Lysianadioic Acid, a Carboxypeptidase B Inhibitor from *Lysiana subfalcata*
Malcolm S. Buchanan, Anthony R. Carroll, Annette Edser, Melissa Sykes, Gregory A. Fechner, Paul I. Foster, Gordon P. Guymer and Ronald J. Quinn

Lysianadioic acid, a small molecule inhibitor of CPB was isolated from *Lysiana subfalcata*. It is a new arginine analogue containing an unusual dicarboxylic acid moiety and is the first known example of a small molecule CPB inhibitor isolated from plant origin.
Lysianadioic Acid, a Carboxypeptidase B Inhibitor from *Lysiana subfalcata*

Malcolm S. Buchanan, Anthony R. Carroll, Annette Edser, Melissa Sykes, Gregory A. Fechner, Paul I. Forster, Gordon P. Guymer and Ronald J. Quinn

aNatural Product Discovery, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland 4111, Australia

bQueensland Herbarium, Brisbane Botanic Gardens, Toowong, Queensland 4066, Australia

To whom correspondence should be addressed. Tel: +61 7 3735 6006. Fax: +61 7 3735 6001. E-mail: r.quinn@griffith.edu.au
Abstract

A new natural product, lysianadioic acid, was isolated from the plant *Lysiana subfalcata* as a carboxypeptidase B (CPB) inhibitor. It is a potent inhibitor of CPB with an IC$_{50}$ of 0.36 μM. This is the first known example of a small molecule CPB inhibitor isolated from plant origin. Its structure was determined by NMR spectroscopy.

Keywords: Carboxypeptidase B (CPB); Small molecule inhibitor; Natural products; *Lysiana subfalcata*; Structure elucidation; NMR spectroscopy
In a continuation of our investigations to find novel carboxypeptidase inhibitors1-2 a carboxypeptidase B (CPB) high-throughput screening campaign was conducted. CPB is a pancreatic digestive metalloenzyme, which releases basic amino acids from the carboxyl-terminus of proteins or peptides. The search for lead compounds from natural sources which inhibit CPB resulted in a bioactive MeOH extract of the plant \textit{Lysiana subfalcata} (Hook.) Barlow (Loranthaceae) being studied further.3 Bioassay-guided purification resulted in the alkaloid lysianadioic acid (1) (Fig. 1) being isolated as the active constituent. To date the only CPB inhibitors reported from plants have been large polypeptides from potato4-5 and tomato.6-7 Compound 1 is the first known example of a small molecule carboxypeptidase B inhibitor isolated from plant origin. Actinophyllic acid from \textit{Alstonia actinophylla} was previously suggested to be a carboxypeptidase inhibitor, but the activity observed in a coupled enzyme assay was not confirmed in a direct carboxypeptidase assay.1 This paper reports the isolation, structure elucidation and biological activity of 1. It is the first known chemical investigation of the plant \textit{L. subfalcata}.

The plant \textit{Lysiana subfalcata} (100 g) was ground and extracted with MeOH. This MeOH extract showed inhibitory activity against the CPB enzyme assay.8 A series of partitions were then performed on the MeOH extract (22.3 g). Firstly a \textit{n}-hexane/MeOH partition, the MeOH layer was then dried, followed by a \textit{H}_2\text{O}:MeOH(4:1)/\textit{CH}_2\text{Cl}_2 partition, the \textit{H}_2\text{O}:MeOH (4:1) layer was then dried, then finally a butanol/\textit{H}_2\text{O} partition. Testing of the layers directed further purification of the \textit{H}_2\text{O} layer (14.7 g). The \textit{H}_2\text{O} layer was filtered through strongly basic ion-exchange resin (DOWEX 1X8-400A) and washed sequentially with MeOH/\textit{H}_2\text{O} and 2\% TFA solution. The MeOH/\textit{H}_2\text{O} wash contained bioactivity and was subsequently filtered through strongly acidic ion-exchange resin (DOWEX 50WX8-400A) and washed sequentially with MeOH/\textit{H}_2\text{O} followed by a 5\% aqueous \textit{NH}_3 solution. CPB inhibitory activity was found only in the \textit{NH}_3 fraction. Half of the \textit{NH}_3 fraction (3.98 g) was pre-adsorbed on C\textsubscript{18} (04K-4348 Sepra C\textsubscript{18} End-Capped Silica) and loaded into a guard column in line with a semi-preparative Betasil C\textsubscript{18} HPLC column (Betasil C\textsubscript{18} 5\textmu m 21.2 mm x 150 mm i.d.). Isocratic
conditions of H₂O/1% TFA for 40 min, then a gradient to H₂O/1% TFA:MeOH/1% TFA (9:1) in 20 min (flow 10 mL/min) were used and 120 fractions were collected. A bioactive band eluted early resulting in combining fractions 16-20 (520 mg). This was then chromatographed by gel permeation chromatography using Superdex 30, eluting with water (0.5 mL/min) and 60 fractions were collected. There was a spread of activity in fractions 36 – 47, which were then combined (288 mg). The combined fraction then underwent two consecutive Synergi Hydro-RP 80 Å HPLC (4 μm, 10.0 mm x 250 mm i.d.) purification steps under gradient conditions over 40 min. Firstly the 288 mg fraction (10 separate injections) using a gradient from H₂O/1%TFA to H₂O/1%TFA:MeOH/1%TFA (9:1) in 30 min followed by a 10 min gradient to MeOH/1% TFA (flow 4 mL/min). The desired fractions were combined (4.5 mg), then secondly a gradient from H₂O/1%TFA to H₂O/1%TFA:MeOH/1%TFA (8:2) in 30 min followed by a 10 min gradient to MeOH/1%TFA (flow 4 mL/min) was used. Lysianadioic acid (1) (1.30 mg, 0.0026% dry wt) eluted with retention time 32.0 min.

Lysianadioic acid (1) was isolated as an optically inactive amorphous solid. A pseudomolecular ion in the positive HRESIMS at \(m/z \) 216.0983 (Δ 1.9 ppm) allowed a molecular formula of \(C_8H_{13}N_3O_4 \) to be assigned to 1. The natural product was analysed using a series of one and two-dimensional NMR experiments in order to determine its structure. The \(^1\)H NMR spectrum (Table 1) was very simple showing an olefinic proton \(\delta_H 5.72 (t, 7.2 \text{ Hz}) \) and six methylene protons \(\delta_H 2.62 (q, 7.2 \text{ Hz}, 2H); 3.25 (s, 2H); 3.34 (t, 7.2 Hz, 2H) \), while the \(^{13}\)C NMR spectrum (Table 1) revealed the presence of eight carbons. The isolated methylene singlet at \(\delta_H 3.25 \) in the \(^1\)H NMR spectrum had \(^{1}H\)HMBC correlations to two carboxylic acid carbonyls \(\delta_C 178.8, 174.6 \) and two olefinic carbons \(\delta_C 132.6 (s), 139.1 (d) \). The proton \(\delta_H 5.72 \) attached to the olefinic carbon at \(\delta_C 139.1 \) had a \(^{1}H\)COSY correlation to the methylene protons at \(\delta_H 2.62 \) and these methylene protons \(\delta_H 2.62 \) had a further \(^{1}H\)COSY correlation to the methylene protons at \(\delta_H 3.34 \). This information disclosed a 2-pentene-1,2-dicarboxylic acid moiety. The remaining signal to be accounted for was a downfield quaternary carbon at \(\delta_C 158.4 \) in the
13C NMR spectrum, which had a chemical shift characteristic for a guanidine carbon. In the gHMBC spectrum there was a correlation between the methylene protons at $\delta_H 3.34$ and the carbon at $\delta_C 158.4$. A guanidine moiety attached to the methylene group at $\delta_C 41.8$ in the 2-pentene-1,2-dicarboxylic acid moiety completed the molecular formula revealed by HRESIMS. Now all that remained was to establish whether the olefinic bond was Z or E. A ROESY correlation between H_2-1 and $H-3$, confirmed a Z configuration. Therefore, lysianadioic acid was assigned structure 1, (2Z)-2-(3-carbamimidamidopropylidene)butanedioic acid.

Lysianadioic acid (1) inhibited CPB with an IC$_{50}$ of 0.36 μM. Based on published data for X-ray structures of small molecule inhibitors in CPB the following can be predicted about 1 in the active site of CPB.10 The carboxylic acid, 1-COOH, chelates the Zinc, and the carboxylic acid, 2-COOH, and guanidine group form hydrogen bonds (salt bridges) to Arg145 and Asp255, respectively. Compound 1 is a close mimic to the natural substrate arginine and probably binds in a similar manner.

In conclusion, lysianadioic acid (1), a potent small molecule inhibitor of CPB was isolated from L. subfalcata. It is a new arginine analogue containing an unusual dicarboxylic acid moiety and is the first known example of a small molecule CPB inhibitor isolated from plant origin.

Acknowledgments

We thank AstraZeneca for financial support. We are indebted to Dr. Jennifer Mitchell, Griffith University, Brisbane, for HRESIMS analyses.
References and notes

3. The plant sample *Lysiana subfalcata* (Hook.) Barlow (Loranthaceae) was collected at The Pinnacle, Glenlyon Dam-Pinnacle Rd, Darling Downs, Queensland, Australia in February 1994. A voucher sample, AQ600699, was lodged at the Queensland Herbarium, Brisbane, Queensland, Australia.

8. **CPB Bioassay**: Compound in aqueous solution was added to microplates (5 µL per well). Then to each well was added 50 µL of CPB enzyme (0.063 units / mL) in assay buffer (50 mM HEPES, 0.25% BSA, pH 7.4). The reaction was initiated with addition of 35 µL of the chromogenic substrate, anisylazoformyl-L-lysine (190 µM) in assay buffer. The plate was incubated at ambient temperature (~22 °C) for 90 min and the absorbance at 355nm was read on a VictorII™ multimode plate reader (Wallac, Turku, Finland).

Percent activity for each compound was determined by the following equation:

$$\% \text{Activity} = \left[\frac{\text{Abs}_{\text{Compd}} - \text{Abs}_{0\% \text{Inhibition}}}{\text{Abs}_{100\% \text{Inhibition}} - \text{Abs}_{0\% \text{Inhibition}}} \right] \times 100\%$$
Where 0% inhibition was the absorbance of the full reaction and 100% inhibition is the absorbance following addition of MGTPA (1µM final concentration) a carboxypeptidase inhibitor.

9. Lysianadioic Acid (I), (2Z)-2-(3-carbamimidamidopropylidene)butanedioic acid: isolated as an amorphous solid; UV (MeOH) λ_{max} (log ε) 198 (3.65) nm; IR ν_{max} (film) 3452, 1678, 1206, 1140 cm⁻¹; ¹H and ¹³C NMR: see Table 1; positive-HRESIMS m/z 216.0983 [C₈H₁₃N₃O₄+H]⁺ (calcd 216.0979).

Table 1. \(^1\)H (600 MHz), \(^{13}\)C (125 MHz), HMBC and COSY NMR data for Lysianadioic acid (1) in D\(_2\)O

<table>
<thead>
<tr>
<th>Position</th>
<th>(\delta_C)</th>
<th>(\delta_H) (mult, (J) Hz)</th>
<th>(^{2,3}J_{CH}) HMBC (C no.)</th>
<th>COSY (H no.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42.7 CH(_2)</td>
<td>3.25 (s, 2H)</td>
<td>1-COOH, 2-COOH, 2, 3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>132.6 qC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>139.1 CH</td>
<td>5.72 (t, 7.2)</td>
<td>2-COOH, 1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>29.9 CH(_2)</td>
<td>2.62 (q, 7.2)</td>
<td>2, 3, 5</td>
<td>3, 5</td>
</tr>
<tr>
<td>5</td>
<td>41.8 CH(_2)</td>
<td>3.34 (t, 7.2)</td>
<td>3, 4, 2’</td>
<td>4</td>
</tr>
<tr>
<td>1’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-COOH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-COOH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\)NMR spectra were recorded at 30°C on Varian Inova 500 and 600 MHz NMR spectrometers. Samples were dissolved in D\(_2\)O (\(^1\)H) or D\(_2\)O + 2% DMSO (\(^{13}\)C), chemical shifts calculated relative to the solvent peak (D\(_2\)O \(^1\)H \(\delta\) 4.80 and DMSO \(^{13}\)C 39.5 ppm). Multiplicity determined by DEPT (s = C, d = CH, t = CH\(_2\), q = CH\(_3\)). Standard parameters were used for the 2D experiments, which included gradient gCOSY, gHSQC (\(J_{CH}\) = 140 Hz) and gHMBC (\(J_{CH}\) = 8.3 Hz).
Figure 1. Lysianadioic acid (1).