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This paper numerically studies the equilibrium shape of a sessile droplet with moving contact 

lines. The Navier-Stokes equation was solved through the finite volume method on a Cartesian 

staggered grid. The level set method was used to track free surface of the immiscible phases. The 

Navier boundary condition is enforced on the entire solid surface away from the triple contact 

line to remove the force singularity. The continuum model formulated by Ren and E was used 

near the contact line1. Our code was validated by comparing with other numerical results, and 

provided a lower mass loss of less than 2%. The method can easily be extended to a three 

dimensional model. Droplet spreading and recoiling were calculated and discussed with the 

presented numerical methods.  Both two-dimensional and three-dimensional simulation results 

agree well with experimental observations.  
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I. INTRODUCTION 

A liquid drop deposited on a solid surface forms an air-liquid-solid contact line along the 

three-phase intersection. The angle between the liquid surface and the solid is called the contact 

angle. Recently, sessile liquid droplets attract renewed attention from the research community 

because of the various applications such as assessing wettability2 of a solid surface,  paper 

production3, magnetic printing4 and porous coating5. In recent years, the manipulation and 

actuation of a sessile droplet by termperature6, magnetic field7, electric field8, and surface 

acoustic wave9 become hot topics in the field of microfluidics. The classical static equilibrium 

shape of a sessile drop is described by the Young’s equation. However, numerical investigation 

of dynamic phenomena of a sessile droplet will encounter problems arising from the dynamic 

contact angle and the moving contact line.  Dussan and Davis showed that if the traditional no-

slip condition is enforced at the moving contact line by coupling of Navier-Stokes equations, the 

numerical model will result into stress singularity10.  Furthermore, the dynamic contact angles 

exhibit a hysteresis. Thus, the contact line speed needs to be prescribed.  The categories of 

addressing these problems were reviewed by Ren and E1.  

The numerical methods for solving contact line problems were reviewed by a number of 

researchers11-14.  Diffeerent methods such as volume-of-fluid (VOF) method15, Lagrangian finite-

element method, level set method11-12, 16-17, phase field method, the soothed particle 

hydrodynamics method (SPH)13, and the recently developed Lattice Boltzmann method18 were 

discussed. Besides these methods, Yokoi et al. used coupled level set and volume-of-fluid 

method (CLSVOF) to numerically investigate a droplet impacting on a solid surface 14. They 

used an asymmetric model to describe three-dimensional problems. Sero-Guillaume et al. 

employed the minimization of the energy to calculate the shape of a sessile drop with and 

without magnetic field. The contact angle used the Young’s boundary condition19.  The freely 

available Surface Evolver (SE) software is popularly used by a number of researchers to model 

the stable shape of the drops. It is a computer program that minimizes the sum of energies of a 

surface subject to the various constraints defined by user20. The iteration in SE is not base on 
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time integral of the fluid flow equations but a search toward minimal energies21. Thus, it mainly 

concerned the finial equilibrium drop shape not the transient process.  

Among the above mentioned numerical methods, the level set method is a powerful tool to 

track the complicated deformed interface between two immiscible phases. Under a shear flow, 

Spelt numerically investigated a droplet rolling on a solid surface by adding the contact line 

velocity in the redistance function of level-set approach 16-17. Ding and Spelt  presented a good 

agreement between the level set method and the diffuse interface method to alleviate the stress 

singularity problem in the drop spreading problems 22. Choi and Son studied the droplet motion 

on a channel surface in the fluid flow11. The relationship between the droplet detachment and the 

flow velocities, as well as the influence of wetting property of the channel surface on droplet 

merging were investigated. Liu et al. studied the droplet impact on the planar and non-planar 

solid surface in the 2D model with consideration of the hysteresis 12. Very recently, Li, et al. 

used zero level set to represent the boundary of the drop to solve the single-phase moving contact 

line problem23. However, the disadvantage of the level set method is its mass loss, because the 

sharpness of the interface is destroyed by under-resolved regions during the discretization 

process. This mass conservation problem can be solved after several decades of development by 

employing reintialization equation, seeding particle near the interface, or using global mass 

correction techniques. The numerical methods used in this paper are more accurate in preserving 

the mass conservation comparing to other works.   

In this paper, the level-set method is used to model a sessile droplet with moving contact line 

on the Cartesian fixed rectangular grid. The zero level set isocontour represents the interface 

between two immiscible fluid phases.  The interfacial tension is calculated using the continuum 

surface force model (CSF) 24. No-slip condition is replaced by Navier boundary condition to 

avoid the stress singularity. The exact velocity of the contact line utilizes a simple and effective 

method proposed by Ren and E 1 using a continuous function across the triple-phase contact line. 

Only an assumed static contact angle must be given instead of advancing and receding contact 

angles. Previously published numerical results were used to validate our code. The present 

multiphase simulation only has an area loss of less than 2%. Furthermore, we extended the 
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method to three dimensions. Both two-dimensional (2D) and three-dimensional (3D) results 

agree well with the experimental observations. The droplet transition from spherical shape to 

puddle shape was investigated. 

 

 

FIG.  1.  Schematic of Sessile droplet on the solid surface in the gas with (a) 2D model
and (b) 3D model ( 1x and 2x : contact points of the 2D model, L : contact line of the 3D 
model, θ: the contact angel of the three phases, h: droplet height, 2b: droplet base 
diameter. 
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II. NUMERICAL ANALYSIS 

A. Governing equations 

Figure 1 shows the numerical models investigated in this paper. The free surface Γ  separates 

the domain into two regions, i.e. +Ω and −Ω , each filled with the liquid and gas respectively. The 

droplet sits on the homogeneous surface, and its shape is axial symmetric. Thus, the droplet base 

is a circle (FIG.  1(b)). The evolution of the surface is captured with the level-set method. The 

properties across the interface are discontinued. They can be defined using the smoothed 

Heaviside function ( )H φ  by either an arithmetic mean or a harmonic mean. The motions of two 

immiscible fluids are calculated with two sets of the conservation equations within each region.  

The continuity and momentum equations in Cartesian tensor notation for unsteady, viscous, 

incompressible, immiscible two-phase systems are defined as: 

( ) 0u
t
ρ ρ∂
+∇• =

∂
r  (1)

( ) ( ) ( )Tu uu p u u F
t
ρ ρ μ∂ ⎡ ⎤+∇• = −∇ +∇• ∇ +∇ +⎣ ⎦∂

rr rr r r  (2)

where t is time, ur is the velocity vector with three components ( ), ,u u v w=
r in the 3D case, p  is 

pressure. The discontinuous phase properties in the whole domain can be defined as an 

arithmetic mean        

( ) ( )1H Hα φ α α+ −= + −  (3)

or a harmonic mean   

( )
( )11 HH

α φ α α+ −

−
= +  (4)

The arithmetic mean is used to calculate the density ρ , and the harmonic mean is used to 

calculate the viscosityμ . Since the viscosity is the momentum diffusion coefficient, just as the 
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thermal conductivity for heat diffusion, harmonic mean should be accurate for the viscosity. The 

smoothed Heaviside function ( )H φ  is expressed as: 

( ) ( ) ( ) ( )
0 , if

( ) / 2 sin / / 2 , if
1 if

H
φ ε

φ φ ε ε πφ ε π φ ε
φ ε

< −⎧
⎪= + + <⎨
⎪ >⎩ ，

 (5)

The parameter ε is set to 1.5 of the control volume thickness in a uniform grid. 

In Eq. (2), F
r

can be the interfacial force, magnetic force, and gravity. In our problem, the 

force component includes both the free surface force  Fσ

r
 and the gravitational force gF

r
. The free 

surface force is determined using the CSF model 24:  

( )ˆ
F fF N D x xσ σκ= − −

r r r  (6)

where,  κ   is the curvature,  ˆ
FN  is a normal to the interface, and  ( )fD x x−

r r is the delta function 

that is zero everywhere except at the interface: 

ˆ
FN φ

φ
∇

=
∇

 (7)

φκ
φ

∇
= ∇•

∇  
(8)

( ) ( )( ) ( )1 cos / / 2 , if

0, otherwise
fD x x

πφ ε ε φ ε⎧ + <⎪− = ⎨
⎪⎩

r r

 
(9)

The gravity force gF
r

is described as  

ˆg gF f g=
r

 (10)

where  ĝ  is the unit vector specifying the direction of the body force.  

In the work reported here, equation (2) is  solved using the finite volume method on 

Cartesian staggered grid. The velocity-pressure coupling utilizes the SIMPLER algorithm. The 

combined convection-diffusion effect is predicted by the Power Law. The time integration used a 

fully implicit scheme.  
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B. Free Boundary Solver 

The moving interface Γ is traced with the level-set method 25. The variable ( ),x tφ
r

  is used to 

define the interface that separates two regions Ω+ and Ω- in R3. Its value is a signed normal 

distance function ( ),x tφ
r

 from the interface: 

( )
, if

, 0, if

, if

d x

x t x

d x

φ
−

+

⎧ − ∈Ω
⎪⎪= ∈Γ⎨
⎪ + ∈Ω⎪⎩

r

r r

r
 (11)

where the subscripts + and - refer to the liquid phase and the gas phase. The interface Γ is 

represented as the zero level set of function ( ),x tφ
r

. By taking the time derivative of ( ) 0, =txrφ , 

we get the motion of the interface Γ: 

0u
t
φ φ∂
+ •∇ =

∂

r
 (12)

This function can be solved locally around a narrow band across the interface. Since φ is the 

signed normal distance to the interface, which satisfies 1=∇φ .  

Numerically, to keep the level set function close to a signed distance function of the interface, 

a reinitialization procedure is needed to reset the level set function to be a signed distance 

function of the interface. In the present work, we use the following reinitialization equation for 

the correction of φ  at time ∗t 26 

)1)(( 0*
∗

∗

∇−=
∂
∂ φφφ sign

t
 (13)

)0,()(0 xx rr φφ =
 

(14)

For numerical purposes it is useful to smooth the signed function as 
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xsign Δ∇+= 22
0 /)( φφφφ  (15)

The steady-state solution of the equation will converge to the actual distance, and satisfy

1φ∇ = .  

Eq. (12) and (13) are special cases of Hamilton-Jacobi equation.  They were solved within a 

band of certain width around the interface instead of over the entire computational domain. This 

narrow-band approach is introduced by Peng, et. al27. This approach will not affect the accuracy 

since the level set value is important only around the interface. This method can reduce one order 

of magnitude of the computational time. The Hamiltonian of the level set equation and  the 

reinitialization equation are solved by constructing high-order weighted essentially non-

oscillatory (WENO) schemes with local Lax-Fridrichs flux 28 and Godunov flux29 respectively.  

The TVD Runge-Kutta methods were used to integrate the system in time for equation (12) and 

(13)30.  

C. Contact Line Modeling 

The velocity of the contact line was derived by Ren and E using the force balance1. The 

results were utilized later to numerically study the droplet spreading and recoiling by Li et al.23 

The triple contact line problem was solved based on a single phase, and neglect the influence of 

surrounding gas on the droplet shape. The method does not consider the contact angle hysteresis. 

Here, we combined the same continuum model describing the moving contact line of a 

multiphase system to investigate the drop shape. The effect of surrounding gas is also considered. 

The details are described in three-dimensional forms as follow.  

To remove the force singularity, the slip law is employed by replacing the no-slip condition. 

That is, along the entire solid surface  0y =  employed the Navier boundary condition except 

points near the contact line31  
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∂⎧ =⎪ ∂⎪⎪ =⎨
⎪ ∂⎪ =

∂⎪⎩

 (16)

where,λ  is the slip length.  0λ =  represents the no-slip condition, and λ = ∞  is the free-slip 

condition. In this paper,  we assume a partial slip in the vicinity of the solid surface because of 

the flow friction 32. In the work of Ren and E 1, λ  is the ratio of  viscosity and friction 

coefficient. In the equation, the velocities parallel to the solid surface u and w  are linearly 

proportional to the local velocity gradient.  The velocity of normal to the solid surface 0v =  

represents the no penetration boundary condition.  

As long as the slip law is used to avoid force singularity, the speed of the contact must be 

given to determine the Young’s stress and the normal stress of free surface 1. A simple dynamic 

velocity was imposed on the points within one grid from the contact line, 

( )

( )

2 2

2 2

/

/

ˆcos cos

0

ˆcos cos

c

c

d x
x

d z
z

u n e

v

w n e

σ θ θ
α

σ θ θ
α

− Δ∗

− Δ∗

⎧ = −⎪
⎪

=⎨
⎪
⎪ = −
⎩

 (17)

where σ  is the surface tension, and α  is the effective friction coefficient. cd is the distance of the 

points to the contact line at the surface of 0=y . ˆxn is the component of the normal to the contact 

line in  x direction, and ˆzn is the component of the normal to the contact line in the z 

direction; ∗θ is the equilibrium static contact angle; θ is dynamic contact angle (Fig.1), which is 

determined by the relationship: 

ˆcos ynθ φ= − •∇  (18)

where ˆyn  is the unit normal vector of the solid surface. This method prescribes the dynamic 

contact line in a simple way. This method is effective to implement numerically. Since contact 
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angle hysteresis is neglected, the advancing and receding contact angles do not need to be 

predescribed.  The condition 1φ∇ =  is imposed on the solid boundary. The typical contour of 

the level set values near the interface is shown in Fig. 2. 

 

FIG.  2. The level set contour around the free surface in 2D model. 

III. VALIDATIONS AND CASE STUDIES 

The method described above was first validated using a 2D model, FIG.  1(a). A numerical 

resolution study was carried out based on the example presented by Li et al. 23. The same 

parameters and properties are used to compare with the results of Li et al. The initial drop shape 

is a half circle with a radius of r=0.4 m above the x-axis. Thus, the initial contact angle is 90°. 

The static contact angle / 4θ π∗ = .  The level set function is positive inside the droplet and 

negative outside the droplet. The density, the viscosity, the surface tension, the ratio and the slip 

length are set as  31 kg/mρ+ =  2 Pa sμ+ = , 0.5N/mσ = , 1m/sσ
α
= , and 1mλ = , respectively. 

The gravity was taken as 9.8g = m2/s. The above parameters are the same used by Li et al23. The 

density of gas is set to 30.001 kg/mρ− =  to maintain the real density ratio between liquid and 

gas. The viscosity of gas is assumed to be 2μ− = , which is the same as the liquid viscosity.  The 

velocity field will relax to zero when the droplet reaches the equilibrium steady state. Thus, the 

droplet equilibrium shape is mainly determined by the surface tension, the density of the liquid, 

and the static contact angle. So the assumed values of viscosity have no significant influence on 

the shape of the droplet in steady state. The grid independence study is shown in FIG.  3. The 

dashed line is the result with a mesh of 256 102× and a time step size 31.25 10 st −Δ = ×  

throughout the entire computational domain. The solid line used a mesh of 128 51×  and 
32.5 10 st −Δ = × .  The two numerical results are nearly identical. The coarse mesh results into 
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more area loss than the fine mesh, and is less than 2% (FIG.  4). Therefore, adequate numerical 

accuracy is reached with a mesh 128 51× , 32.5 10 st −Δ = × . There are 52 cells across the droplet 

width.   

 

 

 

FIG.  4.  The normalized area versus iteration step  

The present numerical method was first validated with the problem of droplet spreading on 

the solid surface. Figure 5 compares the shape resulting from our analysis with that of Li et al23.  

The results match well in the case of without gravity. Discrepancy occurs if gravity is considered. 

Because the results proposed by Li et al. seems not preserve the area conservation. The area loss 

FIG.  3. Grid independence study. 
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is calculated and presented in TABLE  I.  Their area loss is as much as 16.76%, and the loss of 

our present method is less than 2%. The area loss versus the iteration step of present method is 

shown in FIG.  6. The droplet is easy to reach steady state with gravity, therefore, more iteration 

steps are needed in the absence of the gravity with the same time step 32.5 10 st −Δ = × . We put 

the evolution of droplet profiles from initial shape to the equilibrium shape in FIG.  7.  

TABLE  I. 2D drop area and area loss of simulation results. 

 Area (No g) Area loss(no g) Area (With g) Area loss(with g) 

Li, et al.23  0.251 0.039% 0.209 16.76% 

Present method 0.248 1.3% 0.246 1.9% 

 

 

FIG.  5. Droplet spreading with gravity and without gravity. The present

results were compared  with Li et al23.  
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FIG.  6. The comparison of area loss between considering and neglecting gravity g. 
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Another validation case is droplet recoiling with the gravity effect. Only the static contact 

angle is changed to 3 / 4θ π∗ = , the other parameters are the same as in the last case. The initial 

droplet shape is still half circle. The comparison results are shown in FIG.  8. They matched well 

except the area of present result is larger than the results proposed by Li et al23.   

 

 

These two cases demonstrate that the wetting/nonwetting characteristics of the surface 

determine the spreading or recoiling behavior of the droplet for the same droplet size. Next, we 

will employ our numerical method to investigate droplet size effect on their corresponding 

behavior on the same solid surface.  The results are compared with experimental data of Extrand 

and Moon’s work2 that investigated the shape of three different drop sizes deposited on a variety 

of polymer and silicon surfaces. 

In the experiment of Extrand and Moon2, three deionized (DI) water  drops were deposited 

on the solid surface. The volumes were 1μLV = , 50μL , 2000μL  respectively. If we assume 

the initial drops are half sphere, the radii are summarized in 

FIG.  8. Droplet recoiling 
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TABLE  II. The solid surface is hydrophobic, and the static contact angle is 108θ ∗ = ° . The 

properties of the liquids used in the simulation are, the density 3998 kg/mρ+ = , 31.25 kg/mρ− = , 

the viscosity 2 Pa sμ μ+ −= = , the surface tension 0.072 N/mσ = , the ratio 1m/sσ
α
= , and the 

slip length is one grid distance xλ = Δ 12, 17. As an input parameter, Spelt discussed its value 

influence on the contact line region16. As mentioned above, the assumed values of the viscosity 

have no effect on the equilibrium steady-state shape, FIG.  9(a). However, it still plays an 

important role in the transient process before the velocity relaxes to zero i.e. before the droplet 

reaches its steady state.  The droplet was first studied based on a 2D model. The initial drop is a 

semi circle sitting on the solid surface. Given the symmetry of the problem, only half of the 

domain is simulated. For the small drop 1μlV = , recoiling will happen as shown in FIG.  9(a). 

Increasing the drop size to 50μlV = , its shape begins to spread to a puddle form instead of 

remain the spherical cap, FIG.  9(b). If the drop volume is sufficiently large, it will assume the 

puddle form under the influence of gravity, FIG.  9(c).  This phenomenon can be explained with 

a dimensionless number, the Bond number 
2gRBo ρ

σ
= , where R is of the order of the drop 

radius. If 1Bo < , the drop remains approximately spherical, and it displays recoiling.  Otherwise, 

the gravity flattens the drop on the solid surface, and it spreads to a puddle form.  The values of 

Bo  of three drops are shown in  Table II. The size of the second drop is the transient point for 

drop beginning to spreading. The capillary length of the system l
g
σ
ρ

=  is 2.7mm . If the drop 

radius is less than this value, the drop assumes a spherical shape. If the radius is larger than the 

capillary length, the drop assumes a puddle shape. These drop behavior is consistent  with the 

experiment results reported by Extrand and Moon2 which indicate hat the volume transition point 

was  39 μLV = , and the spreading phenomena occurred with a base diameter of 2 4.3 mmb = and 

a height of 2.7 mmh = .  

If the problem is solved in a 2D Cartesian coordinate, the numerical results can not be 

validated, because the 2D drops have a cylindrical shape instead of the actual 3D spherical shape. 
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Thus, the 2D model is not axial symmetric. To describe the problems more accurately, three 

dimensional models were built. The initial drop shape is a half sphere. The radii and the liquid 

properties are the same as those of the 2D models. One quarter of drop was simulated according 

its symmetry. The numerical results are shown in FIG.  10 . They show a good agreement with 

the experiment observation 2. Table III compares the drop height and the base diameter resulting 

from numerical simulation and experiments.  
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FIG.  9. Equilibrium shape of droplets with initial radii of (a) 0.62 mmr = , (b) 2.88 mmr =  and 
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TABLE  II. The drops volume, radii, and Bond number Bo . 

 Volume (μl ) Radii(mm) Bo  
Drop 1 1 0.62 0.052 

Drop 2 50 2.88 1.127 

Drop 3 2000 9.85 13.18 

 

 

 

TABLE  III. Drop height ( h ) and base diameter ( 2b ) for sessile drop sitting on the solid surface.   

Present (2D) Present (3D) Extrand and Moon2  

2b  (mm) h (mm) 2b  (mm) h (mm) 2b  (mm) h (mm) 

Drop1 1.02 0.69 1.02 0.72 1.052±0.002 0.82±0.02 

Drop2 5.54 2.82 5.26 2.9 5.46±0.1 2.91±0.04 

Drop3 33.6 4.85 23.6 5.1 26.52±1.35 4.56±0.05 

 

IV. CONCLUSIONS 

The equilibrium shape of a sessile droplet was investigated numerically with moving contact 

line. The continuum model proposed by Ren and E proved to be suitable to describe the 

FIG.  10. Drop shapes of 3D numerical results 1μLV = (a), 50μLV = (b) 2000μLV =  . 
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dynamics of the spreading and recoiling of the droplet on the solid surface in the present 

numerical method. The simulation was performed by considering both gas and liquid phases. 

The steady state of the droplet was reached by using the sliding velocity of the contact line. The 

deformed drop shape was determined by the level set method. The discontinuous properties of 

the whole domain were defined with soothed Heaviside function. The equilibrium steady-state 

shape is mainly determined by the drop size, surface tension, gravity, and poor or good 

wettability performance of the solid surface. For the fixed droplet size, the droplet can display 

spreading or recoiling depending on the wetting/nonwetting characteristics of the solid surface. 

On the non-wetting surface of the solid by the liquid, the drop shape results from the balance of 

the surface tension and the gravity. The sufficiently small volume drop assumes a spherical 

shape because the surface tension dominates, while the shape of a larger drop is controlled by 

both gravitational force and surface tension.  
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