Deciding consistency of a point-duration network with metric constraints
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Abstract

We introduce a new model, MPDN, for quantita-
tive temporal reasoning with points and durations, that
supposes an extension of the TCSP formalism and pre-
vious point-duration network models. The problem
of deciding consistency for a MPDN is shown to be
NP-complete. So, we identify a tractable fragment,
named simple MPDN, that subsumes the STP model
and allows for duration reasoning. Necessary and suf-
ficient conditions for deciding consistency of a simple
MPDN are used to design an algorithm for consistency
checking, whose time complexity is cubic in the num-
ber of variables. This is a significant improvement, not
only in computational complexity but also in simplic-
ity, over previous non-specific algorithms that can be
applied to solve the consistency problem.

Keywords: Temporal representation and reasoning
in Al, temporal constraint reasoning, point and dura-
tion reasoning.
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1 Introduction

In a wide variety of situations, problem solving
tasks require a rather extensive knowledge and reason-
ing about time. In most applications, knowledge of
temporal constraints is expressed in terms of relations
between time objects (intervals, points or durations).
Several constraint-based systems have been proposed
for temporal constraint reasoning, mainly concentrated
on two approaches: qualitative formalisms [1, 14] and
quantitative or metric models [3]. Later efforts [6, 10]
have been made on integrating information between
time points and intervals in a single model.

Some researchers have presented systems that sup-
port qualitative and/or quantitative constraints between
durations [1, 13, 12, 11]. The need for this kind of
models is well argued in the literature. In this paper,
we present a new point-duration network model with
metric constraints, MPDN, which subsumes some pre-
vious formalisms for temporal reasoning with points
and/or durations [3, 11]. Since the consistency prob-
lem for these models is NP-complete, we cannot ex-
pect better complexity results for a MPDN. So, we

YF]',F.

COMPUTER

SOCIETY



introduce a tractable fragment, simple MPDN, which
is a nice tradeoff between expressive power and time
complexity. The consistency checking algorithm we
provide for a simple MPDN supposes a significant
improvement over previous non-specific algorithms
that can be applied to solve the consistency problem
[7,5,13].

Example 1 7o illustrate the usefulness of the new
tractable fragment we adapt the example proposed in
[10] and we include additional information about du-
rations of events. The temporal information provided
in this story can be managed with a simple MPDN, as
we will show later.

“Bob, Fred and John work for a company that has
main office in Los Angeles. It takes John less than 20
minutes and Fred 15-20 minutes to get to work. To-
day John left home between 7:05-7:10 a.m. and Fred
arrived at work between 7:50-7:55 a.m. We know that
Fred and John met a traffic light on their way to work.
Today Bob left home before 7:45 a.m. and takes 5-10
minutes less than Fred to go to work”.

2 Preliminaries

A metric constraint (or quantitative constraint) is
represented by a set of real intervals C' = {1, ..., I;;}.
A unary metric constraint C; restricts the domain of
variable x; to the given set of intervals, while a binary
metric constraint C; ; restricts the feasible values for
the time-distance z; — ;.

A TCSP [3] is a binary network involving a set
of point variables and sets of unary and binary met-
ric constraints among them. A special case is an STP
where each constraint is given by a single interval. We
will use the metric algebra [3], that is provided with
operations of set intersection, inverse (~!) and compo-
sition (®) of metric constraints. Given two quantitative
constraints C' and C", the composition C' ® C’ can be
computed as the union of pair-wise sum of intervals,
that is:

C®C = UljeC,IkeC' I+ 1 =
[aj, bj] + [ak, bk] = [a; + ak, bj + by]

The inverse C~! is obtained as C~! =
I j_l |I; e C }, where the inverse of an interval [a, b]

is the interval [—b, —a].
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Definition 1 A  metric  point-duration  network,
MPDN, is an structure Xpp = (Np, Np, Rel(P, D))
formed by two TCSPs, Np and Np, and a set of
ternary constraints Rel(P, D) relating points and
durations, where:

e Np is determined by a set P = {p1,...,pn}
of time-point variables that take values over Ra' ,
and a set of unary and binary metric constraints
between points.

e Np is given by a set D = {d;; | pi,p; € P} of
duration variables over Rg and a set of unary
and binary metric constraints between durations.

e Rel(P, D) is given by triplets of real values,
(P, Pj, D;j), for points and durations that satisfy
the Euclidean distance equation d;j = |p; — pj|,
for echa duration d;;.

A MPDN with n points and d durations is consistent
if at least one solution S = (Ap, Ap) exists, where
Ap is a n-tuple of pairs, where each pair < p;, P; >
denotes the assignment of a value P; to point variable
pj, and Ap is a d-tuple of pairs < d;;, D;; >, where a
value is assigned to each duration variable, so that all
unary, binary and ternary constraints are satisfied. A
constraint is feasible is there is a solution that satisfies
this constraint. The minimal MDPN [3] equivalent to
a given one is represented by all feasible unary and
binary constraints, what means that these constraints
are as explicit as possible.

Definition 2 A simple MPDN is a MPDN such that
each network Np and Np represents an STP, and
for every duration d;; it must be p; < pj;, that is
Ci; C [0,00). This way Rel(P, D) is obtained upon
the linear equation d;; = p; —p; for each duration d;;.

In order to deal with consistency and other reasoning
tasks, it is useful to represent a MPDN (or simple
MPDN) by means of two directed constraint graphs,
Gp = (Vp, Ep) and Gp = (VD, ED), that eXp]iCitly
show binary constraints affecting points and durations,
respectively. One node represents a point or duration
variable, that may be labelled with its unary constraint.
Each arc is labelled with the corresponding binary con-
straint.
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Example 2 The temporal information given in the
story of example 1 can be managed with a simple
MPDN. Let b=,b%, =, f*,57,57 denote the time
points that Bob, Fred and John, respectively, leave
home and arrive at the office. The constraint graphs
Gp and Gp depicted in figure 1, show the unary and
binary metric constraints between points and dura-
tions that can be extracted from the story. All arcs are
supposed to be labelled with (0,00), which is equiv-
alent to the qualitative relation < [10]. All times in
Gy, are relative to the “beginning of the world”, cho-
sen at 7:00 a.m. For instance, from the given infor-
mation that Fred arrives at work between 7:50-7:55
a.m., the domain of 7T is restricted to the time inter-
val (50,55). The duration of Fred going to work is also
limited to (15,20). The incomplete qualitative informa-
tion that “Fred and John met at a traffic light on their
way to work” can be interpreted as the I A-relation [1]
{start, started-by, during, contain, finish, finished-by,
overlapped, overlapped-by, equal} between the two in-
terval events of can be represented by a conjunction of
PA-relations (in this case <-relation or equivalently
(0, 00)) between the endpoints of the intervals.

-

(15,20)
YT

Figure 1. Constraint graphs for example 1

A unary constraint C}; for a point p; can be turned into
a binary constraint Cy; between the beginning point
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po and p;. Similarly, a unary constraint Cj; for a dura-
tion d;; can be expressed as a binary constraint Cog ;;
between the null duration dog and d;;. Notice that the
domain (i.e., unary metric constraint) C;; for duration
d;; can be considered as a binary metric constraint
C;,; between points p; and p;, since d;; = p; — p;.
For instance, in the graph G,, of figure 1, binary con-
straint between points f~ and f may be updated to
Cf- g+ = (15,20), since Cp- p+ = (15, 20). Now we
define two STPs associated to binary constraints for
points and durations in a simple MPDN.

Definition 3 Let X gy pp be a simple MPDN. The
STP-P of Xs)rpp is a constraint graph whose nodes
represent the points in Np plus the beginning point
po, and for every pair of points p;, p; there is an arc

T
1 —= j, such that,
° Ti,j = Ci,j N Cij, lfd” ebD
o I;;=0Cyifi=0
o T; ; = C; j, otherwise.
Definition 4 Let Xgy;pp be a simple MPDN. The
STP-D of X5 rpp is a constraint graph whose nodes

represent the durations in Np plus the null-duration
doo, and for every pair of durations d;;, dy,y, there is

Ti' m
anarcij 25" km, such that,
ijem = Cijrm if i # 00.
® Tijkm = Crm N Ch py if i = 00.

3 Tractability of the simple MPDN fragment

The main temporal reasoning task within a temporal
constraint model is determining the consistency or sat-
isfiability of the network. The consistency problem for
either PDN and APDN point-duration formalisms is
NP-complete [11] and tractable classes of these mod-
els have been identified, but they have a limited expres-
sive power. In this work we identify a new tractable
and quite expressive fragment for handling with metric
temporal information between points and durations, as
we show in the next theorem.

Theorem 1 The consistency of a simple MPDN can
be decided in polynomial time.
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Proof.- It is easy to see that all the constraints in a sim-
ple MPDN can be turn into Horn constraints [7, 5],
i.e., a set of disjunctions of weak linear inequalities
and linear inequations, with at most one inequality per
disjunction. Hence, Koubarakis’ CONSISTENCY algo-
rithm [7], which is polynomial, can be used in the sim-
ple MPDN fragment. []

The major drawback of Koubarakis’ algorithm is
its high complexity. It is based on the application
of a polynomial linear programming method with
high complexity'. Hence, some specific and efficient
method is needed for our simple MPDN fragment. For
this reason we are going to investigate under which
conditions one has the certainty that a simple MPDN
is consistent.

Suppose we have three p;, p;, p, points and pairs
of durations in which these points are involved. The
following equations show the influence of binary con-
straints between points over binary constraints be-
tween durations and vice versa:

di, —
dij —

=p,—p; 1)
-pe (2

(p —pi)
—pr) — (pj —pi) = pi

dzg - (pk - pl)
dij = (pj

Definition 5 Upon equations (1),(2) we say that a
simple MPDN satisfy PD3-conditions if and only if,

Vdij,dir. € D2 Tijae = T
Vdij,drj € D : Tijrj = Ty

where each binary metric constraint corresponds to
the constraint given by the STP-P or STP-D of the sim-
ple MPDN.

Suppose now we have four points p;, p;, Pk, Pm and
pairs of durations in which these points appear. The
influence of binary constraints between points over bi-
nary constraints between durations and vice versa is
shown in the following equations:

Pm —Dj = (dkm —dij) + (px —pi) (3)
pr — pi = (dij — dgm) + (Pm — pj) (4
dkm — dij = (pi — p&) + (Pm — pj) (5)
dim — dij = (Pm — pj) — (Pk — Di) = djm —dix, (6)
dim — dij = (pi — pr) — (pj — Pm) = dii — dimy (7)

' A linear programming problem in n, variables can be solved in
O(n®log T) arithmetic operations on numbers with O(n® log T')
digits, where 7" is the maximum absolute value of the entries.
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Definition 6 Upon equations (3)-(7) we say that a
simple MPDN satisfy PD4-conditions if and only if,

Y DisDjs Pk Pm € P, Y dij, dj € D
Tjm € Tijem @ Ti g
Tik - Tkm,z'j & Tj,m
Tij,km c Tk,i & Tj,m
Vdij, dkm, dik, djm € D 1 Tij km = Tik jm
Y dijy dim, diis dmj € D = Tijjom = Tk
We refer to PD3 and PD4-conditions altogether as PD-
conditions.

Theorem 2 A simple MPDN is consistent if STP-P is
path consistent [9], STP-D is path consistent and PD-
conditions are satisfied.

Proof.- Let Xgypp =< NP,ND,RBZ(P,D) > be
a simple MPDN. Satisfiability of binary constraints
alone is guaranteed since both binary networks Np
and Np, represented as STP networks, are path con-
sistent and minimal and so consistent [3]. We show
that ternary constraints in Rel(P, D) are also satis-
fied if all PD-conditions hold. Suppose Xgy/pp is
inconsistent, but STP-P and STP-D are path consis-
tent. The only source of inconsistency is due to the
influence of binary constraints between points over
binary constraints between durations and vice versa.
This influence has been shown in the equations (1)-
(7), upon which PD3 and PD4-conditions have been
obtained. Then, if Xg5/pp is inconsistent this is be-
cause some PD-condition is not satisfied. For instance,
if Cj = [—10,—8] and Cjj ;1 = [7,12], the the sim-
ple MPDN is inconsistent because there is no assign-
ment for points and durations such that ternary con-
straints d;; = p; — p; and d;;, = py — p; are satis-

fied. Indeed, it must be 7 < dy, — d;; < 12, but
7 < (px—pi) — (pj —pi) < 12,s0that 7 < pp —p; <
12, which is not consistent with C;; = [—10,—8].

The inconsistency is due to Cj; ;. N Cj = &, so that
one PD3-condition is not satisfied. All the inconsis-
tencies we can find in a simple MPDN with path con-
sistent STP-graphs are due to empty intersections in
PD3 or PD4 conditions. Otherwise the network would
be consistent. In summary, conditions of theorem ??
are sufficient conditions to ensure the consistency of
simple MPDN. But necessary conditions are given by
the fact that the STP-P and STP-D must be consistent
and each intersection that substitutes = or C in PD-
conditions must be non empty. []
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4 Consistency checking

We present now a consistency algorithm CONS-
SMPDN (figure 2) that takes as input a simple MDPN
and return TRUE when the network is consistent and
FALSE otherwise. This algorithm is based on Mack-
worth’s PC-2 algorithm [9] for achieving path consis-
tency. Our goal is to accomplish, if possible, path con-
sistency in the STP-P and STP-D graphs at the same
time that satisfiability of PD-conditions is guaranteed.

Every different triple of point or duration-nodes,
representing paths of length two, are added to the sets
Qp and @ p, respectively. For every triple we check
if the label (constraint) of one of the arcs changes as
a product of a composition operation or as a conse-
quence of a call to procedures PD3 (figure 3) or PD4
(figure 4), that are used to ensure the satisfiability of
PD-conditions. When a label of an arc changes, its
effect must be propagated, so we use a function REL-
PATHS that take an arc (between point or durations)
and returns a set of triples representing all paths of
length two in which the arc participates.

1. if dj;,d;, € D then
2 t«— Tji,jk n TL,k; if t = & then exit (FALSE);

3 if T; i # t then

4 Tix — t; @p — Qp URELATED-PATHS (i, k, Qp);

5. if djr, € D then

6 Qb «— @Qp URELATED-PATHS (00, ik, Qp);

7 if Tji,]'k 75 t then

8 Tji ik < t; Qp < Qp URELATED-PATHS (51, jk, Qp);
9

1. repeat

2. while Qp # @

3 delete path (4, j, k) from Q p;

4 t<—Ti1k ﬂ(TiTj ®Tj,k);PD3 (i7j7]€,);

5. if T # tthen

6 Tk < t;if T; ), = @ then exit (FALSE);

7 Qp — QpUREL-PATHS (i, k,Qp); PD3 (¢, , k);
8 if d;x, € D then Qp < QpU REL-PATHS (00, ik, Qp);
9. while Qp # @

10.  delete path (ij, pg, km) from Qp;

11. t — Tijm N (Tijpg @ Tpg,km)

12.  ifij, km # 00 then if i = k then PD3 (j, 7, m)

13.  elseif j = m then PD3 (3, j, k) else PD4 (5, km);
14.  if T;j km # t then

15. Tijem «— t;if Tij,m = @ then exit (FALSE);

16. Qp — Qp UREL-PATHS (ij, km,Qp);

17. if i = 00 then Qp < Qp U REL-PATHS (k,m,Qp);
18. if km = 00 then Qp < Qp U REL-PATHS (4, 7, Qp);
19. if 5, km # 00 then if ¢ = k then PD3 (j,4,m,)

20. else if j = m then PD3 (i, j, k) else PD4 (ij, km);

21. until (Qp = ) A (Qp = 9);

Figure 2. Algorithm CONS-SMPDN (Xga7pp)

. end-if;

Figure 3. Procedure PD3 (i, j, k)

Theorem 3 The algorithm CONS-SMPDN correctly
checks for consistency in a simple MPDN in O(n3 +
d3), where n is the number of points, d is the number
of durations.

Proof.- The correctness of the algorithm follows from
the correctness of PC-2 algorithm for deciding con-
sistency in the STP model [3] and necessary and suf-
ficient conditions to ensure consistency of a simple
MPDN (see theorem 2). When the algorithm returns
FALSE then the simple MPDN is inconsistent since
necessary conditions for consistency are not satisfied
(some constraint becomes empty). When the algo-
rithm returns TRUE the network is consistent, since
sufficient conditions for consistency are fulfilled.

For the analysis of the time complexity we take as
a reference the time complexity of PC-2 applied to an
STP, which is O(n?3) for n points [3]. In addition to
the paths processed by PC-2, either in STP-P or STP-
D (O(n3 + d®) in total), here when a binary constraint
T; ; changes then at most O(d) paths are added to Qp
(if d;;j € D) and when a binary constraint between
durations changes then at most O(n) paths are added
to Qp (for constraints of the form Tpg ;;). In total, no
more than O(n®+n%x d+d% xn+d?) = O(n3+d?)
paths are processed. [J

Since we know how to solve a simple MPDN, a
backtracking algorithm could be devised for solving a
MPDN following the same idea proposed for a TCSP
[3], where, in addition, the network for durations must
be considered now. The consistency algorithm for a
MPDN must find a consistent simple MPDN extracted
from the input network. If such a consistent subnet-
work cannot be found the MPDN is inconsistent.
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1. if dix,djm € D then
2.t Tij km NTik,jm; if t = & then exit (FALSE);
3. if Tij,km ;é t then
4. Tijkm < t;
5. Qb — Qp UREL-PATHS (ij, km,Qp);
6. if Tk, jm # t then
7. TikA,jm — t;
8. Qb — Qp UREL-PATHS (ik, jm,Qp);
9. t — Tjm N (Tijem @ Tik); if t = & then exit (FALSE);
10. if T}, # t then
1. Tjm —t;
12.  Qp < Qp UREL-PATHS (j,m,Qp);
13.  ifdjm € D then
14. Qb «— Qp UREL-PATHS (00, jm, Qp);
15. t Ti,k N (Tkm,ij ® Tj,m); if t = & then exit (FALSE);
16. if T; 1 # t then
17. Tk <t
18.  Qp < Qp UREL-PATHS (i, k,Qp);
19. if djx € D then
20. Qp — Qp UREL-PATHS (00, ik, Qp);
21. ¢t Tijem N (Thyi @ Tjm); if t = & then exit (FALSE);
22, if Tyj g # t then
23. Tij,km — t;
24.  Qp < Qp UREL-PATHS (ij, km,Qp);
25. end-if;

Figure 4. Procedure PD4 (ij, km)

Theorem 4 The consistency problem for a metric
point-duration network is NP-complete.

Proof.- A non-deterministic algorithm can check for
consistency in a MPDN in polynomial time, using the
algorithm CONS-SMPDN with each simple subnetwork
extracted from the MPDN. So, solving a MPDN is NP.
Moreover, it is NP-complete because deciding consis-
tency of a TCSP is NP-complete [3] and this model
can be considered as a special case of a MPDN with
no duration variables. [

Example 3 The story of example I continues... “Bob,
Fred and John’s boss has been found murdered this
morning at office. The police inspector has been ask-
ing some questions and he has found out that:

e A neighbor heard a shot gun at 7:25 a.m.

e John declared to arrive at the office at 7:35 a.m.
His boss was already dead and Bob also was at
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the office.

e Bob said he arrived at 7:40. John was there and
his boss was lying on the floor.

e Fred said he arrived at 7:53 and, apart from the
dead body, Bob and John were there with angry
faces”.

What can be said about these declarations above?
Applying our algorithm CONS-SMPDN fo the corre-
sponding simple MPDN (see example 2) give rise to
the minimal STP-D depicted in figure 5. Part of the
minimal STP-P that is relevant at this point is also
shown in the figure. Fred certainly was not at the office
at 7:25, when the crime took place, but John and Bob
could have been there. Bob and John’s declarations
are inconsistent, so one of them may be the murder.
The inspector has found out (with the help of the mini-
mal STP-P) that it was impossible that John arrived at
the office at 7:35 a.m. John lies, but is he the murder?
This is another question.

STP-P
m
(5,10) i (0,20)

(50,55)

(-15

(15.,20) }'15)

Minimal STP-D

Figure 5. Minimal STP-D and STP-P
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5 Discussion

Two point-duration network based models has been
previously identified [11], PDN and APDN. The first
one consists on two point algebra (PA) networks [14]
related by ternary constraint as in Rel(P, D) and the
second one is given by two augmented PA networks
[10] with ternary constraints. The APDN model is an
extension of a TCSP which allows for duration reason-
ing [11]. Here we further extend the APDN since point
and duration variables are now related by metric con-
strains, and every qualitative relation in the PA can be
turned into a metric constraint [10].

Notice that each duration variable d;; in the MPDN
model represents the elapsed time between two tempo-
ral points p; and p;, but it does not supposes anything
about the relative position of these points. This is be-
cause we use the Euclidean distance d;; = [p; — pj|
to relate points with durations. It is worth noting that
the these constraints cannot be represented with dis-
junctive linear relations (DLRs) [5, 7], which is known
to be a very expressive formalism to deal with tempo-
ral constraints. The tractable fragment, simple MPDN,
we identify here is not very restrictive since condition
p; < pj; for a duration d;; is not so strong. This is sim-
ilar to say, in the interval algebra context [1], that the
start point of a time interval is before its end point.

A simple MPDN can be represented as a pre-convex
PIDN [13]. In this fragment of the PIDN model,
checking for consistency requires a 4-consistency al-
gorithm which is at least O(#*) [2], being ¢ the number
of temporal objects (points or intervals). New compo-
sition, inverse and intersection operations must be used
with de consistency algorithm, which is not shown in
[13]. Our consistency checking algorithm for a sim-
ple MPDN is an easy path consistency like algorithm
and it improves the complexity of the algorithm for the
pre-convex PIDN fragment by at least a linear factor—
a significant speed up. This is because, in order to rep-
resent p points and d durations in a pre-convex PIDN,
one needs O(mazx(p + 2,d)) objects, so that when
d > p + 2 our algorithm is always better and when
d < p + 2 our algorithm is better for p > 4.
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6 Conclusion

We have introduced a new model, MPDN, for met-
ric temporal reasoning with points and durations, that
supposes an extension of the TCSP formalism [3] and
previous point-duration network models [11]. The
problem of deciding consistency for a MPDN is shown
to be NP-complete.

We have identified a tractable fragment of the
MPDN model which reflects a good tradeoff between
expressive power and complexity. This class, simple
MPDN, allows representing points and durations as
temporal objects and can manage with simple metric
constraints. We have investigated necessary and suffi-
cient conditions to ensure the consistency of a simple
MPDN and, using these conditions, a constraint prop-
agation algorithm for consistency checking has been
designed. With our consistency algorithm, non-binary
constraints (e.g., ternary relations and 4-ary implicit
constraints among points involved in a binary con-
straint between duration) are managed with a formal-
ism that integrates two well studied binary constraint
networks. The time complexity of the algorithm is cu-
bic in the number of variables what supposes a nice
improvement, not only in computational complexity,
but also in simplicity, over previous non-specific al-
gorithms that can be applied to solve the consistency
problem.

An easy extension to the simple MPDN fragment
is to cope with binary constraints expressed as inter-
vals with holes, so that we can obtain algorithms for
consistency checking and finding the minimal network
following the ideas presented in [4, 8]. We are also
working in an algorithm for finding a solution to a sim-
ple MPDN that it may be useful for several applica-
tions, specially for those where the STP fragment [3]
has been used.
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