
GAME: A Generic Automated Marking Environment for Programming 
Assessment 

Michael Blumenstein, Steve Green, Ann Nguyen and Vallipuram Muthukkumarasamy 
School of Information Technology, Griffith University  

PMB 50 Gold Coast Mail Centre, QLD 9726, Australia 
E-mail: {M.Blumenstein, A.Nguyen, V.Muthu}@griffith.edu.au 

Abstract 

In this paper, a Generic Automated Marking 
Environment (GAME) is proposed for assessing student 
programming projects and exercises with an aim to 
facilitate student-centred learning. GAME has been 
designed to automatically assess programming 
assignments written in a variety of languages. The system 
has been implemented in Java and contains marker 
modules that are tailored to each specific language. A 
framework has been set in place to enable easy addition 
of new marker modules to extend the system’s 
functionality. Currently, the system is able to mark 
programs written in Java and the C language. To use the 
system, instructors are required to provide a simple 
“marking schema” for any given assessment item, which 
includes pertinent information such as the location of files 
and the model solution. GAME has been tested on a 
number of student programming exercises and 
assignments providing encouraging results.  

1. Introduction 

Automatic assessment systems have received 
considerable attention in the last few decades. Of 
particular interest is the development of tools for 
automatic assessment of computing programs. These 
advances have in part been prompted by the changing 
roles that are being ascribed to teachers as new learning 
paradigms are being adopted. A teacher is no longer 
simply seen as a lecturer and a supervisor, instead the role 
assumed is that of someone that can assist students in their 
ability to learn by providing an adequate learning 
environment, and very importantly, by providing 
sufficient feedback on students’ work [1]. Although this is 
achievable in fairly small classes, this instructing 
methodology is not easily transferable to courses 
involving hundreds of students (this is especially true of 
introductory programming courses at the tertiary level). 

Large computer science courses require students to 
implement hundreds of programs per semester. Hence the 

potential marker is faced with a difficult and time-
consuming task. Automatic systems have been 
investigated to address this challenge to improve the 
consistency, accuracy and efficiency of marking 
assessment items [2]. In addition such systems can assist 
in providing timely feedback to students over a large 
number of assessment items [1]. Finally, teachers have 
found that such tools enable them to perform more 
efficiently by concentrating human resources on tasks that 
cannot be automated. However, although some systems 
already exist there is still much research that must be 
undertaken in order to develop an accurate marker that 
can be used for small and large computer programs and 
can be accurately used over a range of programming 
languages and assessment items. 

The remainder of this paper is divided into five 
sections. Section 2 reviews the systems currently in use 
for automatic assessment, Section 3 explains the context 
of GAME and its functionality, Section 4 presents some 
experiments conducted using GAME, whereas a 
discussion of results and experiences with the tool takes 
place in Section 5. Finally, conclusions and future work 
are described in Section 6. 

2. Current systems 

In an effort to address the challenge of marking large 
volumes of electronic assessment, a number of automated 
systems have been developed and tested [2]-[6]. In a 
recent study it has been asserted that automatic marking of 
computing assessment provides advantages not only to the 
teacher, but may also play an important role in student 
learning outcomes [1]. Reek [3] details a system called 
TRY for grading students’ PASCAL computer programs 
by comparing the outputs of their program against a 
“model” output. Their system does not take into account 
style or design issues.  Jackson and Usher [2] proposed a 
system called ASSYST that checks the correctness of an 
ADA program by analysing its output and comparing it to 
a correct specification using in-built tools of the UNIX 
operating system. Saikkonen et al [5] proposed a system 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



called Scheme-robo for automatic assessment of 
“Scheme” programs by analysing the return values of 
procedures and the structure of student code. The return 
value could easily be compared to a model solution 
whereas the program code was reduced to a list structure 
that could be analysed to determine whether it contained 
particular sub-patterns specified by the instructor. Finally 
Ghosh et al [6] developed a preliminary system for 
computer-program marking assistance and plagiarism 
detection (C-Marker). It used a syntax dependent 
approach for C assignments. The marking component 
simply compiles and executes each student program and 
performs a simple comparison between the program’s 
output and a model output file. The system’s plagiarism 
detection module is tightly integrated with the marker and 
is based on the examination and comparison of each 
program’s structure using a physical and logical profile. 

2.1 Drawbacks of current systems 

The main drawback of each of the above-mentioned 
systems was that they were tested on one particular 
programming language. Although it was mentioned that 
some of the systems could be extended to operate on 
programs of other programming languages, an 
investigation was not conducted to determine the 
feasibility. Another deficiency inherent in some systems is 
their inability to deal with a wide variety of assessment 
items. In some cases the criteria for marking the 
correctness of student programs is hard-coded and 
requires the system to be updated regularly. This is a 
substantial limitation of these systems and needs to be 
addressed. 

3. The proposed tool 

GAME has emerged building on a previous system for 
marking C assignments [6] (C-Marker) and was designed 
to address the limitations of the C-Marker system. An 
overview of GAME is presented in Figure 1. Currently, 
the plagiarism module (adapted from C-Marker) is 
inactive, however in future it will play an integral part in 
the overall system. GAME will be made accessible to 
students for marking/verifying their own assignments. 

Figure 1 Overview of GAME 

3.1 Overview of C-Marker 

The C-Marker system was originally developed to 
mark simple command-line C code assignments on a Unix 
platform. C-Marker separated the marking of C 
assignments into two components: 1) Testing the C code 
structure, and 2) examining the correctness of the student 
program output.  

The approach used by C-Marker to examine a 
program's structure and correctness was very static, as it 
did not easily allow more than one type of assignment to 
be marked. Also, C-Marker could only compile and 
execute a single C source file under Unix. In addition, the 
criteria for marking students' programs were hard coded 
into the C-Marker system. These short comings needed to 
be addressed, and a more dynamic approach was required 
for marking different types of assignments, and applying 
different marking strategies for looking at source code 
structure and testing the correctness of the program's 
output. 

The GAME system developed in SDK 1.4.1 has built 
upon the C-Marker system. The main focus of the GAME 
project was to develop an automated system that could 
dynamically mark different types of programming 
assignments, mark assignments written in different 
programming languages, apply a generic strategy for 
looking at source code structure, and apply different types 
of marking strategies for examining the correctness of a 
student's program output. 

3.2 The marking schema and marking strategies 

To be able to dynamically mark different types of 
programming assignments, The GAME system requires 
the assessor to fill out a marking schema. The marking 
schema contains information about assignment files, 
assignment marks, and marking criteria.  

A student's program may require different files to 
execute. These files fall into four main categories: input, 
output, correct output, and instruction files. The input file
is only necessary if the student’s program requires data to 
populate its data structures, the correct output file
contains the correct output expected from the student’s 
program, the output file stores the output from the 
student’s program, and the instruction file holds the 
instructions necessary for the program’s operation. If the 
file is not required then a “null” is used, otherwise a file 
can be read or written to (standard input or standard 
output respectively). 

The marking criteria can be specified for different 
types of assessment. The marking criteria allow the 
assessor to apply different marking strategies to test the 
correct result from students' programs. The ability to 
apply different marking strategies to a variety of 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



programming assessment is an important part of building a 
generic marking system and there is no single type of 
marking strategy for all types of assessment.  

At present there are two marking strategies: a 
"keyword" strategy that examines the student’s program 
output for a keyword at any position and an "ordered-
keyword" strategy, that looks for an ordered set of 
keywords in the student’s program output. Both strategies 
attempt to ignore irrelevant information by skipping those 
words that do not match the keyword (i.e. correct output). 

The creation of a marking schema for an individual 
piece of assessment provides a convenient way for a 
course convener to enable other members of a teaching 
team to mark their programming assessment. The schema 
simplifies the use of the GAME system, as there is no 
need to deal with low-level details such as the method of 
input to the student's program. The marking schema will 
play an important role in future versions of GAME, and 
eventually it will enable teachers to build marking 
schemas without understanding the schema's structure. 

3.3 Dealing with different languages 

One of the aims of the GAME system was to enable the 
marking of programming assignments written in different 
languages. At present GAME can mark Java and C 
assignments. This is possible as both Java and C 
languages are compiled and then executed. To enable a 
generic base class to compile and execute any 
programming source code, the common behaviors need to 
be recognised (see Figure 2), so that the sub-classes 
required to mark different programming languages can 
inherit a common behavior and provide their own concrete 
implementation for their type of programming language. 
This provides a simple framework for adding additional 
languages to GAME in the future (if required). 

Figure 2 Class diagram for compilation and execution 
of different programming languages 

A requirement for the execution of the GAME system 
is that the different programming environments are setup 
on the computer that the system is running on. At present, 
GAME has only been tested under Windows, but should 
work with some minor modification on different 
platforms. 

3.4 The GUI interface 

The GAME GUI interface provides a straightforward 
interface to enable the user to mark different types of 
programming assessment (see Figure 3). The user is first 
required to select the root directory containing all student 
folders with their programming assessment. 

Figure 3 GAME user interface 

The second requirement is the marking schema for the 
type of programming assessment being examined (see 
Section 3.2). 

Once the above parameters have been entered, the user 
may select the programming language from the “Language 
Type” menu option (see Figure 3), and may then press the 
"Mark" button. When the students' programs have been 
marked, a summary of the students’ results is displayed. A 
detailed report of a particular assessment piece may be 
obtained by selecting the desired student's directory from 
the dropdown combo-box and then pressing the “View 
Selected Student” button. 

3.5 Reporting information 

As mentioned above, the results are displayed in a 
summary format that allows the marker to browse the 
overall results for each student (see Figure 3). This 
summary format shows a mark for source code structure, a 
mark for correctness of the student's program output, and 
a list of warnings or compile-time errors (if any). 

The mark for structure is calculated in three parts: 1) 
the number of block comments compared to the number of 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



functions, 2) the valid declaration of variables (both 
global and local), and 3) the number of “magic numbers” 
that are used in the code. Each of the three parts is worth 
1/3 of the overall "structure" mark. 

The second mark calculated is for the correctness of 
the student’s program output. Based on the strategy used 
to mark the correctness of the student’s program output, a 
percentage of the mark is displayed. A breakdown of 
results for a particular student may be seen in Figure 4. 

Figure 4 Results for a student’s assignment 

4. Experiments 

To test the capabilities of GAME, a number of 
experiments were conducted using real-world data. Two 
different types of programming assessments were marked 
and the results obtained from GAME were compared to 
those obtained from a human marker. 

4.1 Java programming exercises 

The first experiment utilised a set of in-class lab 
assessments obtained from the first year programming 
course at Griffith University. Students were required to 
write a small Java program that obtained some input from 
the user, and output some result. The test came in three 
varieties to prevent plagiarism. 

Two of the three test types were used in the 
experiments, which resulted in a total of fifty assessment 
items presented to GAME. As the assessment was fairly 
simple, program structure was not taken into account for 
the marking process. However, a mark was allocated for 
the correctness of program output. GAME's performance 
compared well to the human marker. In forty-one out of 
the fifty assessments (82%), GAME provided an identical 
mark to its human counterpart. 

4.2 C programming assignments 

The second assessment type was a major C 
programming assignment for a Masters programming 

course. In this assignment, the students were required to 
read in a data file to populate their programs’ data 
structures. Next, based on different command-line menu 
options, their program was required to output the result 
based on the selected command. These programs were 
more difficult to mark as their output contained more 
complex information, including irrelevant formatting 
information such as borders, underlines etc. The 
unnecessary information output by some students’ 
programs highlighted the difficulty of marking assessment 
using an automated system. A human marker is not faced 
with such problems and may examine a student's result 
concentrating only on information that is useful. 

Twenty of the above assignments were marked by 
GAME and there results were evaluated. The assignments 
were not written for automated marking and presented 
some challenges. The first challenge was the way in which 
a user was required to select a menu option and provide 
the necessary input for that particular command. To mark 
these programs an instruction file was created that held the 
menu commands and input data (see Figure 5). The 
instruction file was then redirected to the individual 
program’s standard input. 

Figure 5 Instruction file for C programming 
assessments 

The instruction file in Figure 5 holds the menu 
commands for options 1, 2, 3, 4, and 5. The menu 4 
command required a second input “9678”. The programs 
that abided by the programming instruction ran correctly 
under the GAME system, however some programs were 
written with an alternate menu structure, or left out certain 
menu commands. These programs could not be marked by 
GAME, and were not included in the experiments. 

The results for the twenty assignments were fifteen out 
of the twenty showed very similar or identical results to 
the human marker (75%).  

5. Discussion 

5.1 Java programming exercises 

Of the nine exercises (out of fifty) where GAME did 
not agree with the human marker, some interesting 
observations were made. For six exercises the human 
marker awarded part marks, whereas GAME gave zero. 
This disparity may be explained by the fact that the human 
marker manually looked through the code and gave some 
marks if the basic algorithm was present or if the program 
actually executed but did not give any result. In such 
cases, a small amount of human intervention may be 
necessary. In future, GAME may be enhanced so that any 
programs obtaining a zero may be flagged for further 

D:\testing\pl1\test1\343434\Test1.java 
Compilation Results 
Program Structure 
1.00 out of 1.00 
Number of block comments = 2 
Number of functions = 1 
Number of single variables = 0 
Number of magic numbers = 1 
Mark for correct execution 
* * Program did not compile * * 
D:\testing\pl1\test1\343434\Test1.java:30: ';' 
expected for (int i = 1; i < exponent); { 
^
...
4 errors 
Total Marks = 1.00 out of 5.00 
Output from program 
* * No output file found * *

1 2 3 4 9687 5 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



scrutiny by the human marker. Also, GAME may be 
modified to provide part marks if the program compiles 
and executes. 

In one of the exercises, the human marker gave part 
marks (when GAME gave full marks) because the 
program's output was correct, however it contained 
additional output that was not requested. GAME gave full 
marks because it found the correct answer based on the 
keyword marking strategy. In this case, it ignored all 
supplementary information. This situation may be avoided 
in the future by simply using a different strategy, or 
adding a new strategy to the framework for coping with 
specific situations. 

Finally, for the last two exercises where GAME 
disagreed with the human marker, it was found that the 
error could be attributed to the human! In this case, the 
human allocated full marks whilst GAME calculated zero. 
An instance such as this highlights the usefulness of 
GAME as an aid for crosschecking the marks assigned by 
teachers. 

5.2 C programming assignments 

In five cases out of twenty, the marks given by GAME 
either did not correlate well with the human marker or the 
program could not be executed. Out of the five problem 
cases, one assignment did not execute due to the fact that 
the student’s program attempted to read an incorrect input 
file name. Irrespective of how carefully the assignment 
requirements are outlined, there will still be those students 
who don’t follow the assignment guidelines and name 
their input and output files incorrectly. One way to 
overcome this problem for command-line programs is to 
instruct students to write their results to standard output, 
which will enable the information to be redirected to a 
constant "results" file name. Also, instructions can be 
given to students’ programs via standard input, again 
avoiding complications with file naming conventions. The 
GAME system enables the use of redirection very simply 
and may be a feasible way of dealing with the above 
problem. 

The remaining four assignments showed very different 
results to the human marker. The main reason for this 
disparity was that the output files generated by the student 
programs were tightly coupled with the formatting text (as 
explained earlier). At this stage, automating marking for 
this type of assignment would require that the output for 
the different commands be separated from the formatting 
information. 

6. Conclusions and future work 

This paper presented an automated system called 
GAME for marking programming exercises and 

assignments in university programming courses. The 
generic nature of the system makes it a powerful tool for 
marking different assessment items with the use of a 
simple "marking schema", in addition to marking 
assessments written in different languages. Currently, 
programs written in C and Java may be marked by the 
system, and the system's architecture allows for simple 
extension to other languages. The results obtained 
comparing GAME's performance to a human marker are 
very encouraging.  

In future, further marking strategies will be added to 
the system to deal with issues relating to the variety of 
output obtained from students' programs. Also, a more 
detailed examination of the source code structure will be 
explored, including the flow of execution. In addition, the 
plagiarism detection module will be investigated in the 
context of the overall system. Finally, in coming 
semesters, a version of GAME will be made available to 
students so that they may compile, execute, obtain 
feedback and fine-tune their assignments prior to the 
submission deadline, effectively facilitating student-
centred learning. 

Acknowledgments 

This work was supported by Griffith University as part of 
New Researcher and Teaching Grant Schemes. 

References 

[1] L. Malmi, R. Saikkonen, and A. Korhonen, “Experiences in 
Automatic Assessment on Mass Courses and Issues for 
Designing Virtual Courses”, Proceedings of The 7th Annual 
Conference on Innovation and Technology in Computer 
Science Education (ITiCSE’ 02), Aarhus Denmark, (2002), 
pp. 55-59. 

[2] D. Jackson and M. Usher, “Grading student programs using 
ASSYST”, Proceedings of 28th ACM SIGCSE Tech. 
Symposium on Computer Science Education, San Jose, 
California, USA, (1997), pp. 335-339. 

[3] K. A Reek, “The TRY system or how to avoid testing 
student programs”, Proceedings of SIGCSE 1989, (1989), 
pp. 112-116. 

[4] J. English, and P. Siviter, “Experience with an 
automatically assessed course”, Proceedings of The 5th 
Annual Conference on Innovation and Technology in 
Computer Science Education (ITiCSE’00), Helsinki 
Finland, (2000), pp. 168-171. 

[5] R. Saikkonen, L. Malmi, and A. Korhonen, “Fully 
automatic assessment of programming exercises”, 
Proceedings of The 6th Annual Conference on Innovation 
and Technology in Computer Science Education (ITiCSE’ 
01), Canterbury, United Kingdom, (2001), pp. 133-136. 

[6] M. Ghosh, B. Verma, and A. Nguyen, “An Automatic 
Assessment Marking and Plagiarism Detection”, First 
International Conference on Information Technology and 
Applications (ICITA 2002), Bathurst, Australia, (2002). 

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47


