ∈ Vh, then
since S ⊂ U(H),

〈ψg|ψh〉 = 〈Sψg|Sψh〉 = (−1)σg(S)+σh(S)〈ψg|ψh〉
= (−1)σgh(S)〈ψg|ψh〉 (22)
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for all S ∈ S. If gh 6= 1, i.e., if g 6= h, then by Lemma 1,
|σ−1
gh (1)| = |S|/2, so there exists S ∈ S such that σgh(S) =

1. Therefore 〈ψg|ψh〉must be zero and the subspaces Vg form
an orthogonal decomposition ofH.

In the language of QEC [7], each of the subspaces Vg can
be thought of as encoding k qubits, but only V1 is stabi-
lized by S [i.e., S|ψ〉 = (−1)σg(S)|ψ〉 = |ψ〉 ∀S ∈ S iff
σg(S) = 0 ∀S ∈ S ⇔ g = 1 by Lemma 1]. Hence V1 is
typically chosen as the stabilizer QECC. With this choice, the
remaining isotypical subspaces are interpreted as “syndrome”
subspaces, where g labels the syndrome. Namely, after an
error that is detectable by the code takes place, it maps V1 to
one of the other subspaces Vg . A measurement of all the stabi-
lizer generators reveals the label g, in that g = B(b1, . . . , bQ̄),
where bj ∈ Z2 is 0 (1) if the measurement of generator S̄j
yielded eigenvalue +1 (−1), with j ∈ {1, . . . , Q̄}.

Using the group action of conjugation by S, the space B(H)
of all linear operators (complex matrices) on H = HS ⊗HB
and the spaceM(H) of Hermitian operators may be similarly
decomposed into isotypical subspaces indexed by S which are
orthogonal under any inner product invariant under conjuga-
tion by S (such as the Hilbert-Schmidt inner product). Then

B(H) =
⊕
g∈S

WC
g M(H) =

⊕
g∈S

Wg, (23)

where, for any g ∈ S, the subspace WC
g (respectively Wg) is

the space of all operators (resp. Hermitian operators) Ag with
the defining property that they satisfy SAgS = (−1)σg(S)Ag
for all S ∈ S. From this description, it is clear that Wg ⊂
WC
g for all g ∈ S. For more on these decompositions, see

Appendix A.

Lemma 3. The isotypical decompositions in Eq. (23) impart
to B(H) the structure of an S-graded associative algebra [34]
and toM(H) the structure of an S-graded Lie algebra (under
the Lie bracket A,B 7→ i[A,B]).

Proof. For any g, h ∈ S and any Ag ∈WC
g and Ah ∈WC

h ,

SAgAhS = SAgSSAhS = (−1)σg(S)+σh(S)AgAh

= (−1)σgh(S)AgAh, (24)

so that AgAh ∈ WC
gh, and therefore WC

g W
C
h ⊂ WC

gh. Like-
wise for any Ag ∈Wg and Ah ∈Wh,

S
(
i[Ag, Ah])S = i[SAgS, SAhS]

= (−1)σg(S)+σh(S)i[Ag, Ah]

= (−1)σgh(S)i[Ag, Ah], (25)

so that i[Ag, Ah] ∈ Wgh, and therefore i[Wg,Wh] ⊂ Wgh.

Finally, we can define the orthogonal projections into these
isotypical subspaces as follows.

Lemma 4. For any g ∈ S, the operator P̂g : B(H) → WC
g

defined by

P̂g(A) :=
1

|S|
∑
S∈S

(−1)σg(S)SAS (26)

is the orthogonal projection into the subspaceWC
g . Restricted

toM(H), this same operator defines the orthogonal projec-
tion into Wg .

Proof. For any A ∈ B(H), and any g, S′ ∈ S

S′
(
P̂g(A)

)
S′ =

1

|S|
∑
S∈S

(−1)σg(S)S′SAS′S

=
1

|S|
∑
S∈S

(−1)σg(S′S)SAS

= (−1)σg(S′) 1

|S|
∑
S∈S

(−1)σg(S)SAS

= (−1)σg(S′)P̂g(A), (27)

so that P̂g(A) ∈WC
g . Moreover, we find

∑
g∈S

P̂g(A) =
1

|S|
∑
S∈S

∑
g∈S

(−1)σg(S)

SAS = A, (28)

since by Lemma 1,
∑
g∈S(−1)σg(S) = 0 for S 6= 1 and

equals |S| when S = 1. Therefore, since the subspaces WC
g

are mutually orthogonal, the operators P̂g are orthogonal pro-
jections. Finally observe that if A is Hermitian, then P̂g(A)

is Hermitian as well, so P̂g also describes the orthogonal pro-
jectionM(H) 7→Wg .

Note that Eq. (27) shows that P̂g(A) coincides with the
defining property of the operators Ag (Hermitian or not), so
that we can equivalently define Ag := P̂g(A).

B. Measurement Operators

With respect to these isotypical decompositions, the actions
of the measurement operators defined in Section I take par-
ticularly simple forms. Recalling Eqs. (1) and (2a), for any
S ∈ S and ε > 0, the effect of the weak measurement of the
stabilizer S is given by

PS,ε(A) := PS(ε)APS(ε) + PS(−ε)APS(−ε) (29)

=
∑
b=±1

∑
s1,s2=±

αs1(bε)αs2(bε)Ps1SAPs2S

for any A ∈ B(H). Then

Lemma 5. For any g, S ∈ S, any Ag ∈WC
g , and any ε > 0,

PS,ε(Ag) = ζσS(g)Ag, (30)
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where ζ = sech(ε), and therefore, using Eq. (28),

PS,ε=
∑
g∈S

ζσS(g)P̂g =
∑

g∈σ−1
S (0)

P̂g + ζ
∑

g∈σ−1
S (1)

P̂g

=PS,∞ + ζ(1− PS,∞) = (1− ζ)PS,∞ + ζ1.

(31)

Proof. Observe first that, from the definition of WC
g ,

AgPs2S =
1

2
Ag
(
1+ s2S

)
=

1

2

(
1 + s2(−1)σS(g)S

)
Ag

= Ps2(−1)σS(g)SAg, (32)

so that, using the facts that P 2
±S = P±S , PSP−S = P−SPS =

0 [in Eq. (33c)], PS + P−S = 1, α2
±(ε) + α2

±(−ε) = 1, and
α+(ε)α−(ε)+α+(−ε)α−(−ε) = sech(ε) = ζ [in Eq. (33e)],

PS,ε(Ag) =
∑
b=±1

∑
s1,s2=±

αs1(bε)αs2(bε)×

Ps1SPs2(−1)σS(g)SAg (33a)

=
∑
b=±1

∑
s1,s2=±

αs1(bε)αs2(−1)σS(g)(bε)×

Ps1SPs2SAg (33b)

=
∑
b=±1

∑
s=±

αs(bε)αs(−1)σS(g)(bε)PsSAg (33c)

=


∑
b=±1

∑
s=± α

2
s(bε)PsSAg

if σS(g) = 0∑
b=±1 α+(bε)α−(bε)

∑
s=± PsSAg

if σS(g) = 1

(33d)

=

{
Ag σS(g) = 0

ζAg σS(g) = 1
, (33e)

which proves Eq. (30). Equation (31) follows from the obser-
vation that

∑
g∈σ−1

S (0) P̂g is the projection into the subspace
of operators that commute with S (the commutant or central-
izer of S), which is precisely the strong (von Neumann) non-
selective measurement of S, PS,∞.

We are now ready to see the effect of the complete POVM
defined in Eqs. (5) and (6).

Lemma 6. For any g ∈ S, Ag ∈ WC
g , and ε > 0, the weak

measurement Pε of the full stabilizer group has the effect

Pε(Ag) =

{
Ag g = 1

ζqAg else.
(34)

so that the weak measurement may be written as

Pε=P̂1 + ζq
∑
g 6=1

P̂g = P̂1 + ζq(1− P̂1)

=
(
1− ζq

)
P̂1 + ζq1 =

(
1− ζq

)
P∞ + ζq1. (35)

Proof. Since P̂gP̂h = 0 for g 6= h,

Pε =
∏
S∈S

PS,ε =
∏
S∈S

∑
gS∈S

ζσS(gS)P̂gS =
∑
g∈S

∏
S∈S

ζσg(S)P̂g

=
∑
g∈S

ζ |σ
−1
g (1)|P̂g, (36)

and from Lemma 1,

|σ−1
g (1)| =

{
0 g = 1

q else.
, (37)

which proves Eq. (34). Equation (35) follows from the same
reasoning as used for Eq. (31) in the previous lemma.

Lemma 7. For any g ∈ S, Ag ∈ WC
g , and ε > 0, the weak

measurement Pε of the generators of the stabilizer group has
the effect

Pε(Ag) = ζ |S̄∩σ
−1
g (1)|Ag (38)

so that the generators-only weak measurement may be written
as

Pε = P̂1 +
∑
g 6=1

ζ |S̄∩σ
−1
g (1)|P̂g

= P̂1 +

Q̄∑
c=1

ζc
∑

g∈{h∈S : |S̄∩σ−1
h (1)|=c}

P̂g

= P̂1 +

Q̄∑
c=1

ζc
∑

1≤j1<···<jc≤Q̄

P̂S̄j1 ···S̄jc . (39)

Proof. Since P̂gP̂h = 0 for g 6= h,

Pε =
∏
S̄∈S̄

PS̄,ε =
∏
S̄∈S̄

∑
gS̄∈S

ζσS̄(gS̄)P̂gS̄=
∑
g∈S

∏
S̄∈S̄

ζσg(S̄)P̂g

=
∑
g∈S

ζ |S̄∩σ
−1
g (1)|P̂g, (40)

and from Lemma 1 and the definition of σg ,

|S̄ ∩ σ−1
g (1)|

{
= 0 g = 1

∈ {1, . . . , Q̄} else.
(41)

We note that the result of Lemma 7 is stronger than that re-
ported in our earlier work [1], where we used the lower bound
1 for g 6= 1 in place of Eq. (41).

IV. ANALYSIS OF THE DISTANCE UPPER BOUND

In this section, we analyze the behavior of the distance
D[%S(τ), %0

S(τ)] [Eq. (10)] and show that it converges to 0
in the limit of large numbers of measurements. The Hamil-
tonian is orthogonally decomposed as H(t) =

∑
g∈SHg(t),
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where Hg(t) is the component of H(t) lying in the isotypical
(error syndrome) subspace Wg . This yields the superopera-
tors Lg = i[Hg, ·]. We also write HSB =

∑
g 6=1Hg , and

define J0 = 2‖H1‖∞ and J1 = 2‖HSB‖∞, where ‖ · ‖∞
denotes the L∞ norm, i.e., ‖H1‖∞ = ess supt∈[0,τ ] ‖H1(t)‖
in which ess sup denotes the essential supremum and ‖ · ‖ de-
notes the Schatten∞ norm, i.e. the maximum singular value.
This guarantees that ‖L1‖∞ ≤ J0 and ‖Lg‖∞ ≤ J1 for all
g 6= 1 in S. These finite bound conditions may also be shown
to imply rapid decay of the noise spectrum at high frequen-
cies, guaranteeing an effective spectral cutoff; conversely, an
insufficiently rapidly decaying noise spectrum implies that our
finite bound conditions are not satisfied (see Appendix E).

Let N = {1, 2, 3, . . . } and N0 = {0, 1, 2, . . . } and observe
that the unitary superoperator (8) describing the joint system-
bath evolution between successive measurements can be writ-
ten as

U
(
j

M
τ,
j + 1

M
τ

)
= 1+

∫ j+1
M τ

j
M τ

L(t1) dt1

+

∫ j+1
M τ

j
M τ

∫ t1

j
M τ

L(t1)L(t2) dt2 dt1 + . . .

(42a)

=

∞∑
k=0

∑
~α∈Sk

Lkj (~α) (42b)

by the Dyson expansion and by the isotypical decomposition
L =

∑
g∈S Lg , where Sk is the set of all k-tuples of stabilizer

group elements, L0
j = 1, and for any k > 0 and any ~α ∈ Sk,

Lkj (~α) :=
∫ j
M τ
j−1
M τ

∫ t1
j−1
M τ
· · ·
∫ tk−1
j−1
M τ
Lα1

(t1)Lα2
(t2) · · ·

· · · Lαk(tk) dtk · · · dt2 dt1. (43)

Lemmas 3 and 6 imply that

Pijε L
lj
M+1−i1−···−ij (~α

j) · · ·LlηM+1−i1−···−iη (~αη)(%SB) =

ζijµjL
lj
M+1−i1−···−ij (~α

j) · · ·LlηM+1−i1−···−iη (~αη)(%SB),

(44)

where µj = υ[
(
αj1 · · ·α

j
lj

)
· · ·
(
αη1 · · ·α

η
lη

)
] and υ : S →

{0, 1} is defined by

υ(g) = 0 for g 6= 1 and υ(1) = 1. (45)

This follows from the fact, implied by Lemma 3, that a com-
position of Hamiltonian superoperators Lα1

· · · Lαk will map
the initial density matrix (an element of the isotypical space
W1) to the isotypical space Wα1···αk , and that this space, by
Lemma 6, determines the action of the measurementPε. Then

it is found that

%SB(τ) = PεU
(
M − 1

M
τ, τ

)
PεU

(
M − 2

M
τ,
M − 1

M
τ

)
· · · PεU

(
0,

1

M
τ

)
%SB = %SB+

M∑
η=1

∞∑
l1,...,lη=1

∑
~i∈Nη
‖~i‖1≤M

∑
~αj∈Slj
j=1,...,η

Pi1ε Ll1M−i1+1(~α1) · · ·

· · · Piηε L
lη
M+1−i1−···−iη (~αη)(%SB) (46a)

= %SB +

M∑
η=1

∞∑
l1,...,lη=1

∑
~i∈Nη
‖~i‖1≤M

∑
~αj∈Slj
j=1,...,η

ζ
Q+1

2

(
~i·~µ
)
×

Ll1M−i1+1(~α1) · · ·LlηM+1−i1−···−iη (~αη)(%SB),

(46b)

where ~µ ∈ {0, 1}η , µj = υ(gηgη−1 · · · gj), and gj =

αj1 · · ·α
j
lj

. Then

D[%S(τ), %0
S(τ)] =

1

2

∥∥TrB
[
%SB(τ)− %0

SB(τ)
]∥∥

1

=
1

2
‖W + S‖1, (47)

where

W := TrB

 M∑
η=1

∞∑
l1,...,lη=1

∑
~i∈Nη
‖~i‖1≤M

∑
~αj∈Slj

j=1,...,η where ~µ 6=0

ζ
Q+1

2

(
~i·~µ
)
×

Ll1M−i1+1(~α1) · · ·LlηM+1−i1−···−iη (~αη)(%SB)
]

(48)

and

S := TrB

%SB +

M∑
η=1

∞∑
l1,...,lη=1

∑
~i∈Nη
‖~i‖1≤M

∑
~αj∈Slj

j=1,...,η where ~µ=0

Ll1M−i1+1(~α1) · · ·LlηM+1−i1−···−iη (~αη)(%SB)

−U0(τ)(%SB)
]
, (49)

with U0(τ) the system-bath unitary evolution superoperator
generated solely by H1.

A. The “Weak” Term

The “strong” term S represents the strong-measurement
limit of the norm argument, i.e., the limit as ε → ∞. The
behavior of ‖S‖1 will be analyzed in Section IV C and shown
to vanish as M → ∞. In the remainder of this section, we
study the behavior of the “weak” term ‖W‖1. To that end,
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observe that for any 1 ≤ j ≤M and any ~α ∈ Sk,

‖Lkj (~α)‖ ≤ ‖Lα1‖∞ · · · ‖Lαk‖∞
∫ j
M τ
j−1
M τ

∫ t1
j−1
M τ
· · · (50)∫ tk−1

j−1
M τ

dtk · · · dt2 dt1 = ‖Lα1
‖∞ · · · ‖Lαk‖∞

(τ/M)k

k! ,

where ‖Lαi‖∞ := ess sup0≤t≤τ‖Lαi(t)‖, so that

‖W‖1 ≤
M∑
η=1

∞∑
l1,...,lη=1

∑
~i∈Nη
‖~i‖1≤M

∑
~αj∈Slj

j=1,...,η where ~µ 6=0

ζ
Q+1

2

(
~i·~µ
)

‖Ll1M−i1+1(~α1)‖ · · · ‖LlηM+1−i1−···−iη (~αη)‖ (51a)

≤
M∑
η=1

∑
~i∈Nη
‖~i‖1≤M

∑
~µ∈{0,1}η
~µ 6=0

ζ
Q+1

2

(
~i·~µ
)
×

∞∑
l1,...,lη=1

(τ/M)l1+···+lη

l1! · · · lη!

∑
g1,...,gη∈S
υ(gη···gj)=µj

η∏
j=1

γlj (gj),

(51b)

where γl(g) is defined by∑
~α∈(0,...,Q)l

Sα1
···Sαl=g

‖Lα1
‖∞ · · · ‖Lαl‖∞ ≤ γl(g) :=∑l

s=0

(
l
s

)
Js0J

l−s
1 fl−s(g), (52)

in which fl(g) denotes the number of ways of generating g ∈
S from l non-identity group elements (i.e., g = Sα1

· · ·Sαl ).
We have used in Eq. (51) the triangle inequality and submul-
tiplicativity

‖AB‖ ≤ ‖A‖‖B‖, (53)

(for any pair of operators A and B) and the fact that if % is a
normalized state then ‖%‖1 = 1. We have also used the norm
inequalities

‖AB‖1 ≤ ‖A‖‖B‖1 and ‖TrB [A] ‖1 ≤ ‖A‖1, (54)

valid for any operators A and B acting onHS ⊗HB [35, 36].

To find a closed expression for fl(g), first note that fl(g) is
constant over all g 6= 1. Then for any g = Sα1

· · ·Sαl 6= 1

it may be observed that g′ = Sα1
· · ·Sαl−1

can be anything
other than g (otherwise Sαl = 1, which is forbidden) and
then g′ and g uniquely define Sαl . One such choice of g′ is
g′ = 1, the other Q − 1 choices are non-identity. The same
logic applied to the case g = 1 shows that all Q possible
choices for g′ are non-identity. It follows that the quantity
fl(g) satisfies

fl(g) =
∑
g′ 6=g

fl−1(g′) = (Q− 1)fl−1(g) + fl−1(1) (55a)

fl(1) =
∑
g′ 6=1

fl−1(g′) = Qfl−1(g). (55b)

Therefore fl(g) satisfies the linear recurrence (see Appendix

B)

fl(g) = (Q− 1)fl−1(g) +Qfl−2(g). (56)

The characteristic polynomial of this recurrence, x2 − (Q −
1)x − Q = 0, has roots −1 and Q, so fl(g) has the general
form fl(g) = AQl +B(−1)l. It is easily seen that f0(g) = 0
and f1(g) = 1, soA andB may be found by solving the linear
system

A+B = 0 (57a)
AQ−B = 1, (57b)

which yields

A =
1

Q+ 1
B = − 1

Q+ 1
(58)

so that

fl(g) =
Ql − (−1)l

Q+ 1
for g 6= 1 fl(1) =

Ql +Q(−1)l

Q+ 1
.

(59)
Now, since

l∑
s=0

(
l

s

)
Js0J

l−s
1 al−s = (J0 + aJ1)

l
, (60)

for any fixed a ∈ R, it is readily seen that

γl(g) =
(J0 +QJ1)l − (J0 − J1)l

Q+ 1
for g 6= 1 (61a)

γl(1) =
(J0 +QJ1)l +Q(J0 − J1)l

Q+ 1
. (61b)

Defining

Γg(τ/M) :=

∞∑
l=1

(τ/M)lγl(g)

l!
, (62)

we have

Γg(τ/M) = e
τJ0
M

[
e
τQJ1
M −e−

τJ1
M

Q+1

]
for g 6= 1 (63a)

Γ1(τ/M) = e
τJ0
M

[
e
τQJ1
M +Qe−

τJ1
M

Q+1

]
− 1. (63b)

Observe that for g 6= 1,

Γ1(τ/M)− Γg(τ/M) = e
τ(J0−J1)

M − 1{
≥ 0 for all τ ≥ 0 when J0 ≥ J1

≤ 0 for all τ ≥ 0 when J0 ≤ J1.
(64)

In addition, for a given binary vector ~µ ∈ {0, 1}η , the
cardinality of the set of η-tuples (g1, . . . , gη) such that
υ(gη · · · gj) = µj for all j is Q‖~µ‖1 , because gj must equal
gη · · · gj+1 when µj = 0, and gj may be any of the Q other
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elements of S when µj = 1. Therefore,

∞∑
l1,...,lη=1

(τ/M)l1+···+lη

l1! · · · lη!

∑
g1,...,gη∈S
υ(gη···gj)=µj

η∏
j=1

γlj (gj) =

∑
g1,...,gη∈S
υ(gη···gj)=µj

η∏
j=1

Γgj (τ/M) (65a)

≤

{
Q‖~µ‖1Γg(τ/M)

[
Γ1(τ/M)

]η−1
J0 ≥ J1

Q‖~µ‖1
[
Γg(τ/M)

]η
J0 ≤ J1,

(65b)

since each product in the sum contains at least one Γg (g 6= 1).
Let

φ(M) :=

M∑
η=1

β(τ/M)η−1
∑

~µ∈{0,1}η
~µ 6=0

∑
~i∈Nη
‖~i‖1≤M

ξ~µ·
~iQ‖~µ‖1 (66)

ξ := ζ
Q+1

2 , (67)
β(τ/M) := (68)Γ1(τ/M) = 1

Q+1e
τJ0
M

(
e
τQJ1
M +Qe−

τJ1
M

)
− 1 J0 ≥ J1

Γg(τ/M) = 1
Q+1e

τJ0
M

(
e
τQJ1
M − e−

τJ1
M

)
J0 ≤ J1.

Therefore we have

‖W‖1 ≤ Γg(τ/M)φ(M). (69)

A closed form will now be derived for Γgφ and shown to
converge to zero as M−1 for arbitrary fixed τ > 0 and ξ ∈
(0, 1) as M → ∞. To that end, let r represent the number of
non-zero elements in the ~µ vector, and u represent ~µ ·~i. Then∑

~µ∈{0,1}η
~µ 6=0

∑
~i∈Nη
‖~i‖1≤M

ξ~µ·
~iQ‖~µ‖1 =

η∑
r=1

Qr
(
η

r

)M−(η−r)∑
u=r

ξu#{ordered r-partitions of u}×

#{orderered (η − r)-partitions of M − u or less}, (70)

where an ordered k-partition of n is an ordered set of k posi-
tive integers that sum to n: j1 + · · ·+ jk = n. The number of
such partitions is

(
n−1
k−1

)
, as may be seen by casting the ques-

tion as an occupancy problem [37] by considering the placing
of k − 1 physical separators between a linear arrangement of
n physical objects (see Fig. 1). Moreover, by the same rea-

• • • • • •

FIG. 1. Example partition of six elements into three sets by choosing
the positions of two separators from among the five possible gaps
between adjacent elements.

soning, the number of ordered k-partitions of n or less is
(
n
k

)
,

seen by considering the placing of k separators between n+ 1
objects, yielding j1 + · · ·+ jk+1 = n+1, and then discarding
jk+1. So∑

~µ∈{0,1}η
~µ 6=0

∑
~i∈Nη
‖~i‖1≤M

ξ~µ·
~iQ‖~µ‖1 =

η∑
r=1

Qr
(
η

r

)M−(η−r)∑
u=r

ξu
(
u− 1

r − 1

)(
M − u
η − r

)
, (71)

and we find that φ(M) in Eq. (66) is equal to

φ(M) =

M∑
η=1

β(τ/M)η−1

η∑
r=1

Qr
(
η

r

)
×

M−(η−r)∑
u=r

ξu
(
u− 1

r − 1

)(
M − u
η − r

)
(72a)

=

M∑
η,u,r=1

β(τ/M)η−1ξuQr
(
η

r

)(
u− 1

r − 1

)(
M − u
η − r

)
,

(72b)

where the limits have been extended to 1, . . . ,M since the
additional terms are all zeros.

B. Linear Recurrences

Let Φ be the summand of Eq. (72), i.e.,

Φ(M,u, η, r) := βη−1ξuQr
(
η

r

)(
u− 1

r − 1

)(
M − u
η − r

)
, (73)

where we regard β as a fixed quantity for the moment (its M
dependence will be reintroduced later). It may be observed
that Φ is hypergeometric in all four variables, i.e., Φ(M +
1, u, η, r)/Φ(M,u, η, r) is a rational function of M , u, η, and
r; likewise for the corresponding shift ratios on u, η, and r.
As a result, Φ admits a linear recurrence relation such that the
coefficients are independent of u, η, and r, and the recurrence
may be found algorithmically [38]. Wegschaider’s MultiSum
package [39, 40] for Mathematica, implementing a version of
Sister Celine’s method [38], yielded the following telescoping
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linear recurrence for this summand:

ξ(1 + β +Qβ)Φ(M − 2, u, η, r)−(
1 + β + (1 +Qβ)ξ

)
Φ(M − 1, u, η, r) + Φ(M,u, η, r)

= ∆u

[
βΦ(M − 1, u, η, r + 1) + Φ(M − 1, u, η + 1, r + 1)

− Φ(M,u, η + 1, r + 1)
]

+ ∆η

[
− ξΦ(M − 2, u, η, r + 1) + (1 + ξ)×

Φ(M − 1, u, η, r + 1)− Φ(M,u, η, r + 1)
]

+ ∆r

[
− (1 + β)ξΦ(M − 2, u, η, r) + (1 + β + ξ)×

Φ(M − 1, u, η, r)− Φ(M,u, η, r)
]
, (74)

where ∆η is the forward shift difference operator on
the variable η: ∆ηX(M,u, η, r) = X(M,u, η + 1, r) −
X(M,u, η, r) for any expression X; likewise for ∆r and ∆u.
The recurrence (74) may be verified by expanding the ∆ ex-
pressions and collecting terms, leading to the equivalent equa-
tion

0 = QβξΦ(M − 2, u, η, r) + βξΦ(M − 2, u, η, r + 1)

+ ξΦ(M − 2, u, η + 1, r + 1)−QβξΦ(M − 1, u, η, r)

− ξΦ(M − 1, u, η + 1, r + 1)

− βΦ(M − 1, u+ 1, η, r + 1)

− Φ(M − 1, u+ 1, η + 1, r + 1)

+ Φ(M,u+ 1, η + 1, r + 1). (75)

Dividing Eq. (75) by QΦ(M − 2, u, η, r) and multiplying by
the common denominator r(r+1)(M−u−η+r−1), Eq. (74)
is then found to be equivalent to

0 = βξr(r + 1)(M − u− η + r − 1) + βξ(η − r)2(u− r)
+ βξ(η + 1)(u− r)(M − u− η + r − 1)

− βξ[r(r + 1) + (η + 1)(u− r)](M − u− 1)

− βξ(η − r)2u− βξ(η + 1)u(M − u− η + r − 1)

+ βξ(η + 1)u(M − u− 1), (76)

which is easily verified to be true.

Now we wish to turn this recurrence on the summand
Φ(M,u, η, r) into a recurrence on the sum φ(M). Do-
ing this requires summing both sides of Eq. (74) and using
the fact that the right hand side leads to telescoping sums:∑n
k=1 ∆kX(k) = X(n+ 1)−X(1). This computation, car-

ried out in Appendix C, results in the inhomogeneous linear
recurrence relation (with constant coefficients)

(1 + β +Qβ)ξφ(M − 2)−
(
1 + β + (1 +Qβ)ξ

)
φ(M − 1)

+ φ(M) = Qβ(1 + β)M−2ξ. (77)

This recurrence for the sum has the characteristic polynomial

x2 −
(
1 + β + (1 +Qβ)ξ

)
x+ (1 + β +Qβ)ξ = 0 (78)

with roots

γ± :=

(
1 + β + (1 +Qβ)ξ

)
2

±

√
(1 + β + (1 +Qβ)ξ

)2 − 4(1 + β +Qβ)ξ

2
(79a)

=

(
1 + β + (1 +Qβ)ξ

)
2

±

√(
1 + β − (1 +Qβ)ξ

)2
+ 4Qβ2ξ

2
. (79b)

Furthermore, by plugging a sequence of the form φ(M) =

a(1 + β)M into Eq. (77), it may be seen that − (1+β)M

β is
a particular solution to the inhomogeneous recurrence. Thus
Eq. (77) admits the general solution

φ(M) = A+γ
M−1
+ +A−γ

M−1
− − (1 + β)M

β
(80)

for some coefficients A+ and A−. The initial values of φ(M)
may be worked out to be

φ(1) = Qξ (81a)

φ(2) = Qξ
(
1 + 2β + (1 +Qβ)ξ

)
. (81b)

Thus, we seek A+ and A− such that A+ +A− = Qξ + (1 +
β)/β and A+γ+ +A−γ− = Qξ

(
1+2β+(1+Qβ)ξ

)
+(1+

β)2/β. Solving this linear system for A+ and A− yields

A± =
Qβξ(γ± + β) + (1 + β)

[
(1 + β)− γ∓

]
β(γ± − γ∓)

. (82)

With these values for A+ and A−, and now regarding β, γ±,
and A± all as functions of M , Eq. (80) is an exact closed
expression for the sum φ(M). So we finally conclude that

‖W‖1 ≤
Γg(M)

β(M)

[
β(M)A+(M)γM−1

+ (M)+

β(M)A−(M)γM−1
− (M)− (1 + β(M))M

]
, (83)

where

β(M) =

{
Γ1(M) J0 ≥ J1

Γg(M) J0 ≤ J1.
(84)

C. The “Strong” Term

Following arguments similar to those elaborated thus far,
we may now readily compute an upper bound for the “strong”
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term ‖S‖1. Explicitly,

‖S‖1 =
∥∥∥TrB

M∑
η=1

∞∑
l1,...,lη=1

∑
~i∈Nη
‖~i‖1≤M

∑
~αj∈Slj

~µ=0 but not allαj
k

=1

Ll1M−i1+1(~α1) · · ·LlηM+1−i1−···−iη (~αη)(%SB)
∥∥∥

1

(85a)

≤
M∑
η=1

∞∑
l1,...,lη=1

∑
~i∈Nη
‖~i‖1≤M

∑
~αj∈Slj

~µ=0 but not allαj
k

=1∥∥Ll1M−i1+1(~α1)
∥∥ · · · ∥∥LlηM+1−i1−···−iη (~αη)

∥∥
(85b)

≤
M∑
η=1

∞∑
l1,...,lη=1

∑
~i∈Nη
‖~i‖1≤M

×

(τ/M)l1+···+lη

l1! · · · lη!

 η∏
j=1

γlj (1)− J l1+···+lη
0

 (85c)

=

M∑
η=1

(
M

η

)[
Γη1(τ/M)−

(
eτJ0/M − 1

)η]
(85d)

= [1 + Γ1(τ/M)
]M − eτJ0 (85e)

= eτJ0

(eQτJ1
M +Qe−

τJ1
M

Q+ 1

)M
− 1

 . (85f)

D. Total Distance Upper Bound

Combining the results for the “weak” and ”strong” terms,
and recalling that A±(M) and γ±(M) depend on the form of
β(M)

β(M) =


Γ1(M) = e

τJ0
M

[
e
τQJ1
M +Qe−

τJ1
M

Q+1

]
− 1 J0 ≥ J1

Γg(M) = e
τJ0
M

[
e
τQJ1
M −e−

τJ1
M

Q+1

]
J0 ≤ J1,

(86)
with q = |S|/2 = (Q+ 1)/2, Jm = max{J0, J1}, and

Γ+ :=

{
Γ1(M) J0 ≥ J1

Γg(M) J0 ≤ J1
Γ− :=

{
Γ1(g) J0 ≥ J1

Γ1(M) J0 ≤ J1,

(87)

we obtain, using Eqs. (83) and (85e), the upper bound on the
distance metric

D[%S(τ), %0
S(τ)] ≤ 1

2

(
‖S‖1 + ‖W‖1

)
≤ [1 + Γ1(M)

]M − Γ−(M)

Γ1(M)
[1 + Γ+(M)

]M − eτJ0

+ Γg(M)A+(M)γM−1
+ (M) + Γg(M)A−(M)γM−1

− (M)
(88a)

=

∞∑
j=1

Bj
1

M j
, (88b)

where

B1 =

[
eτJ0

(
Qτ2J2

1

4

)
+ eτJm

QτJ1

2
(1 + τJm)

ζq

1− ζq

]
(89)

The detailed asymptotic analysis leading to Eqs. (88b) and
(89) is carried out in Appendix D. This completes the proof of
Theorem 1. It may be observed that the rate of convergence
(i.e., the coefficient of M−1) blows up as τ →∞ and also as
ζ → 1 (i.e., the weak measurement limit as ε→ 0).

In the next section we analyze the conditions under which
the distance bound converges to zero.

V. PARAMETER TRADE-OFFS

A. Trade-off between τ and M

The asymptotic behavior of the distance upper bound, pre-
sented in Section IV D and derived in Appendix D, shows that
the bound converges to zero as 1/M when the time τ is held
fixed. Here we consider how the number of measurements
needed for convergence depends upon the final time τ . In or-
der to address this question, we consider the convergence of
the bound when τ is allowed to increase with M . If τ in-
creases too quickly, the distance upper bound will no longer
converge, so we seek the fastest growing function f(M) such
that when τ = f(M), the bound still converges to zero.

Lemma 8. Allowing only τ andM to vary, the distance upper
bound (88b) converges to zero as M →∞ provided

τJ0 = a log(M)

{
a < 1 if J0 ≥ J1

a < J0

J1
if J0 ≤ J1

. (90)

Proof. Suppose that τJ0 = a log(M) for some a > 0. Then
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defining λ = J1/J0,

Γ1(M) = e
a log(M)

M

(
e
Qλa log(M)

M +Qe−
λa log(M)

M

Q+ 1

)
− 1

=
a log(M)

M
+

(
1 +Qλ2

)
a2 log2(M)

2M2

+O

(
log3(M)

M3

)
(91a)

Γg(M) = e
a log(M)

M

(
e
Qλa log(M)

M − e−
λa log(M)

M

Q+ 1

)

=
λa log(M)

M
+

(
2λ+ (Q− 1)λ2

)
a2 log2(M)

2M2

+O

(
log3(M)

M3

)
. (91b)

Repeating the analysis of Appendix D with the general form

β(M) = X
log(M)

M
+ Y

log2(M)

M2
+O

(
log3(M)

M3

)
(92)

yields

D[%S(τ), %0
S(τ)] ≤

[
Qλ2a2 log2(M)

4 + Q
2

(
λa log(M)+

λa2 log2(M)
)

ζ
Q+1

2

1−ζ
Q+1

2

]
1

M1−a +O
(

log3(M)
M2−a

)
if J0 ≥ J1(
λ2a2 log2(M)

4M1−a

)
+
[
Q
2 (λa log(M)+

λ2a2 log2(M)
)

ζ
Q+1

2

1−ζ
Q+1

2

]
1

M1−λa +O
(

log3(M)
M2−λa

)
if J0 ≤ J1.

(93)

Because of the M1−a in the denominator of the leading order
terms, the bound for J0 ≥ J1 converges to zero as M → ∞
if a < 1 and diverges if a ≥ 1. In the case J0 ≤ J1, where
λ > 1, the bound converges if a < 1/λ and diverges if a ≥
1/λ.

The closer a is to the cutoff value of either 1 or 1/λ, the
slower the convergence of the bound becomes. We can con-
clude that Eq. (90) is a sufficient condition for convergence
of the upper bound. Divergence of the upper bound does not
preclude the distance D from converging to zero in the limit
of a large number of measurements, and additional analysis
is required to settle whether this is possible. The difference
between the J0 ≤ J1 and J0 ≥ J1 cases can be understood
intuitively in terms of the relative importance of the “pertur-
bation” (coupling of the system to the bath, J1) and the “un-
perturbed” evolution (J0). It is to be expected that protection
via the Zeno effect should be more effective when the pertur-
bation is “weak”, and as we have seen, indeed the cutoff value

of a is larger in this case.

B. Trade-off between ε and M

Another important trade-off is between the strength of the
measurements ε and the number of measurements required for
effective convergence.

Lemma 9. Allowing only ε andM to vary, the distance upper
bound (88b) converges to zero as M →∞ provided

ε > Ma−1/2 (94)

for some a > 0.

Proof. Consider the largeM , small ε regime, where the bound
(88b) is approximately B1/M . Then, since ζq/(1 − ζq) is
large when ε is small [recall that ζ = 1/ cosh(ε)], we can
neglect the constant first term in Eq. (89),

eτJm
QτJ1

2B1
(1 + τJm) ≈ 1− ζq

ζq
=

1

ζq
− 1

≈ q(1− ζ), (95)

so that

ζ ≈ 1− eτJmQτJ1

2qB1
(1 + τJm) , (96)

and therefore, since ζ ≈ 1− ε2/2 in this regime,

B1
1

M
≈ 1

ε2M
eτJmQτJ1 (1 + τJm) /q

< M−2a, (97)

where in the last line we used Eq. (94).

This quantifies the previously mentioned trade-off that the
weaker the measurements, the greater M must be to compen-
sate, i.e., the slower the convergence rate as M → ∞. Con-
versely, we can interpret Eq. (94) as saying that the measure-
ment strength may not decline faster than the inverse square
root of the number of measurements.

C. Fixed Nonzero Measurement Interval

As an alternative analysis of the time-scaling issue, fix some
∆τ > 0 such that the measurements are separated by an
interval ∆τ , so that τ = M∆τ . Under these conditions,
what value of M minimizes the distance upper bound? Let
δ = J0∆τ and λ = J1/J0 and consider first the strong-
measurement limit:

‖S‖1 ≤ f(M) := eδM

[(
eQλδ +Qe−λδ

Q+ 1

)M
− 1

]
. (98)
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Then, taking M to be a continuous variable for a moment,

df

dM
= δf(M) + log

(
eQλδ +Qe−λδ

Q+ 1

)(
f(M) + eδM

)
.

(99)
Observe that since Q = 2Q̄ − 1 ≥ 1,

eQλδ +Qe−λδ

Q+ 1
= 1 +

∞∑
k=2

Q
(
(−1)k +Qk−1

)
Q+ 1

(τJ1/M)k

k!

> 1, (100)

the logarithm in Eq. (99) is positive, as are all the other terms
in (99), so df/dM > 0 for all M > 0. Therefore on the do-
main of positive integers M , f(M) is minimized at M = 1.
Thus, if laboratory conditions dictate a minimum interval be-
tween measurements, the upper bound on the distance indi-
cates that the best strategy for minimizing the distance is not to
let M → ∞ seeking eventual convergence (which will never
come under these assumptions), but rather to endure only one
such interval, terminating with a single measurement event.
The resulting bound (for M = 1) is then

‖S‖1 ≤ f(1) = eδ
[(

eQλδ +Qe−λδ

Q+ 1

)
− 1

]
=
Qλ2

2
(δ2 + δ3) +O(δ4)

=
Q

2
(J1∆τ)2(1 + J0∆τ) +O[(J0∆τ)4] (101)

so that minimization of the bound can only be accomplished
by minimizing either ∆τ or J1.

This result does not mean that the Zeno effect fails to pro-
vide protection beyond M = 1, but rather that (our bound on)
the protection quality gradually declines as the elapsed time
grows. The relevant yardstick for comparison is then the dis-
tance between the ideal and actual state in the absence of any
protection. This distance is easily estimated using first order
perturbation theory (the Dyson series) to be O(J1∆τ). Since
Eq. (101) shows that a single measurement already modi-
fies the distance to O[(J1∆τ)2], protection is achieved pro-
vided J1∆τ < 1. Subsequent measurements, or longer evo-
lution times in the case without measurement, modify these
estimates to O[(J1M∆τ)2] and O(J1M∆τ), respectively, so
that the conclusion about the possibility of an advantage from
measurements with finite and fixed ∆τ are unchanged.

VI. CONCLUSION

Two protocols have been presented for the protection from
the environment of an arbitrary, unknown state encoded in
some stabilizer quantum error correction (or detection) code.
These protocols involved frequent weak non-selective mea-
surement of either all elements of the stabilizer group of the
code, or of just a minimal generating set. Rigorous upper
bounds were obtained on the distance between the final state
under these protocols and the idealized final state in the ab-
sence of any interaction with the environment. The bounds
demonstrate that the protocols exhibit the desired protection in
the limit of many measurement cycles. Moreover, the bounds
offer information about the degree of protection attainable
with finite resources (e.g., finitely many measurement cycles),
as well as trade-offs among the various relevant physical pa-
rameters.

Future research in this area may proceed along different
lines. First, while the protocols based on non-selective mea-
surements presented herein are well-suited to protecting en-
sembles from the environment, they may not be ideal for pro-
tecting individual quantum systems. Further investigation is
needed to determine whether (and in what sense) the corre-
sponding protocols based on weak selective measurements re-
alize a Zeno effect resulting in protection from the environ-
ment. A result in this direction would more directly relate the
Zeno effect to traditional quantum error correction. Addition-
ally, it may be interesting and fruitful to expand the class of er-
ror correcting codes on which the protocols are based, perhaps
to include non-abelian codes. For example, a Zeno protocol
based on the Bacon-Shor code [41] may have advantages in
that the measurements need be only 2-local.
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Appendix A: Isotypical Decompositions Induced by the
Stabilizer Group

Lemma 10. LetM(H) denote the space of Hermitian oper-
ators onH = HS ⊗HB . The stabilizer group acts onM(H)
by conjugation [i.e. the adjoint action AdS(A) 7→ SAS],
which describes a representation of S (' ZQ̄2 ). There is then
a unique isotypical decomposition of M(H) into subspaces
Wg:

M(H) =
⊕
g∈S

Wg =
⊕
g∈S

Ŵ⊕bgg , (A1)

where eachWg is an invariant subspace of the representation,
comprising bg copies of the one-dimensional irreducible rep-
resentation Ŵg , such that for any Hermitian matrix A ∈ Wg ,
SAS = (−1)σg(S)A. Since each Ŵg is one-dimensional (be-
cause S ' ZQ̄2 is abelian), the exponent bg is the dimension of
the subspace Wg . With Tr(1) = 2n and all other elements of
S traceless, bg = 22n−Q̄(dim(HB))2 = 22k+Q̄(dim(HB))2

for all g. The 22k+Q̄(dim(HB))2-dimensional subspaces Wg

are all orthogonal under any Ad(S ⊗ 1B)-invariant inner
product on W .

Proof. By [33, Corollary 2.16],

bg =
1

2Q̄

∑
S∈S

Tr(AdS)(−1)σg(S) = 22n−Q̄(dim(HB))2

= 22k+Q̄(dim(HB))2 (A2)

under the assumption that only S = 1 has non-zero trace
and Tr(1) = dim(H) = 2n dim(HB), so that Tr(Ad1) =
[Tr(1)]2 = 22n dim(HB)2.

If Ag ∈ Wg and Ah ∈ Wh, then, using the Ad(S)-
invariance of the inner product (invariance with respect to con-
jugation by S), we get

〈Ag, Ah〉 = 〈SAgS, SAhS〉 = (−1)σg(S)+σh(S)〈Ag, Ah〉
= (−1)σgh(S)〈Ag, Ah〉 (A3)

for any S ∈ S. If g 6= h, Lemma 1 shows that there exists
an S ∈ S such that σgh(S) = 1. It must therefore hold that
〈Ag, Ah〉 = 0, so Wg and Wh are orthogonal subspaces.

Appendix B: Solving Linear Recurrences

In this appendix, we review a simple method for solving a
class of second order inhomogeneous linear recurrences with
constant coefficients. Let fk − a1fk−1 − a2fk−2 = gk be
the linear recurrence with inhomogeneity gk = bck for real
numbers a1, a2, b, and c, and given initial conditions f0

and f1. Define the characteristic polynomial to be p(x) =
x2 − a1x − a2. The class of problems we will consider are
those for which the characteristic polynomial admits two dis-
tinct roots, i.e., where a2

1 + 4a2 > 0, and where c is different
from both roots. As in the theory of linear differential equa-
tions, we solve such problems by finding all solutions to the
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homogeneous problem fk−a1fk−1−a2fk−2 = 0, then seek-
ing a particular solution for the inhomogeneous problem, and
finally identifying within the resultant affine space of solu-
tions, the unique solution that satisfies the initial conditions.
To that end, let

~wk =

[
fk+1

fk

]
, and A =

[
a1 a2

1 0

]
. (B1)

Then the homogeneous linear recurrence may be written
~wk = A~wk−1 = Ak ~w0. It may be noted that the characteris-
tic polynomial of the matrixA is identical to the characteristic
polynomial for the recurrence, p(x), defined above. The as-
sumption that p have distinct roots, then implies that A has
distinct eigenvalues λ±, with associated eigenvectors ~v±. It
follows that ~w0 can be decomposed as ~w0 = α~v+ + β~v−,
yielding ~wk = Ak ~W 0 = αλk+~v

+ + βλk−~v
−. Then fk =

wk2 = αv+
2 λ

k
+ +βv−2 λ

k
−, so the solutions to the homogeneous

recurrence are of the form fk = γ+λ
k
+ + γ−λ

k
− for some co-

efficients γ±.
For the particular solution to the inhomogeneous problem,

let us postulate an ansatz of fk = b′ck. Plugging this into the
recurrence and dividing by ck−2 yields b′(c2 − a1c − a2) =
bc2. Since by assumption c is not a root of the character-
istic polynomial, c2 − a1c − a2 6= 0, so fk = b′ck with
b′ = bc2/(c2 − a1c − a2) is a particular solution to the in-
homogeneous problem. Then the affine space of all solutions
to the inhomogeneous problem is given by

fk = γ+λ
k
+ + γ−λ

k
− +

bck+2

c2 − a1c− a2
(B2)

for coefficients γ±. These two coefficients may now be deter-

mined from the given initial conditions f0 and f1 by solving
the system of equations

f0 = γ+ + γ− +
bc2

c2 − a1c− a2
(B3a)

f1 = γ+λ+ + γ−λ− +
bc3

c2 − a1c− a2
, (B3b)

which may be rewritten[
1 1
λ+ λ−

] [
γ+

γ−

]
=

[
f0 − bc2

c2−a1c−a2

f1 − bc3

c2−a1c−a2

]
, (B4)

yielding

γ± = ± 1

λ+ − λ−

(
f1 − λ∓f0 − (c− λ∓)

bc2

c2 − a1c− a2

)
.

(B5)

Appendix C: Inhomogeneity of the Linear Recurrence

We seek a simple form for the inhomogeneous term in the
linear recurrence for the sum φ(M) (72). This requires sum-
ming both sides of (74) and using the fact that the right hand
side leads to telescoping sums:

∑n
k=1 ∆kX(k) = X(n +

1) − X(1). Since the limits of summation are different for
φ(M − 2), φ(M − 1), and φ(M), we will sum (74) over
η, r = 1, . . . ,M and u = 1, . . . ,M − 2, and add in the re-
maining pieces of φ(M − 1) and φ(M) separately.
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(1+β +Qβ)ξφ(M − 2)−
(
1 + β + (1 +Qβ)ξ

)
φ(M − 1) + φ(M)

=

M−2∑
u=1

M∑
η=1

M∑
r=1

[
ξ(1 + β +Qβ)Φ(M − 2, u, η, r)−

(
1 + β + (1 +Qβ)ξ

)
Φ(M − 1, u, η, r) + Φ(M,u, η, r)

]

+

M∑
η,r=1

[
−
(
1 + β + (1 +Qβ)ξ

)
Φ(M − 1,M − 1, η, r) + Φ(M,M − 1, η, r) + Φ(M,M, η, r)

]
(C1a)

=

M∑
η=1

M∑
r=1

[
βΦ(M − 1,M − 1, η, r + 1) + Φ(M − 1,M − 1, η + 1, r + 1)− Φ(M,M − 1, η + 1, r + 1)

]

+

M∑
η=1

M−2∑
u=1

[
(1 + β)ξΦ(M − 2, u, η, 1)− (1 + β + ξ)Φ(M − 1, u, η, 1) + Φ(M,u, η, 1)

]

+

M∑
η=1

M∑
r=1

[
−
(
1 + β + (1 +Qβ)ξ

)
Φ(M − 1,M − 1, η, r) + Φ(M,M − 1, η, r) + Φ(M,M, η, r)

]
(C1b)

= Q
M−2∑
u=1

M∑
η=1

[
(1 + β)βη−1ξu+1η

(
M − u− 2

η − 1

)
− (1 + β + ξ)βη−1ξuη

(
M − u− 1

η − 1

)
+ βη−1ξuη

(
M − u
η − 1

)]

+

[
−
M−1∑
η=2

βηξM−1Qηη

(
M − 2

η − 1

)]
+

[
−
(
β + (1 +Qβ)ξ

)M−1∑
η=1

βη−1ξM−1Qη
(
M − 2

η − 1

)

+

M∑
η=2

βη−1ξM−1Qη−1η

(
M − 2

η − 2

)
+

M∑
η=1

βη−1ξMQη
(
M − 1

η − 1

)]
(C1c)

= Q

M−2∑
u=1

β(1 + β)M−u−2ξu(1 + β − ξ) +QβξM−1 = Qβ(1 + β)M−2ξ. (C1d)

Appendix D: Asymptotic Analysis of the Distance Bound

Expand β = β(M) as

β(M) =
X

M
+

Y

M2
+O

(
1

M3

)
(D1)

for some constants X ≥ 0 and Y ≥ 0. Then

(1 + β)2 = 1 +
2X

M
+
X2 + 2Y

M2
+O

(
1

M3

)
(D2a)

1 + β + (1 +Qβ)ξ = (1 + ξ) + (1 +Qξ)β = (1 + ξ) +
(1 +Qξ)X

M
+

(1 +Qξ)Y

M2
+O

(
1

M3

)
(D2b)

1 + β − (1 +Qβ)ξ = (1− ξ) + (1−Qξ)β = (1− ξ) +
(1−Qξ)X

M
+

(1−Qξ)Y
M2

+O

(
1

M3

)
(D2c)

(
1 + β − (1 +Qβ)ξ

)2
+ 4Qξβ2 = (1− ξ)2 +

2(1− ξ)(1−Qξ)X
M

+
(1 +Qξ)2X2 + 2(1− ξ)(1−Qξ)Y

M2
+O

(
1

M3

)
.

(D2d)

Then using the fact that

√
a+ x =

√
a +

x

2
√
a
− x2

8a3/2
+O(x3) (D3)
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we can compute√(
1 + β − (1 +Qβ)ξ

)2
+ 4Qξβ2 = (1− ξ) +

X(1−Qξ)
M

+

[
Y (1−Qξ) + 2QX2 ξ

(1− ξ)

]
1

M2
+O

(
1

M3

)
(D4a)

γ+ = 1 +
X

M
+

[
Y +QX2 ξ

(1− ξ)

]
1

M2
+O

(
1

M3

)
(D4b)

γ− = ξ +
QXξ

M
+

[
QY ξ −QX2 ξ

(1− ξ)

]
1

M2
+O

(
1

M3

)
(D4c)

which yields

γ+(γ+ − γ−) = γ+

√(
1 + β − (1 +Qβ)ξ

)2
+ 4Qξβ2 = (1− ξ) +

X
(
2− (Q+ 1)ξ

)
M

+O

(
1

M2

)
(D5a)

γ−(γ− − γ+) = −γ−
√(

1 + β − (1 +Qβ)ξ
)2

+ 4Qξβ2 = −ξ(1− ξ)− Xξ(Q+ 1− 2Qξ)

M
+O

(
1

M2

)
. (D5b)

And using the expansion

1

a+ x
=

1

a
− x

a2
+
x2

a3
+O(x3) (D6)

it may be seen that

1

γ+(γ+ − γ−)
=

1

1− ξ
−
X
(
2− (Q+ 1)ξ

)
(1− ξ)2M

+O

(
1

M2

)
(D7a)

1

γ−(γ− − γ+)
= − 1

ξ(1− ξ)
+
X(Q+ 1− 2Qξ)

ξ(1− ξ)2M
+O

(
1

M2

)
. (D7b)

Moreover,

Qβξ(γ+ + β) =
QXξ

M
+O

(
1

M2

)
(D8a)

Qβξ(γ− + β) =
QXξ2

M
+O

(
1

M2

)
(D8b)

(1 + β)
[
(1 + β)− γ+

]
= O

(
1

M2

)
(D8c)

(1 + β)
[
(1 + β)− γ−

]
= (1− ξ) +

X(2− (Q+ 1)ξ)

M
+O

(
1

M2

)
, (D8d)

so, assembling the pieces, we get

βA+

γ+
= 1 +

QXξ

(1− ξ)M
+O

(
1

M2

)
(D9a)

βA−
γ−

= − QXξ

(1− ξ)M
+O

(
1

M2

)
. (D9b)
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Turning now to the expressions γM± and (1 + β)M , observe that

e−
X
M = 1− X

M
+

X2

2M2
+O

(
1

M3

)
(D10a)

γ+e
− X
M = 1 +

[
Y +X2

(
Qξ

1− ξ
− 1

2

)]
1

M2
+O

(
1

M3

)
(D10b)

γM+ e−X = 1 +

[
Y +X2

(
Qξ

1− ξ
− 1

2

)]
1

M
+O

(
1

M2

)
(D10c)

γ−e
−QXM ξ−1 = 1 +

[
QY −X2

(
Q

1− ξ
+
Q2

2

)]
1

M2
+O

(
1

M3

)
(D10d)

γM− e
−QXξ−M = 1 +

[
QY −X2

(
Q

1− ξ
+
Q2

2

)]
1

M
+O

(
1

M2

)
(D10e)

(1 + β)e−
X
M = 1 +

[
Y − X2

2

]
1

M2
+O

(
1

M3

)
(D10f)

(1 + β)Me−X = 1 +

[
Y − X2

2

]
1

M
+O

(
1

M2

)
(D10g)

Then,

βA+γ
M−1
+ =

βA+

γ+
γM+ = eX

{
1 +

[
Y +Q(X +X2)

ξ

1− ξ
− X2

2

]
1

M

}
+O

(
1

M2

)
(D11a)

βA−γ
M−1
− =

βA−
γ−

γM− = O

(
ξM+1

M

)
(D11b)

(1 + β)M = eX
{

1 +

[
Y − X2

2

]
1

M

}
+O

(
1

M2

)
(D11c)

and therefore

φ(M) =
1

β(M)

{[
QeX

(
X +X2

) ξ

1− ξ

]
1

M
+O

(
1

M2

)}
. (D12)

Then since

1
M
X β

=
1

1 + Y/X
M +O

(
1
M2

) = 1− Y/X

M
+O

(
1

M2

)
(D13a)

1

β
=
M

X
− Y

X2
+O

(
1

M

)
(D13b)

and

β(M) =

Γ1(M) = 1
Q+1e

τJ0
M

(
e
τQJ1
M +Qe−

τJ1
M

)
− 1 = τJ0

M +
τ2
(
J2

0 +QJ2
1

)
2M2 +O

(
1
M3

)
J0 ≥ J1

Γg(M) = 1
Q+1e

τJ0
M

(
e
τQJ1
M − e−

τJ1
M

)
= τJ1

M +
τ2
(

2J0J1+J2
1 (Q−1)

)
2M2 +O

(
1
M3

)
J0 ≤ J1,

(D14)

it follows that

Γg(M)

β(M)
=

{
J1

J0
+O

(
1
M

)
J0 ≥ J1

1 J0 ≤ J1

. (D15)
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Recalling that ξ = ζq the upper bound on the “weak” term is given by

‖W‖1 ≤ Γg(M)φ(M)

=
Γg(M)

β(M)

[
β(M)A+(M)γM−1

+ (M) + β(M)A−(M)γM−1
− (M)− (1 + β(M))M

]
(D16a)

=


[
QeτJ0

(
τJ1 + τ2J0J1

)
ζq

1−ζq

]
1
M +O

(
1
M2

)
J0 ≥ J1

[
QeτJ1

(
τJ1 + τ2J2

1

)
ζq

1−ζq

]
1
M +O

(
1
M2

)
J0 ≤ J1,

(D16b)

and the upper bound

‖B‖1 ≤ [1 + Γ1(τ/M)
]M − eτJ0 (D17a)

= eτJ0

[
τ2QJ2

1

2

]
1

M
+O

(
1

M2

)
. (D17b)

Appendix E: Correlation Functions, Spectral Densities, and
Bath Norms

Consider the Hamiltonians HSB =
∑
Sα⊗Bα and HB =

I ⊗B0. The pure-bath unitary evolution operator is UB(t) =
exp(−itB0). The bath-interaction picture bath operators are

Bα(t) = UB(t)Bα(0)U†B(t), Bα(0) = Bα. (E1)

Equivalently

Ḃα = −i[B0, Bα(t)], Bα(0) = Bα (E2a)

Ḃ†α = −i[B0, B
†
α(t)], B†α(0) = B†α. (E2b)

It follows that after differentiating n times wrt t:

∂n

∂tn
B†α(t) = (−i)n[nB0, B

†
α(t)], (E3)

where [nB,A] := [B, [n−1B,A]], [0B,A] := A.

Now consider the correlation function

〈B†α(t)Bβ〉 := Tr[%BB†α(t)Bβ ], (E4)

where %B is the initial bath state. The bath spectral density is

the Fourier transform

Sαβ(ω) =
1

2π

∫ ∞
−∞

eiωt〈B†α(t)Bβ〉dt, (E5)

so that

〈B†α(t)Bβ〉 =

∫ ∞
−∞

e−iωtSαβ(ω) dω. (E6)

Differentiating both sides n times yields

〈[nB0, B
†
α(t)]Bβ〉 =

∫ ∞
−∞

ωne−iωtSαβ(ω) dω, (E7)

and in particular at t = 0:∫ ∞
−∞

ωnSαβ(ω) dω = 〈[nB0, B
†
α]Bβ〉. (E8)

This last result allows us to bound the spectral densities
in terms of the bath operator norms. One can show that
|〈AB〉| ≤ ‖A‖ ‖B‖, where the norm is the sup-operator norm
[42, Appendix D]. Thus∣∣∣∣∫ ∞

−∞
ωnSαβ(ω) dω

∣∣∣∣ =
∣∣〈[nB0, B

†
α]Bβ〉

∣∣ (E9a)

≤
∥∥[nB0, B

†
α]
∥∥ ‖Bβ‖ (E9b)

≤ (2 ‖B0‖)n
∥∥B†α∥∥ ‖Bβ‖ . (E9c)

Thus, as long as ‖B0‖ and ‖Bα‖ are finite for all α, the
bath spectral densities Sαβ(ω) must decay faster than any
rational function as |ω| → ∞. Conversely, divergence of
any of the moments of the spectral density implies the di-
vergence of at least one of the bath operators. For exam-
ple, all the n ≥ 1 moments of a Lorentzian spectral density
S(ω) = γ

(ω−ω0)2+γ2 diverge. This spectral density arises
from exponentially decaying correlation functions, i.e., its
Fourier transform is F (0)(t) ∝ exp(−itω0 − γ|t|).
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