AN ANALYSIS OF THE SENSITIVITY OF AUSTRALIAN SUPERANNUATION FUNDS TO MARKET MOVEMENTS: A MARKOV REGIME SWITCHING APPROACH

EDUARDO D. ROCAa,* and VICTOR S. H. WONGa

aDEPARTMENT OF ACCOUNTING, FINANCE AND ECONOMICS, GRIFFITH BUSINESS SCHOOL, GRIFFITH UNIVERSITY, NATHAN, QUEENSLAND 4111, AUSTRALIA.

ABSTRACT

This paper investigates the sensitivity of Australian superannuation funds in relation to equity and bond markets. In particular, it examines the extent, speed and duration of response of the Australian superannuation funds’ returns to movements in the US and Australian equity and bond markets when fund returns are in the up, normal and down regimes, through the application of Markov regime switching analysis. The results reveal that Australian superannuation funds’ returns are most affected by movements in the US equity market, followed by the Australian equity market then by the US bond market. Funds’ returns are not influenced at all by movements in the Australian bond market. They respond quickly and briefly to market movements irrespective of whether funds returns are in a down, normal or up state. Funds’ returns move positively with the US equity market under all states or regimes of funds returns but most especially during the down regime. They are influenced by the Australian equity market only during the normal regime and by the US bond market only during the up regime. In line with those of previous studies, these results imply that Australian superannuation funds are not able to time their exposure to markets and that their performance is indicative of an efficient market.

Keywords: Superannuation funds, Markov switching, Sensitivity of funds

JEL Classification: G23, C32

* Corresponding author, Telephone: +617-37357583, E-mail: E.Roca@griffith.edu.au
I. **Introduction**

The Australian retirement, pension or superannuation fund is the largest in Asia and the fourth largest in the world subsequent to the US, Luxembourq and France. In 2000, Australian superannuation fund assets totalled US$342 billion and by 2004, this has doubled to US$635 billion. This figure is expected to increase further to US$1,081 billion by 2010 and US$1,743 billion by 2015 (Axiss, 2005). Given the crucial role that superannuation plays in providing for the retirement needs of Australians, it is imperative that superannuation funds should at the very least be safe. Thus, it is important that the risks associated with superannuation funds be understood fully so these risks could be managed carefully. One of these risks is systematic risk or risk arising from market movements (market risk).

There is a significant body of literature which investigates different aspects of superannuation such as taxation (Bateman *et al*, 1993; Knox, 1993), annuities (Pigott *et al*, 2005), retirement timing (Kingston, 2000), disclosure (Gallery and Gallery, 2003), safety (Valentine, 2003), diversification (Diggle *et al*, 1999), performance (Bird *et al*, 1983; Robson, 1986; Sinclair, 1990; Hallahan, 1999; Sawicki and Ong, 2000; Gallagher, 2001; Prather *et al*, 2001; Drew and Stanford, 2003; Hallahan and Faff, 2004), returns, volatility and expenses (Coleman *et al*, 2004). However, none of these studies explored the sensitivity of superannuation funds to market movements. Hence, the main aim of this paper is to addresses this gap in the superannuation literature. It investigates the sensitivity of Australian superannuation funds with respect to the Australian and US equity and bond markets.

It is quite well established in the literature that financial markets are characterised by cycles or regimes such as down, normal and up states and that the relationship between risks and returns can differ under these different market conditions (Fabozzi and Francis, 1977, 1979; Chen,
In spite of this, most of the existing literature on superannuation funds does not take this important factor into account systematically. Therefore, this paper also address this knowledge gap in the superannuation literature.

As stated earlier, this paper analyses the sensitivity of Australian superannuation funds in relation to the equity and bond markets. In particular, it examines the extent, speed and duration of response of the Australian superannuation funds’ returns to movements in the US and Australian equity and bond markets when funds returns are in the up, normal and down regimes through the application of Markov regime switching analysis (see Hamilton, 1989 and Krolzig, 1997). One of the major advantages of this approach is that it does not require prior specifications or dating of funds returns’ regimes. Instead, regimes and their corresponding probabilities of occurrence are endogenously determined rather than pre-determined. Thus, the use of the Markov switching model allows a more robust and informative analysis on the sensitivity of Australian superannuation funds to market movements. To the knowledge of the authors, no study on the Australian superannuation fund has yet utilised the Markov switching approach. In order to measure the extent of the response of Australian superannuation funds to movements in the equity and bond markets, a Markov Switching-Vector Autoregression (MS-VAR) model is estimated. With this model, an impulse response analysis is then conducted afterwards to determine the speed and duration of the response.

The remaining parts of this paper are organised as follows. Section two provides a discussion of funds sensitivity to market movements and market timing. Section three presents a brief review of the empirical evidence on the sensitivity to market movements and the market timing ability of Australian superannuation funds. Section four discusses the methodology and data
used in the study. Section five presents the empirical results of the study followed by the conclusion and suggestions for further research in section six.

II. Funds’ Sensitivity to Market Movements and Market Timing

This paper analyses the sensitivity of Australian superannuation funds to market movements. The funds analysed in this study, called “multi-sector funds”, are those with portfolios that consist of investments in different asset classes such as equities, bonds, and properties in domestic as well as foreign markets, with the bulk of their investments being in equities and bonds. Hence, their portfolios can be exposed to the movements of domestic and international equity and bond markets. During up market regimes, exposure would be desirable but not during down regimes. Funds may therefore want to manage their exposure or practice market timing. They may attempt to anticipate market movements and then correspondingly re-balance or change the composition of their portfolio ahead of this anticipated market movements in order to improve their performance. For instance, if they anticipate a down equity market, funds may re-balance their portfolio in such a way that they will be holding lesser equities and/or holding equities which are less sensitive to the market, such as the so-called defensive stocks. Thus, if during a down equity market, it is found that the fund is not sensitive to the market, then this could be a confirmation that the fund has been successful in its market timing. However, if the fund is found to be sensitive to the equity market, then this could indicate lack of success in their market timing. Hence, knowing the sensitivity of the fund in each regime could provide an indication of the market timing ability of funds.

The decision of asset allocation would depend on the fund’s aims with regards to returns and risk tolerance. Different investment strategies vary in their levels of risk and returns and the key to choosing an investment strategy is by deciding the rate of return investors want relative
to the amount of risk that they are prepared to accept. Funds could allocate their assets into the equity market if they are prepared to accept high risk with high returns, or they could allocate their assets into the bond market with a lower risk and lower returns. Generally, funds would allocate assets into the equity market during up market conditions and shift their assets into the bond market during down market conditions, depending on their investment strategy and the level of exposure they are willing to accept.

The funds, which are the primary focus of this study, are governed by the regulatory body, Australian Prudential Regulation Authority (APRA), which prescribes the weights of the asset classes allocated in the portfolio within certain ranges, as shown in the table below.

[INSERT TABLE 1 HERE]

If it shows that funds are able to time the market successfully, then this could also be an indication that the market is inefficient. The speed and duration by which funds are impacted by the market, which can be gleaned through the so-called impulse response analysis, providing further evidence of the efficiency of the funds in processing market information. Thus, the analysis of the sensitivity of funds to market movements could also provide information with regards to the efficiency of markets.

III. **Brief Review of the Literature**

The evidence from studies on the performance of managed funds is that only a limited number of fund managers possess market timing skills (see, for example, Treynor and Mazuy, 1966; Jensen, 1968; Kon and Jen, 1978; Henriksson and Merton, 1981; Kon, 1983; Henriksson, 1984; Admati *et al*, 1986; Lehmann and Modest, 1987; Lee and Rahman, 1990; Daniel *et al*, 1996; Kao *et al*, 1998; Blake *et al*, 1999; Dellva *et al*, 2001). In the case of Australian superannuation
funds, the few studies conducted on this issue have found that these funds do not possess any market timing skills at all (see Prather et al., 2001; Benson and Faff, 2004; Drew et al., 2005; and Faff et al., 2005). These studies, however, do not allow for changing probability distributions of returns between regimes and for the endogenous determination of structural breaks. The present study addresses this concern through the application of the Markov regime switching approach. As per the authors’ knowledge, this study is the first of its kind in the area of superannuation research.

As stated earlier, the speed and duration of response of Australian superannuation fund returns to movements in the Australian and US equity and bond markets could provide an indication of the efficiency of funds. Studies have found the performance of superannuation funds to be indicative of market efficiency (see, for instance Beechey et al., 2000; Gallagher and Jarnecic, 2002; and Drew and Stanford, 2003). Again, these studies, however, do not allow for switching probability distributions associated with differing regimes. Thus, the present study can provide further robust evidence with regards to the market timing ability and efficiency in the response to market movements of Australian superannuation funds.

IV. METHODOLOGY AND DATA

Methodology

We make use of a multi-index model in which returns are a function of the Australian equity market, US equity market, Australian bond market and US bond market. In its simplest form, this could be represented as follows:

\[R_S = \beta_0 + \beta_{E.Aus} F_{E.Aus} + \beta_{E.US} F_{E.US} + \beta_{B.Aus} F_{B.Aus} + \beta_{B.US} F_{B.US} + e \]

(1)

where \(R_S \) is the returns of superannuation funds’;
\(F_{E, Aus} \) is the returns on Australian equity market;
\(F_{E, US} \) is the returns on US equity market;
\(F_{B, Aus} \) is the returns on Australian bond market;
\(F_{B, US} \) is the returns on US bond market; and
\(e \) is the error term.
\(\beta_{E, Aus}, \beta_{E, US}, \beta_{B, Aus}, \beta_{B, US} \) represent the sensitivity of funds returns to the movement of the Australian equity market, US equity market, Australian bond market, US bond market respectively.

In this paper, we allow each beta to vary or switch across different regimes. Each beta therefore will have a value for each regime – i.e. one for the “up, normal and down regime”. We do this through the use of the Markov regime switching model based on the work of Hamilton (1989) and Krolzig (1997) which provides procedures to estimate these switching values of betas. The different regimes are endogenously identified by the model. The probability of occurrence (called regime probability) as well the duration of each regime is also determined. In addition, the probability of switching to another regime when one is in a certain regime is identified. This so called “transition probability” therefore provides another indication of the volatility of a certain regime.

We also decompose each beta to trace the co-movement of fund returns with each of the four markets. We do this by performing an impulse response analysis (see Ehrmann et al, 2001, pp. 10-11). All analyses are performed within the context of a Vector Autoregression (VAR), which involves multivariate and simultaneous system of equations (see Sims, 1980). In this study, we therefore consider VAR models with changes in regime (Markov switching-VAR).

In the most general specification of an MS-VAR model, all parameters of the VAR are conditioned on the state \(s_t \) of the Markov chain. Denoting the number of regimes by \(m \) and the number of lags by \(p \) and the observed time series vector \(y_t \), the general form of the MS-VAR model for the purpose of this study can be represented as follows:
\[
y_t = \begin{cases}
v_1 + B_{11}y_{t-1} + \ldots + B_{p1}y_{t-p} + A_1u_t & \text{if } s_t = 1 \\
\vdots \\
v_m + B_{1m}y_{t-1} + \ldots + B_{pm}y_{t-p} + A_mu_t & \text{if } s_t = m
\end{cases}
\]

where \(y = [y_1, y_2, y_3, y_4] \);

\(y_1 \) is the returns on Australian equity market;
\(y_2 \) is the returns on US equity market;
\(y_3 \) is the returns on Australian bond market;
\(y_4 \) is the returns on US bond market;
\(v \) represent the regime-dependent intercept term;
\(B \) is the parameters shift functions;
\(s_t \) is assumed to follow the discrete time and discrete state stochastic process of a hidden Markov chain;
\(u_t \) is the vector of fundamental disturbances, is assumed to be uncorrelated at all leads and lags:- \(u_t \sim \text{NID}(0, I_K) \); \(K \) is the dimension of the coefficient matrix \(A \) (i.e. it describes the number of endogenous variable).

A more detailed discussion of the estimation of the Markov switching model is provided in the Appendix.

In order to determine the appropriate MS model to use, we conduct a number of diagnostic tests. We test the data for unit roots (using the Augmented Dickey Fuller and Phillips-Perron tests) and hetersoskedasticity (based on the White Test). We also test for the optimal number of regimes and number of lags for the model based on the Akaike Information Criterion. After we have determined the specific form of the MS model, we then estimate the model based on the procedures developed by Krolzig (1997) (see Appendix for the technical details) and derive the following based on the Markov switching model: (a) regime probabilities; (b) transition probabilities; and (c) parameters or coefficients. Subsequently, we conduct an impulse
response analysis using the Choleski decomposition method (see Appendix for further explanation).

Data

This study covers the period January 1997 to September 2005. We chose this period due to the completeness of data and its richness with financial market events such as, the Asian crisis and the surge in US bond prices in 1997, Russian crisis in 1998, Dotcom boom in 1999 followed by its collapse in 2000, September 11 attacks in 2001, Enron bankruptcy in late 2002, and the Worldcom and Delphia bankruptcy in 2003. This study utilises weekly data in order to avoid noise, non-synchronous trading and the day of the week effects associated with daily data. There are 457 weeks during the study period. Data is collected every Thursday of the week. In the case when Thursday data is not available, Friday data is used.

The Australian superannuation funds data used in this study are supplied by Morningstar Research Pty Ltd (Morningstar), an independent measurement service and research house, which monitors the managed funds industry in Australia. Table 2 shows the different groups of superannuation funds according to type of investments in the Morningstar database. It can be seen that the biggest number of superannuation funds are those with multi-sector investments, which represents 38.0% of the total number of funds. This paper focuses on multi-sector superannuation funds, which is most suitable for the purpose of this paper because these funds generally invest across two or more asset classes, such as equity markets, bond markets, properties and cash reserves.

[INSERT TABLE 2 HERE]
All funds included in this analysis are represented in the database during the whole period of study, thereby, avoiding the survivorship bias problem created when funds, which do not survive for the full sample period, are absent from the database. “Dead” funds and funds that do not have sufficient data for two or more missing weeks are removed from the analysis.\(^1\) The missing data are mostly due to non-working days such as holidays. When data for a certain week is not available, the previous week data is substituted for the missing data in that particular week. After the process of filtering, 313 funds are left in the Multi-sector funds category and these funds are then used in this study.\(^2\) This sample represents about 19.5% of the total number of Multi-sector superannuation funds.

This paper also utilises the Morgan Stanley Capital Indices (MSCI) data for equity and bond indices in Australia and the US. Figure 1 shows the trend of the indexes used in this study. It can be clearly observed from the graph that the US equity market has more fluctuations or more volatility as compared to the Australian equity market. The fluctuations of the US equity market could be due to the financial distress events mentioned previously. The US equity market grew rapidly from 1997-2000, followed by down fall in 2000-2003 then the market grew gradually from 2003. On the other hand, the US and Australian bond markets grew steadily over the period studied. In the year 2001, the US bond market grew faster than the Australian bond market.

![INSERT FIGURE 1 HERE]

The weekly returns from superannuation funds are calculated based on the exit price of the fund (which is net of management fees, excluding entry and exit loads) using the discrete

\(^{1}\) These include funds that are no longer traded, have only monthly data and with missing data for more than two weeks in the Morningstar database.

\(^{2}\) The recommended sample size is 311 funds (i.e. calculated at 95% confidence level and 5% confidence limits of the total funds’ in Multi-sector funds) and there were 313 funds included in this study.
returns formula of \(R_t = \ln(price_t/price_{t-1}) \times 100 \). Then, the funds’ returns were combined or pooled by taking the weighted average of all the funds’ returns. The weight of each fund is based on its net asset value. For consistency, the returns for Australian and the US equity and bond markets are also calculated based on the same discrete returns formula. The MSCI datasets are obtained from *DataStream*.

V. **Empirical Results**

Diagnostic Test Results

To test for unit roots in each of the returns time series, the study performed the Augmented Dickey-Fuller (ADF) and Philips-Perron (PP) tests, as discussed previously. The null hypothesis of non-stationarity (unit root) and alternative hypothesis of stationarity (no unit root) are tested for each data series, in original form. The calculated \(t \)-statistics are presented in Table 3. The ADF and PP tests reject the null hypothesis of a unit root at 5% level of significance. Both unit root tests suggest the funds’ returns as well as those of the Australian and the US equity and bond markets are stationary. Consequently, the returns time series will be used in the subsequent analysis without further differencing or testing for cointegration.

[INSERT TABLE 3 HERE]

The next step in deciding the appropriate Markov switching model is to test for the existence of heteroskedasticity within the dataset, which is performed using the White’s (1980) test. The null hypothesis of no heteroskedasticity against heteroskedasticity of some unknown general form is tested. The results show a Chi-square of 427.1949 corresponding to a 300 degrees of freedom with a p-value of 0.0000. Thus, the null hypothesis is rejected which suggests that the

3 The continuous return formula is used as it is well-known to provide more accurate measure of return compared to the discrete formula (Brailsford *et al*, 2004, pp. 9). Other studies evaluating funds performance have used the same way of measuring returns (see, Sawicki and Ong, 2000; Benson and Faff, 2003; and Bohl *et al*, 2005)
data contain heteroskedasticity. Consequently, the study applies the Markov switching MSIAH(m)-VAR(p) model.

The Akaike Information Criterion (AIC) values for 2 to 4 regimes and 1 to 4 lags are shown in Table 4. The AIC is used to determine the optimal number of regimes and lags to be used in the MS model. The results show that the lowest AIC value corresponds to the Markov regime switching model with 3 regimes and 1 lag. Hence, this study adopts the Markov switching MSIAH(3)-VAR(1) model. Several other studies have used the three-regime model and have found it to perform well in capturing market cycles and forecasting future market conditions (see, for instance, Hamilton and Susmel, 1994; Krolzig and Toro, 2000; Granger and Silvapulle, 2002; Krolzig et al., 2002).

[INSERT TABLE 4 HERE]

Regime and Transition Probabilities

Table 5 presents the corresponding probabilities and characteristics for each of the three regimes estimated by the Markov switching model. As can be seen in this table, more than half of the time (53.3%), fund returns stayed in regime 2, about a quarter of the time (25.9%) in regime 1 and the rest of the time (20.8%) in regime 3. Regime 2 has the longest duration (26 weeks) while the other two regimes lasted very shortly (i.e. only around 2 weeks on the average). Regime 3 has the highest return while regime 1 has the lowest, as shown in column 4 of the table. Thus, Regime 1 corresponds to a low return state while Regime 3 to a high return state. Regime 2 is associated with a moderate return state. These different states of funds performance could be a reflection of the state of market. For instance, when funds are in the up state, it may be that the market is in a bullish state. Funds, however, end up having high returns over only two weeks instead of over a longer period, possible because of the switching of their
portfolio allocation to assets which may be in a down state. Hence, this may be an indication of a lack of success in market timing if funds are indeed practicing this.

[INSERT TABLE 5 HERE]

As can be seen in the last column of table 5, regimes 1 and 3 are characterised by high volatility, while regime 2, by low volatility (less than half of the other two regimes). Regimes 1 and 3 are therefore highly unstable while regime 2 is stable. This is further confirmed by the results shown in Table 6. In this table, the three numbers in a particular row show the probability of a regime shifting into regimes 1, 2 and 3, respectively. For example, in row 1, the first number, 0.5534, indicates the probability of regime 1 shifting into regime 1, which means staying in regime 1; the second number, 0.0447, shows the probability of regime 1 switching to regime 2, while the last number, 0.4019 shows the probability of regime 1 switching to regime 3.

[INSERT TABLE 6 HERE]

There is only a 55.34% probability (see the intersection of row 1 and column 1) that regime 1 will stay in itself and a 40.19% (see row 1 and column 3) probability that it will switch to regime 3. For regime 3, the probability of remaining in itself is only 49.62% (intersection of row 3 and column 3) and the probability of switching to regime 1 is 46.13% (row 3 and column 1). Thus, these figures show that there is a high probability of switching between regimes, 1 and 3, which further confirms that these regimes are unstable or highly volatile. As shown by the number in the intersection between row 2 and column 2 in Table 6, there is a 96.17% probability that regime 2 will remain in itself; thus, further confirming that regime 2 is stable.

Our findings are consistent with those of other studies that have employed a Markov switching three-regime model. For example, Hamilton and Susmel (1994) analysed the stock market
returns and found that 99.14% observations remained in the normal regime. Krolzig and Toro (2000) studied the US business cycle and found 94.87% of observations remained in the normal regime. Krolzig et al (2002) found 93.98% of UK labour market staying in the normal regime.

Figure 2 provides a graphical representation of the regime probabilities. By simple inspection based on the spikes, we can clearly see a rapid switching between the down regimes and the up regimes during the period 1997-2001. It is evident from Figure 2 that there is switching between regimes 1 and 3, which supports the results presented earlier in Table 5 implying high volatility of each of these two regimes – a variance of 14.35% for the up regime and 11.26% for the down regime. Additionally, it is obvious from this diagram that the largest probability corresponds to regime 2, which is characterised by the long duration (26 weeks) and lower volatility as presented in Table 5.

As can be seen further from Figure 2, the down regime (regime 1) corresponds to the periods where financial distress events occurred, such as the Asian crisis in 1997, Russian crisis in late 1998, Dotcom collapse in 2000, September 11 attacks in 2001, Enron bankruptcy in late 2002 and bankruptcies of Worldcom and Delphia in 2003. Regime 3, on the other hand, corresponds to the events that drive the market upwards, such as the start of the Dotcom boom in 1997, the surge in US bond prices surge in 1998, and the peak of the Dotcom boom in 1999. The events captured are mostly events occurring in the US, implying that the US market could have had a major impact on Australian superannuation funds’ returns. It is noticeable that most observations remained in regime 2 after the year 2000. This regime corresponds to the period of recovery from the Asian crisis in 1997 and the Russian crisis of 1998 although there are a couple of switches between regimes 1 and 3 due to the occurrence of financial distress events.
in the US. The results have shown that the funds’ returns are low and more volatile during periods of financial distress, and higher and less volatile when markets are back to normal conditions.

Other studies that have employed the Markov switching model, have shown that this model is able to capture the periods containing market crashes. For instance, Tu (2004) analysed the investment decisions of 25 portfolios under up and down regimes during 1963-2002 and their model is able to capture events such as the oil price shocks in 1970s, the recession in the early 1980s, the October 1987 stock market crash, the 1997 Asian crisis and the recession in 2000. Humala (2005) applied the Markov switching model, which also identified the period of financial distress correctly.

Regime Coefficients

The estimated parameters of the Markov switching model are presented in Table 7, which provide information on the sensitivity of funds’ returns to the movement in Australian equity, US equity, Australian bond and US bond markets in each regime. The only coefficients that are statistically significant are those corresponding to the US equity market in regimes 1, 2 and 3; Australian equity market in regime 2; and US bond market in regime 3. These coefficients that are statistically significant are all positive, indicating that funds’ returns would move in the same direction with these markets.

[INSERT TABLE 7 HERE]

The Australian superannuation funds’ returns are affected by the Australian equity market during the normal regime only, indicating that funds’ returns are not sensitive to Australian equity market movements during down and up regimes. Funds’ returns are exposed to the US
equity market in all regimes. The highest exposure was during the down regime, followed by the up regime, and then the normal regime. The Australian bond market, on the contrary, does not significantly affect the returns of superannuation funds in any regime. The US bond market, however, does affect funds returns but only during the up regime.

It is noticeable that the US equity market, but not the Australian equity market, drives funds’ returns during all regimes. This indicates that the US market is responsible for funds returns movements during states of high volatility, i.e. regimes 1 and 3. As can be seen in Figure 1, during the period studied, the US equity market exhibited much higher volatility as compared to the Australian equity market. This is accounted for by the events discussed previously.

Thus, the US equity market drives fund returns in all regimes. Funds’ returns were exposed to the US equity market all the time, both in up and down conditions. Therefore, this indicates that fund managers were not able to successfully time the US equity market fully. In the case of the Australian equity market, it only affected funds returns during times when funds were in a normal level – it did not bring high returns or low returns. The US bond market, however, pulled funds’ returns up but not down. So perhaps, fund managers had a bit of success in timing the US bond market. Hence, if funds were timing the market, then they had no full success with the US as well as the Australian equity market but had success to a certain extent with the US bond market. On the other hand, funds may not have been market timing at all, or if they were, only in a very restricted sense because of constraints coming from their charters or regulations such as those of APRA.

The results are in line with Prather et al (2001) who found no significant timing performance of 148 multi-sectors funds as well as that of Drew et al (2005) who also found that superannuation fund managers do not have market timing ability or do not time the market at
all because the costs of such timing are prohibitive. Menkhoff and Schmidt (2005) found that most fund managers rely on the buy-and-hold strategy, as such they do not shift their exposure according to different market movements. Our results are also consistent with Treynor and Mazuy (1966) and Fabozzi and Francis (1979) who found that fund managers did not reduce (increase) the funds’ beta in down (up) market conditions to earn higher returns.

Our results reveal that the US equity market is the dominant market affecting funds’ returns during all funds returns regimes. It is well established in the literature that the US stock market drives equity markets worldwide including Australia. Several other studies have found that the US market has a significant influence towards the Australian market. For example, Roca (1999) found that the Australian equity market is linked with the US market in the short run. Sheng and Tu (2000) supported this claim by stating that US market have strong relationship (both in short and long-term) with most of the Asian markets. Similar results were supported by Ragunathan et al (2000), who found US market has a large impact on the Australian market. Eun and Shin (1989) found that the US market is rapidly transmitting shocks to other markets in a clearly recognisable manner, whereas no single foreign market can significantly explain the US market movements. They also found dynamic response patterns to be generally consistent with the notion of informationally efficient international stock market.

Overall, the model coefficients estimated by Markov switching model indicate that fund managers do not rebalance their portfolio according to what is desirable for each state of the funds’ returns. A possible reason could be their inability to predict the market correctly. On the other hand, if fund managers are able to predict the markets and do not shift their portfolio composition, this may imply that the cost of switching is high and this prohibits portfolio rebalancing; or it could be that funds’ objectives and government regulations put restrictions on their ability to rebalance their portfolio.
Impulse Response Analysis

Further investigation to analyse the speed and duration of the superannuation funds’ returns response to equity and bond markets movements is performed by decomposing the coefficients in each regime (shown in Table 7) through the use of impulse response analysis based on the Markov switching model. The impulse response analysis shows the expected change in the funds’ returns after a one standard deviation shock to the Australian and US equity and bond markets under the down, normal and up states of funds returns on weekly basis. Figure 3 presents the impulse response of funds’ returns to those markets which have significant positive coefficients in the Markov switching model, namely the Australian equity market in regime 2; the US equity market in regimes 1, 2 and 3; and the US bond market in regime 3 (refer to Table 7).

The results of the impulse response analysis show that funds’ react to movements in the Australian and US equity and bond markets immediately, within week 1, and complete their response by week 2. During the normal regime, funds’ returns respond positively to the Australian equity market immediately and this response fades out after the first week. The response to the US equity market took a week longer to complete, indicating that funds’ returns are more efficient in responding to the Australian equity market than to the US equity market during normal market times.

Furthermore, the impulse responses have confirmed the results shown in Figure 2 and Table 7, where the US equity market is the main influence of the Australian superannuation funds’ returns under all fund returns regimes. The results may be due to the market dynamics, such as
the practice of the Australian Stock Exchange (ASX) to halt trading for 10 minutes on price-sensitive announcements, allowing fund managers to make informed decision by carefully interpreting the importance of the announcements before rebalancing their portfolio.

As can be seen further in Figure 3, the superannuation funds’ returns respond to the US equity market movements with the highest magnitude in regime 1, and the smallest in regime 3. This implies that funds’ returns are most sensitive to the US equity market when funds returns are in a down state and least sensitive when they are in an up state. Fund managers therefore are most exposed to down regime (regime 1), in which returns are lowest but least exposed during up regime (regime 3) when returns are highest. This therefore provides further evidence that fund managers may not have the market-timing ability; as such they do not rebalance their portfolio to take advantage of the period of high returns.

During the up regime, funds’ returns respond positively to the US bond market, which is also completed by week 2. This suggests that US bond market would have an impact on funds’ returns during up regime and fund managers could take advantage of this opportunity. It is evident, however, that Australian superannuation funds’ returns are mostly influenced by the movements of the equity market rather than the bond market. This may be due to the heavier weighting of equities in their portfolios in line with the Australian Prudential Regulation Authority (APRA) suggested asset allocation benchmark of about 50% into equities and 25% in bonds (see Table 1).

The responses of funds’ returns to the Australian equity market, US equity market and US bond market are completed within two weeks time. As this study has utilised weekly data, we consider these responses to be efficient in line with Beechey et al (2000) who found efficiency
in the price reaction of managed funds and Bracker et al (1999) and Roca (1999) who found the same with regards to stock market price response.

IV. CONCLUSION

This paper investigates the sensitivity of Australian superannuation funds in relation to equity and bond markets. In particular, it examines the extent, speed and duration of response of the Australian superannuation funds’ returns to movements in the US and Australian equity and bond markets when funds returns are in down, normal and up regimes. The investigation is carried out through the application of the Markov regime switching model in which an impulse response analysis was also conducted. The study utilises weekly returns of 313 superannuation funds from the Morningstar database, and the Australian equity, US equity, Australian bond and US bond markets based on the Morgan Stanley Capital International (MSCI) indices during the period January 1997 to September 2005.

The overall results show that Australian superannuation funds are mostly exposed to the movements in the US equity market, then to the Australian equity market and lastly, to the US bond market. They are not at all affected by movements in the Australian bond market. With regards to the US equity market, their exposure is higher when funds returns are in a down state and lower when fund returns are in an up state. They are therefore exposed most to the US equity market during periods of low returns and are not able to take full advantage of periods of high returns. With regards to the Australian equity market, the funds are not exposed during down and up markets and hence are not subject to the prospects of high returns as well as low returns. The exposure of these funds to the US bond market is more favourable as this is during up regimes. These results demonstrate that Australian superannuation fund managers are not able to or do not manage their portfolio exposure to take advantage of market conditions.
Hence, this could be an evidence of their lack of market-timing skills. These results confirm those of previous studies.

The impulse responses results also reveal that superannuation funds immediately and quickly (within two weeks) respond to movements in markets. Their response to the Australian equity market movements was quicker (one week) as compared to their response to the US equity and bond markets. Given that the study is based on weekly data, this response may be considered as efficient. Again, these results support those of previous studies.

Further studies could extend the Markov switching model by including the ARCH effects (Schaller and van Norden, 1997; Li and Lin, 2004) and also to allow for time-varying transition probabilities (Diebold et al, 1992), where transition probabilities are allowed to vary with such information variables as the strength of the economy, deviations of fundamentals from actual values, and other leading indicators of change. Variables such as interest rate, inflation rate, economic growth rate and business cycles could be examined as to how they might affect the sensitivity of superannuation funds.

Acknowledgement

We are grateful to the Editor and the anonymous reviewer of this journal for their constructive comments. We would also like to thank the participants, for the feedback that we have received, of the 11th FINSIA-Melbourne Centre for Financial Studies Banking and Finance Conference held in Melbourne, Australia on September 25 and 26, 2006 and the Department of Accounting, Finance and Economics, Griffith University Seminar Series on August 25, 2006. The usual disclaimer applies.
REFERENCES

This appendix provides a more detailed technical discussion of the Markov regime switching model. Denoting the number of regimes by m and the number of lags p respectively, the equation to be estimated is expressed as follows.

$$y_t = v(s_t) + A_1(s_t)y_{t-1} + \ldots + A_p(s_t)y_{t-p} + A(s_t)u_t$$

(A1)

Transition Probabilities

The regime generating process in Markov switching model is an ergodic Markov chain with a finite number of states, $s_t = 1, \ldots, m$ which is defined by the transition probabilities.

$$p_{i,j} = Pr(s_{t+1} = j \mid s_t = i), \sum_{j=1}^{m} p_{i,j} = 1 \quad \forall i, j \in \{1, \ldots, m\}$$

(A2)

The probability of regime i occurring next period given that the current regime is j is fixed. This stochastic process is defined by the transition matrix P as follows.

$$P = \begin{bmatrix}
 p_{11} & p_{12} & \cdots & p_{1m} \\
 p_{21} & p_{22} & \cdots & p_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 p_{m1} & p_{m2} & \cdots & p_{mm}
\end{bmatrix}
$$

(A3)

where $p_{iM} = 1 - p_{i1} - \ldots - p_{i,M-1}$ for $i = 1, \ldots, M$.

As the Markov switching model requires the number of regimes to be specified before running the model, this study uses the AIC criterion in selecting the optimal number of regimes and lags. Several studies have supported the use of AIC to choose the appropriate Markov switching model (see, for instance, Sclove, 1983 and Chu, Santoni and Liu, 1996).

4 This section relies heavily on Krolzig (1997).
Regime Probabilities

This procedure estimates the coefficient matrix, the variance-covariance matrix for each regime, the transition matrix, and the optimal inference for the regimes throughout the sample period. The latter is referred to as the regime probabilities \(\hat{\xi}_t^i \) defined below, where \(T \) denotes the end period for the estimation.

\[
\hat{\xi}_t^i = \Pr(s_t = i) \quad \text{for } i = 1, \ldots, m \text{ and } t = 1, \ldots, T
\]

There exist three types of regime probabilities, the choice among which depends on differences in the available information. The analysis uses the following regime probabilities defined below.

\[
\hat{\xi}_{t|\tau}^i, \quad \tau < t \quad \text{predicted regime probabilities} \quad (A5)
\]

\[
\hat{\xi}_{t|t}^i, \quad \tau = t \quad \text{filtered regime probabilities} \quad (A6)
\]

\[
\hat{\xi}_{t|\tau}^i, \quad t < \tau \leq T \quad \text{smoothed regime probabilities} \quad (A7)
\]

Following most studies utilising the Markov Switching model, we simply present the smoothed probabilities (see, for instance, Hamilton and Susmel, 1994; Assoe, 1998; Krolzig and Toro, 2000; Alizadeh and Nomikos, 2004; Anas, et al, 2004; Bialkowski and Serwa, 2005).

Regime Coefficients

The MS-VAR model coefficients can be estimated using a two-stage maximum likelihood procedure. The estimation of the Markov switching model is conducted by applying the EM (Expectation-Maximisation) algorithm (see Krolzig, 1997). The first expectations step optimally infers the hidden Markov chain for a given set of parameters. The second maximisation step then re-estimates for parameters for the inferred hidden Markov chain.
Impulse Response Analysis

The second stage in estimating the Markov switching model is the identification of the contemporaneous relationships between variables. Like Christiano et al. (1999), this paper uses the Choleski decomposition, which assumes that the system is recursive and hence allows the process of identification. The identification problem arises because the EM algorithm gives only estimates of the variance-covariance matrices $\Sigma^1, \ldots, \Sigma^m$ and not the matrices A_1, \ldots, A_m. To identify these matrices the model has to impose restrictions on the parameter estimates from the unrestricted model. Matrix A_i is computed from the regime dependent variance covariance matrix from the reduced form VAR, Σ^i.

$$\Sigma^i = E (A_i'U_i'U_iA_i') = A_i' I A_i' = A_iA_i'$$ \hspace{1cm} (A8)

Matrix A_i has K^2 elements and Σ^i has only $\frac{K(K+1)}{2}$ elements. In order for A_i to be defined from Equation A8, there must exist $\frac{K(K+1)}{2}$ missing restrictions. Sims (1980) derives the additional restrictions by imposing a recursive structure on the model. The endogenous variables are ordered and it is assumed that the fundamental disturbance to a variable has only contemporaneous effects on the variable itself and on variables ordered below it. For example, in a four-variable system, the third disturbance has only contemporaneous effects on the third and fourth endogenous variables. Under this identification procedure, the matrix A_i is lower triangular and is exactly identified. It can be easily recovered from a Choleski decomposition of the matrix Σ^i.

The impulse response function summarises the expected changes in the endogenous variables after a one standard deviation shock to one of the fundamental disturbances. This provides a

5 This section borrows heavily from Ehrmann et al. (2001, pp. 10-11)
useful analytical tool to investigate the dynamics of the changes in variables’ responses from
down to up regimes or vice versa. Based on a Markov switching model, this study estimates a
regime-dependent impulse response function analogous to the concept introduced by Ehrmann
et al (2001). This function describes the relationship between endogenous variables and
fundamental disturbances within a regime. Regime-dependent impulse response functions are
conditional on a given regime prevailing at the time of the disturbance and throughout the
duration of the response.

The validity of regime conditioning depends on the time horizon of the impulse response and
the expected duration of the regime. As long as the time horizon is not excessive and the
transition matrix predicts regimes, which are highly persistent, then the conditioning is valid
and regime-dependent impulse response functions are a useful analytical tool. For a longer time
horizon or frequently switching regimes, it would be more appropriate to condition on the
expected path of the regime throughout the response.

Mathematically, the regime-dependent impulse response function at time $t + h$, when a one
standard error shock to the k^{th} fundamental disturbance occurs at time t and the prevailing
regime is i is expressed as follows.

\[
\frac{\partial E(Y_{t+h})}{\partial U_{k,i}} | s_t = \ldots = s_{t+h} = \theta_{k,i}^j, \text{ for } h \geq 0
\]

(A9)

A series of K-dimensional response vectors $\theta_{k,1}, \ldots, \theta_{k,K}$ show the responses of the endogenous
variables to a shock to the k^{th} fundamental disturbance. In this study, the duration for the
impulse response is set at 5 weeks, in which the Australian market is said to be efficient and
portfolio rebalancing period would be quicker, hence 5 weeks is the optimal period (see, Chan
et al, 1991; Beechey et al, 2000; Gelos and Ratna, 2001). These response vectors are computed

The first response vector measures the effect on endogenous variables of the k^{th} fundamental disturbance. A one standard deviation shock to the k^{th} fundamental disturbance implies that the initial disturbance vector is $U_0 = (0, \ldots, 1, \ldots, 0)$ i.e. a vector of zeros apart from the k^{th} element that is one. Pre-multiplying this vector by the estimate of the regime-dependent matrix \hat{A} as in Equation 2 gives the impulse responses.

The remaining response vectors are calculated by solving the endogenous variables in Equation 2. Equations A10 and A11 show the solution linking the estimated response vectors with estimated parameters. The faster the response of shocks to equality, the more sensitive the endogenous variables are to the fundamental disturbances.

$$\hat{\theta}_{k,0}^i = \hat{A}_i U_0$$ \hspace{1cm} (A10)

and

$$\hat{\theta}_{k,h}^i = \sum_{j=0}^{\min(h,p)} \left(\hat{B}_j \right)^{h-j-1} \hat{A}_i U_0, \text{ for } h > 0$$ \hspace{1cm} (A11)

This study uses the Markov switching model that allows all parameters including intercepts, coefficients and variance covariance matrices for the reduced-form VAR to switch according to a hidden Markov chain. According to Krolzig’s (1997) notation, this specification may be referred as: MSIAH(m)-VAR(p).\footnote{This model is able to capture the Autoregressive Conditional Heteroskedasticity effects (Krolzig, 1997, pp. 24-25).} This model has been supported by several studies to be a superior model when evaluating out-of-sample performance on the basis of the ability of the model to match the full out-of-sample predictive density of stock returns (Sarno and Valente,
2005). Additionally, MSIAH model is able to capture the market conditions without prior specifications and it provides better analysis of the data over linear models (Humala, 2005).
Figure 1
Movements of the Australian Equity, US Equity, Australian Bond and US Bond Markets
During the Period 1997-2005

![Graph showing movements of Australian Equity, US Equity, Australian Bond, and US Bond Markets from 1997 to 2005. The graph includes lines representing each market's index level over the years, with notable fluctuations and trends.]
Figure 2
Markov Switching Regime Probabilities

Probabilities of Regime 1

Probabilities of Regime 2

Probabilities of Regime 3

Figure 3
Impulse Response of Funds’ Returns to a Shock in the Australian Equity, US Equity and US Bond Markets

Regime 1

Regime 2

Regime 3

Legend:
- US Equity
- Australian Equity
- US Bond
Table 1
Asset Allocation Benchmark

<table>
<thead>
<tr>
<th>Asset Classes</th>
<th>Range</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>0% – 20%</td>
<td>10%</td>
</tr>
<tr>
<td>Bond</td>
<td>20% – 40%</td>
<td>25%</td>
</tr>
<tr>
<td>Equity</td>
<td>50% – 70%</td>
<td>50%</td>
</tr>
<tr>
<td>Property</td>
<td>10% – 30%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Source: APRA (1999)

Table 2
List of Superannuation Funds in Morningstar Database

<table>
<thead>
<tr>
<th>Number of Funds</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Equity</td>
<td>944</td>
</tr>
<tr>
<td>Australian Fixed Interest</td>
<td>403</td>
</tr>
<tr>
<td>Cash</td>
<td>261</td>
</tr>
<tr>
<td>International and Australian Equity</td>
<td>107</td>
</tr>
<tr>
<td>International Equity</td>
<td>629</td>
</tr>
<tr>
<td>International Fixed Interest</td>
<td>76</td>
</tr>
<tr>
<td>Multi-sector</td>
<td>1,608</td>
</tr>
<tr>
<td>Property</td>
<td>60</td>
</tr>
<tr>
<td>Reserve Back</td>
<td>141</td>
</tr>
<tr>
<td>Total</td>
<td>4,229</td>
</tr>
</tbody>
</table>

Table 3
Unit Root Tests Results

<table>
<thead>
<tr>
<th></th>
<th>Augmented Dickey-Fuller</th>
<th>Philips-Perron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funds' Returns</td>
<td>-20.52</td>
<td>-20.52</td>
</tr>
<tr>
<td>Australian Equity</td>
<td>-22.04</td>
<td>-22.07</td>
</tr>
<tr>
<td>US Equity</td>
<td>-9.33</td>
<td>-22.26</td>
</tr>
<tr>
<td>Australian Bond</td>
<td>-22.55</td>
<td>-22.55</td>
</tr>
<tr>
<td>US Bond</td>
<td>-21.31</td>
<td>-21.31</td>
</tr>
</tbody>
</table>

Note: Unit root tests based on model with constant and trend

Critical value at 5% level of significance: -3.45
Table 4
Akaike Information Criterion Values for Markov Switching Models

<table>
<thead>
<tr>
<th></th>
<th>2 regimes</th>
<th>3 regimes</th>
<th>4 regimes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lag 1</td>
<td>-38.1504</td>
<td>-38.3206 *</td>
<td>-38.2672</td>
</tr>
<tr>
<td>Lag 2</td>
<td>-38.1328</td>
<td>-38.2516</td>
<td>-38.2371</td>
</tr>
<tr>
<td>Lag 3</td>
<td>-38.0482</td>
<td>-38.1257</td>
<td>-38.1660</td>
</tr>
<tr>
<td>Lag 4</td>
<td>-38.0718</td>
<td>-38.0456</td>
<td>-38.1326</td>
</tr>
</tbody>
</table>

*Lowest AIC value.

Table 5
Probabilities and Characteristics of Each Regime

<table>
<thead>
<tr>
<th>Probability</th>
<th>Average Duration (in weeks)</th>
<th>Number of Observations</th>
<th>Average Returns</th>
<th>Average Volatility*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regime 1</td>
<td>0.2589</td>
<td>2.24</td>
<td>119.1</td>
<td>0.0090</td>
</tr>
<tr>
<td>Regime 2</td>
<td>0.5331</td>
<td>26.12</td>
<td>241.7</td>
<td>0.0152</td>
</tr>
<tr>
<td>Regime 3</td>
<td>0.2080</td>
<td>1.99</td>
<td>95.2</td>
<td>0.0370</td>
</tr>
</tbody>
</table>

*Average volatility is the average variance of funds’ returns.

Table 6
Probabilities of Switching between Regimes

<table>
<thead>
<tr>
<th>From:</th>
<th>To:</th>
<th>Regime 1</th>
<th>Regime 2</th>
<th>Regime 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regime 1</td>
<td></td>
<td>0.5534</td>
<td>0.0447</td>
<td>0.4019</td>
</tr>
<tr>
<td>Regime 2</td>
<td></td>
<td>0.0370</td>
<td>0.9617</td>
<td>0.0013</td>
</tr>
<tr>
<td>Regime 3</td>
<td></td>
<td>0.4613</td>
<td>0.0425</td>
<td>0.4962</td>
</tr>
</tbody>
</table>
Table 7
Estimated Coefficients for Markov Switching Model:
Funds’ Returns vs. Australian Equity, US Equity, Australian Bond and US Bond Markets

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Regime 1</th>
<th>Regime 2</th>
<th>Regime 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Equity</td>
<td>−0.0021</td>
<td>0.0132 *</td>
<td>0.0031</td>
</tr>
<tr>
<td>US Equity</td>
<td>0.0189 *</td>
<td>0.0071 *</td>
<td>0.0096 *</td>
</tr>
<tr>
<td>Australian Bond</td>
<td>0.0235</td>
<td>0.0034</td>
<td>0.0142</td>
</tr>
<tr>
<td>US Bond</td>
<td>−0.0241</td>
<td>0.0150</td>
<td>0.0342 *</td>
</tr>
</tbody>
</table>

Note: The model is based on one lag.
* 5% significance level