Efficient generation of >2 W of green light by single-pass frequency doubling in PPMgLN

Author
Pullen, Michael, Chapman, Justin, Kielpinski, David

Published
2008

Journal Title
Applied Optics

DOI
https://doi.org/10.1364/AO.47.001397

Copyright Statement
This paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/AO.47.001397 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

Downloaded from
http://hdl.handle.net/10072/21304

Link to published version
http://www.osa.org/journals/default.aspx
Efficient generation of >2 W of green light by single pass frequency doubling in PPMgLN

Michael Gregory Pullen*, Justin James Chapman and Dave Kielpinski

Center for Quantum Dynamics, Griffith University, Brisbane, Australia

*mgpullen@gmail.com

We report 32% efficient frequency doubling of single frequency 1029 nm light to green light at 514.5 nm using a single pass configuration. A congruent composition, periodically poled magnesium doped lithium niobate (PPMgLN) crystal of 50 mm length was used to generate a second harmonic power of 2.3 W. To our knowledge, this is the highest reported power and efficiency achieved in the SHG of single frequency green light in single pass configuration. © 2008 Optical Society of America

OCIS codes: 160.3730, 190.2620, 190.4400, 230.4320.

1. Introduction

Second harmonic generation (SHG) is important for producing visible light at wavelengths for which lasers are not available. Two different configurations have been used
to achieve frequency doubling: intracavity [1] and single pass [2] systems. While intracavity designs tend to achieve higher efficiencies than single pass setups, they are significantly harder to construct and take a longer time to implement. Highly efficient single pass SHG is therefore desirable for many industrial applications. Typical crystals used in frequency doubling experiments include potassium titanyl phosphate (KTP), lithium triborate (LBO), lithium tantalate (LT) and lithium niobate (LN). Achieving good phase matching conditions in these materials can be quite challenging as they have very strict index matching requirements. To overcome this challenge, quasi phase matching (QPM) [3] was suggested by creating periodically poled crystals using the ferroelectric properties of KTP, LT and LN. These crystals are denoted PPKTP, PPLT and PPLN respectively and increase the achievable SHG efficiency. Periodically poled crystals still have limitations however, as at medium powers PPLN crystals can suffer from pointing instability and at high powers permanent photorefractive damage can become an issue [4]. To reduce these effects, periodically poled lithium niobate crystals are often doped with magnesium oxide (PPMgLN) [5]. The first demonstration of PPMgLN being used for frequency doubling was the generation of 1 mW of 437 nm blue light [6]. Since then, low power SHG of light at wavelengths as low as 373 nm [7] and 340 nm [8] have also been reported in PPMgLN.

The first published paper on green light generation via single pass frequency doubling was by Miller et al. [4] which reported SHG of 532 nm light with a power of 2.7 W. Unfortunately, instabilities started to be observed at only medium powers. More
recently, Kontur et al. [9] reported that high green powers (1.7 W) can be obtained in PPKTP using a single pass configuration. It was also observed that saturation occurred at lower powers than have been reported in other crystals. Two other papers by Tovstonog et al. [10] and Furuya et al. [11] describe single pass generation of high power 542 nm light. Tovstonog et al. reported 2 W in PPMgSLT while Furuya et al. reported a SHG power of 3 W in PPMgLN. At these laser bandwidths (0.22 nm and 0.07 nm respectively) it is difficult to rule out the presence of short term power fluctuations which can increase the average SHG efficiency. In our case the laser dynamics ensures that such an effect is not present. To our knowledge, the previous best reported single frequency, single pass frequency doubling efficiency in the green was 2% [12]. We report a frequency doubling efficiency increase of more than an order of magnitude greater.

The SHG power from periodically poled crystals is often limited by green induced infrared absorption (GRIIRA) [13] and photorefraction rather than by the nonlinearity of the crystal. These effects depends strongly on material composition and become much more prominent at short SHG wavelengths, so our results establish a new benchmark for high-power SHG systems using PPMgLN.

Previously, reports of green light generation by frequency doubling have mostly been made at the 532 nm [4] and 540 nm [14] wavelengths. Very limited reports [12,15] have been made of the SHG of light in the 515 nm region. High power light in this region can be useful in display technologies, as a substitute for argon ion lasers and
as pump sources for tunable lasers. In this paper we report the generation of 2.3 W of 514.5 nm green light via SHG in a single pass configuration. A maximum efficiency of 32% was achieved which is to our knowledge, the highest reported power and efficiency achieved in the SHG of single frequency green light in single pass configuration.

2. Experiment

Our experimental setup is illustrated in Fig. 1. The frequency doubling crystal (HC Photonics) is PPMgLN with a MgO doping concentration of 5% and is of congruent composition. PPMgLN was chosen as the frequency doubling crystal as it minimises both photorefractive damage [2] and GRIIRA [13]. The dimensions of the crystal are 0.5 × 3 × 50 mm and the QPM period is 6.15 μm with a 50% duty cycle. The input and output surfaces have been anti-reflection (AR) coated for 1029.3 nm and 514.65 nm respectively.

The PPMgLN crystal is housed in an externally controlled, temperature stabilised oven which was supplied by the crystal manufacturer. The oven has 0.1°C precision and during normal operation provides the required phase matching temperature of 109°C for sustained periods of time (> 48 hours). Due to the large length of the crystal, the FWHM phase matching temperature bandwidth is ∼ 0.6°C as shown in Fig. 2.

The seed laser is a single frequency (δλ = 12 kHz) linearly polarised fibre laser which has an output power of 6 mW at 1029 nm. The output of this laser propagates
through single mode polarisation maintaining fibre and is used as the input to an IPG Photonics fibre amplifier (YAR-10K-1030-LP-SF). The amplifier provides a linearly polarised output with a maximum power of 10 W at 1030 nm. A lens is then used to focus the beam waist into the centre of the crystal. The generated green light is separated from the IR light after the crystal via two dichroic mirrors with high reflectivity in the green and high transmission in the IR. The IR light is incident on a beam stop while the green light power is monitored by a Coherent FieldMate power meter. We used the Fresnel reflection from a thick glass plate to pick off 1% of the output green light. This beam was allowed to diverge over approximately 2 m, forming a large image of the beam, which was used for continuous monitoring of the beam profile during our experiments.

3. Results

Our initial attempts at SHG generation were performed with low input powers (∼1W) to assess crystal performance and to limit the possibility of damage. During these initial tests, it was observed that phase matching conditions were only being maintained for a matter of minutes. As the oven only heated the underside of the crystal, a temperature differential higher than the phase matching bandwidth was created over its width which could cause frequency doubling instabilities. After the construction of a foam enclosure for the oven which provided a more consistent temperature, phase matching conditions could be maintained for much longer periods of
time with a stable 190 mW output at a normalised conversion efficiency of 13.2%/W. We believe that better temperature stability could be achieved by heating the crystal on both the top and bottom faces.

Fig. 3 shows the SHG output power versus the input power at an IR beam waist of \(\sim 55 \mu \text{m} \), the maximum achieved green power was 2.3 W at a conversion efficiency of 23%. It is necessary to stress that all quoted measurements are actual measured powers, uncorrected for residual reflection at the crystal facets. The results show that the output power starts to reach a plateau near 2 W, the conversion efficiency at this stage reaches a maximum of 32% and starts to decrease. GRIIRA can be expected to have a significant effect on SHG for \(\alpha^{-1} \lesssim L_C \), where \(L_C \) is the crystal length and \(\alpha \) is the crystal IR absorption coefficient. Rough calculations using previously reported GRIIRA data for PPMgLN [13] and derived SHG relations [16] yield an estimated absorption coefficient between 0.1 cm\(^{-1}\) and 0.3 cm\(^{-1}\) at the maximum green power. In this case our 50 mm crystal should suffer from significant IR absorption. We therefore believe that the saturation effect and hence decrease in conversion efficiency seen in Fig. 3 is a direct result of GRIIRA.

It was observed that as the input power was increased above 7 W, the stability of the green output power level declined and the beam profile shifted from its normal Gaussian shape. At these higher input powers, we observed what seemed to be horizontal contours of constant intensity. We believe that the cause of this behaviour was GRIIRA induced thermal lensing. When the input powers were again lowered below 7
W, stability could be easily achieved which suggests that no permanent crystal damage had occurred in contrast to reports for undoped PPLN [4]. It is also important to note that during high input power measurements we detected no significant change of the overall beam size, suggesting that no photorefraction was present.

4. Summary

In summary, we report 32% efficient SHG of single frequency green light at 514.5 nm using a single pass configuration. PPMgLN crystal of congruent composition was used to generate a maximum second harmonic power of 2.3 W which we believe was limited by GRIIRA and thermal gradients. To our knowledge, this is the highest reported power and efficiency achieved in the SHG of single frequency green light in single pass configuration.

Acknowledgments

This work was supported by the US Air Force Office of Scientific Research under contract FA4869-06-1-0045 and Prof. Howard Wiseman’s Australian Research Council Federation Fellowship grant FF0458313.
References

15. X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D.
 Cui and Z. Xu, “4.44 W of CW 515 nm green light generated by intracavity
 frequency doubling Yb:YAG thin disk laser with LBO” Opt. Commun. 267,

List of Figure Captions

Fig. 1. The experimental configuration used in our measurements. A single frequency fibre seed laser is amplified in a ytterbium doped fibre amplifier and focused into a PPMgLN crystal. The 1029 nm and 514.5 nm wavelengths are separated via two dichroic mirrors and the green output is monitored with a power meter.

Fig. 2. Oven temperature versus output intensity showing a FWHM phase matching temperature bandwidth of \(\sim 0.6^\circ\text{C} \). The crosses show actual data points while the dashed line is a fit to a sinc\(^2\) function.

Fig. 3. Top panel: Green output power versus IR input power at an IR beam waist of \(\sim 55 \mu\text{m} \). Bottom panel: SHG conversion efficiency. We do not correct for residual reflections from the crystal end facets.
Fig. 1. The experimental configuration used in our measurements. A single frequency fibre seed laser is amplified in a ytterbium doped fibre amplifier and focused into a PPMgLN crystal. The 1029 nm and 514.5 nm wavelengths are separated via two dichroic mirrors and the green output is monitored with a power meter.
Fig. 2. Oven temperature versus output intensity showing a FWHM phase
matching temperature bandwidth of $\sim 0.6^{\circ}$C. The crosses show actual data
points while the dashed line is a fit to a sinc2 function.
Fig. 3. Top panel: Green output power versus IR input power at an IR beam waist of \(\sim 55 \mu\text{m} \). Bottom panel: SHG conversion efficiency. We do not correct for residual reflections from the crystal end facets.