
Hierarchical Monte-Carlo Localisation Balances Precision and Speed

V. Estivill-Castro B. McKenzie

Institute of Integrated and Intelligent Systems
Griffith University

Brisbane 4111 QLD Australia

Abstract

Localisation is a fundamental problem for mo-
bile robots. In dynamic environments (robotic
soccer) it is imperative that the process be very
efficient. Techniques like Monte-Carlo Locali-
sation or Markov Models have been shown to be
effective in dealing with partial recognition of
landmarks, errors in odometry and the kidnap
problem. But they are particularly CPU in-
tensive. However, many times decision-making
does not need high accuracy, and thus, we have
developed a hierarchical version that allows us
to balance real-time efficiency of computation
with precision in localisation.

1 Introduction

Localisation is a fundamental problem of mobile au-
tonomous robots [Gutmann and Fox, 2002]. It is hard to
imagine how to make appropriate decisions while mov-
ing around, with no information of our whereabouts. In
the past, problems where knowledge of location is im-
portant have been solved only at great expense. Usu-
ally by embedding equipment into the environment that
would make the solution simple: “complex position-
guidance equipment ... built into the factories and
buildings”[Leonids and R., 1995]. There are many tech-
nologies available for robot localisation, for example
GPS, active/passive beacons, odometry (dead reckon-
ing) and sonar. While the improvements in accuracy can
be obtained with more costly hardware, there is always
a time delay between sensor input and determination of
location. Moreover, with more sensors, finding efficient
algorithms is more important. From the Mars rovers to
humble automated vacuum-cleaners, it is becoming im-
practical to rely on complete supporting infrastructure.
As robots leave the labs and constrained environments,
they will require CPU cycles for other tasks, and fast lo-
calisation will continue to be critical. An important chal-
lenge in small-scale robotics (like robotic soccer in the

Aibo league [Veloso et al., 1998]) is finding the robot’s
position when only limited sensor information is avail-
able. Vision is almost the only input to localisation and,
as opposed to the middle size or small size leagues, the 4-
legged league only has partial views of the environment.

The inadequacy of triangulation in situations with
noisy sensory data [Betke and Gurvits, 1994] has led
to more robust solutions. Bayes Probabilistic Localisa-
tion and Kalman Filters (KM) utilise Bayes law to in-
troduce the concept of “confidence” or “probability” to
an estimated (current) position. Thus, the current loca-
tion has a probability attached to it. As sensory infor-
mation comes in, not only is the location adjusted, but
some measure of the sensors reliability is used to update
the probability that the location is correct. To do this,
the filter uses Gaussian representations (or other proba-
bilistic models) for motor and perception noise variation.
The model of the robot’s actions to move from its cur-
rent position to a desired position is a predictor that is
usually called the motion model, while the correction of
the prediction using sensor data is the perceptual model.

When data comes from a source that is known to be
highly accurate, the location’s probability rises. When
highly uncertain data comes in the probability may
fall [Dahm and Ziegler, 2003; Thrun, 1998; Thrun et al.,
2000]. While these techniques went a long way to solving
the noisy sensor problem, they rely heavily on having
some prior (and accurate) location information. They
also require information on sensor performance, which
often varies according to the landmark and its position.

More recently, probability theory has been used in a
different way to develop a technique know as Markov
Models (MM) [Fox et al., 1999a]. The subject space is di-
vided into discrete parts; usually by drawing a grid onto
the internal map. Now, instead of monitoring a single
possible location, this method monitors the probability
of each cell in the grid being the correct one. When in-
formation about distance to a landmark comes in, the
probability of each cell is adjusted slightly. In this way
no prior knowledge of location is needed but can be built.

1

If odometry is provided, then the entire grid of probabil-
ities is moved appropriately [Betke and Gurvits, 1997;
Thrun et al., 2000]. The advantage of this approach
is that while critics say that it does not work in this or
that situation, it can easily be adjusted and strengthened
so that it does. Unfortunately it can require extremely
large amounts of processing power to use, particularly in
situations calling for high accuracy.

By monitoring many potential locations instead of
one, not only can ambiguous situations (such as when
landmarks are identical) be dealt with, but with less
cost than with Markov models. This is the philosophy
of Monte Carlo Localisation (MCL) [Fox et al., 1999a;
1999b; Thrun et al., 2001] (it could be considered a
multiple stochastic ensemble of Kalman Filters). Varia-
tions on MLC include dynamically adjusting the size of
the sample population, removing less likely samples and
adding new random ones, and generating samples di-
rectly from sensor information [Thrun et al., 2000]. This
technique combines the strengths of the other major ap-
proaches and avoids the main weaknesses. While the
literature has recorded combinations and variations of
the three basic ideas (KF, ML, MCL), some are specific
to the type of sensor, for example sonar or upward cam-
era, and others to the variation of localisation problem
involved [Thrun et al., 2000]. Currently the focus is vari-
ations of the MCL and Markov model techniques[Röfer
and Jüngel, 2004; Thrun et al., 2000].

In robotic soccer the level of accuracy in localisation is
required with different degrees at different stages of the
game. For example, a robot in control of the ball may
identify it is in direct alignment of the opponents open
goal. This is usually sufficient information to decide on
an action (namely, take a shot on goal). Although it may
have significantly inaccurate information on localisation
(distance to goals from vision is extremely inaccurate;
colour-coded goal recognition is simple, but recognising
goal edges is very difficult). On the other hand, a high
level of location accuracy is required by the goalie to
guard its goal. Localisation in the RoboCup 4-legged
league has attracted so much attention that in 2003 and
2004 a localisation challenge was part of the technical
challenges. Reducing landmarks and colour coding re-
mains a focus for approaching an playing environment
closer to human soccer. In this direction, the most rele-
vant work to our paper regarding localisation to SONY
Aibo soccer is the achievements using only the soccer-
field lines [Röfer and Jüngel, 2004], and its seems appar-
ent that this is possible only though MCL [Röfer and
Jüngel, 2004].

2 Vanilla MCL

Self-localization is the problem by which the software
on board the robot determines at time t the probabil-

ity function p(~xt) of being currently at a pose described
by the vector ~xt. The inputs to the localization algo-
rithms are observations ~ot and executed actions ~at. It
usually has three subvariants: position tracking involves
regularly monitoring position and updating previous es-
timates as the robot moves around. Global positioning
consist of finding out where a robot is with only a map of
the environment as initial information. Finally the kid-
nap problem consists of recuperating from being trans-
ported uninformed to another position after achieving
very high accuracy in recognizing a position. A generic
framework for KM, MM and MLC [Gutmann and Fox,
2002; Thrun et al., 2001] indicates that the robot will
iteratively use a motion model to make a prediction for
~x′t+1 using p(~xt) and ~at. Then, it will correct the pre-
diction using the data ~ot from its sensors to correct ~x′t+1

and produce the new p(~xt+1).
Kalman filters are a popular choice for many track-

ing systems and mobile robotics localization. However,
the approach suffers from the representation of p(~xt) as a
Gaussian distribution that tracks only one hypothesis for
~xt. It also cannot solve well the global localization prob-
lem nor the kidnap problem. Although many variants
have been proposed to remedy such drawbacks, it seems
rather unsuitable for environments like robotic soccer,
where Gaussian densities are not suitable models and
global position or kidnapping situations are frequent. Al-
ternatively, Markov Localization uses a piece-wise linear
representation for p(~xt) and thus offers far more flex-
ibility to model the effect of actions and the noise in
sensor input. However, its computational requirements
grow fast with the dimension of the space (the dimen-
sion of ~x) and the resolution of the grid partitioning the
space. As a result, accuracy is in direct trade-of with
computational effort and seems impractical for inexpen-
sive mobile robots like the SONY Aibo.

Monte-Carlo Localization and its variants have been
shown to be superior to the Extended Kalman Fil-
ter [Gutmann and Fox, 2002] and to vanilla Markov
Models [Gutmann and Fox, 2002]. They seem to be
the most effective methods for the RoboCup 4-legged
league [Röfer and Jüngel, 2004]. They also are known
as particle filters and have parallels with non-parametric
statistics in that they are universal density approxima-
tions. They do not need to impose a parametric model
on the distribution of p(~xt). Some of their advantages
are that they can accommodate arbitrary sensors, mo-
tion models and noise properties. They use resampling
and naturally focus their computational effort in those
areas believed to be more relevant, and controlling the
number of particles allows regulation of computational
effort. Moreover, they are significantly simpler to imple-
ment, as we will illustrate.

The MCL approach still has some disadvantages. The

2

1. First, a resampling step draws another m hypoth-
esis ~xi,r

t by selecting from S with replacement us-
ing the discrete distribution defined through the
weights wi.

2. Next, a sampling step uses a stochastic represen-
tation of the motion model. The motion model
used has the form p(~xt|~xt−1,~at−1) in the theoret-
ical derivations but is implemented as a subrou-
tine Motion Model that receives a pose ~x and an
action ~a and returns a new pose ~x′ that is the pre-
diction of the movement. The code ensures that
~x′ is distributed as p(~x′|~x,~a) (For the 4-legged
league, we use the max distance model [Gutmann
and Fox, 2002] that gives equal probability to po-
sitions up to a range equal to the time step times
the maximum speed of the robot). Thus, for i =
1, . . . ,m we have ~xi

t+1 ← Motion Model(~xi,r
t ,~at).

3. The process continues with an importance sam-
pling step, where the sensor information is used
to correct the prediction ~xi

t+1. Namely, νi
t+1 ←

p(~ot|~xi
t+1).

4. The last step of the process is to normalize the
weights by wi

t+1 ← νi
t+1/

∑m
j=1 νj

t+1.

Figure 1: The 4 steps in the iteration loop.

stochastic nature of the algorithms implies that the num-
ber of particles can not be small. Vanilla MCL does
not handle the kidnap problem well, and thus it needs
to model the possibility of a kidnap by randomly intro-
ducing new particles to the space. It also seems slow
to converge if the sensors are too accurate and until re-
cently little theoretical foundation existed for some of its
fixes [Thrun et al., 2001]. A derivation from the theory
of Bayes filters [Thrun et al., 2001] shows that the vanilla
MCL (under some general assumptions1) estimates the
belief of the pose recursively. Moreover, this belief is
modeled by a distribution p(~xt) (called the posterior) as
is represented in non-parametric form by a sequence S
of m hypothesis S = 〈~xi

t〉i=1,...,m. For each hypothesis
~xi

t there is a weight wt
i ∈ <.

Initially all weights are equal to 1/m and the ~xi
0 are

randomly drawn from the space (for i = 1, . . . ,m). At
time t > 0, the algorithm repeats the iteration loop in
Figure 1.

2.1 Illustration
We illustrate vanilla MCL with an example. Suppose we
have a robot that moves on a linear array of 11 tiles. Sup-

1For example, the Markov assumption says that the prob-
ability of observing ~ot from pose ~xt does not depend on all
previous observations and actions; namely, nobody is moving
landmarks.

pose that the tiles are colored with gray-scaled tones such
that the x-th tile has value x (for x = 0, . . . , 10). The
robot can decide to perform one of three actions L, S, R
(that correspond to moving to the left tile, staying in the
same or shifting to the right tile, respectively2). The goal
of the robot is to stay centered (say in tile 5), although
occasionally it is shifted to either end by an external
agent. When it decides to carry out one of the actions, it
may fail, due to conditions of the physical environment.
Let us assume that we model this by a discrete probabil-
ity distribution p(xt+1|xt, at), that with probability 1/2,
it succeeds in performing the action and the possible fail-
ures share the remaining 1/2 equally (thus, p(4|5, L) =
0.5, p(5|5, L) = 0.25, p(6|5, L = 0.25), p(4|5, S) = 0.25,
p(5|5, S) = 0.5, p(6|5, S) = 0.25, p(0|0, S) = 0.5, and
p(1|0, S) = 0.5). To complete the method we need to
decide upon p(GrayV alue|x). Let us assume that we
model the noise in the light sensor by a discrete prob-
ability distribution where the chance of misreading the
gray-scale value is inversely proportional to the distance
from the true location. Let rg,x = 1/(1+ |g−x|) and let
p(GrayV alue|x) = rGrayV alue,x/

∑10
g=0 rg,x. Note that

the motion model and the sensor model would always be
an approximation to reality obtained though experimen-
tation and calibration.

Let us assume that the robot starts at position 3 with
a population S0 = 〈2, 2, 8, 2, 1, 10〉 of 6 particles and all
weights set to 1/6. The robot believes that it is in cell 2
because all weights are equal; so it instructs its motion
control to go right. Let’s assume that the robot sensor
reads gray level 3. The localization will resample S0 us-
ing some random indexes 〈3, 2, 3, 3, 1, 5〉; thus, we have
〈8, 2, 8, 8, 2, 1〉 as the population of particles to which the
Motion Model is to be applied. Suppose that the effect is
as follows Motion Model(8,R)=7, Motion Model(2,R)=3,
Motion Model(8,R)=9, Motion Model(8,R)=9,
Motion Model(2,R)=2, and Motion Model(1,R)=2. That
is, the self-localization uses a model that generates
two moves that fail (the first and the fifth). Us-
ing the sensor reading of we obtain p(3|7)=0.06,
p(3|3)=0.27, p(3|9)=0.05, p(3|9)=0.05, p(3|2)=0.14 and
p(3|2)=0.14. Normalizing this values results in the
new belief S1 = 〈7, 3, 9, 9, 2, 2〉 and weights ~w1 =
〈0.08, 0.38, 0.07, 0.07, 0.20, 0.20〉. Note that although
half of the hypothesis are to the right of cell five, the cor-
rection by the sensor model makes location 3 the most
likely. Figure 2 illustrates this iteration.

3 Hierarchical MCL

We present two methods that organise the particles in a
hierarchical data structure. Because we assume the pose

2On the 0-th tile the robot cannot move left and on the
10-th tile it can not move right.

3

Figure 2: One iteration loop of the vanilla MCL has 4
steps that transform the beleif representaiton S0 into S1.

~x is multidimensional we will use k-dimensional trees or
kd-trees [Bentley, 1975a]. We introduce the idea with
the one-dimensional example from the previous section.
Note that if more robustness to the stochastic nature of
the MCL method was required, the number m of hy-
pothesis would have to be much larger than 6. Also, in
realistic environments, the hypothesis space would not
be so simple as one out of 11 cells. Thus, also more
precision in the localisation would require a large num-
ber of particles. Clearly, the iteration loop of MCL is
proportional to O(m), the number m of particles.

To aid the intuition, consider a scenario where self-
localisation was required only to determine if the robot is
on the left side of the array of cells as opposed to the right
side, then we essentially have a very small space of hy-
pothesis. The robot in the previous illustration needs to
remain close to the centre, so such loose self-localisation
is sufficient for its control. Moreover, much fewer par-
ticles (and processing time) are required to make this
decision. If further resolution/accuracy is required for
the location of the robot, then the method proceeds un-
der the condition that it has determined which side of
the array of cells it is in. Thus, there is no need to
process particles/hypothesis of higher resolution on the
other side. Applying the idea recursively, if the robot
has already determined it is in the first half, then it will
apply vanilla MCL to determine if it is in the first or sec-
ond quarter of the space. Again, once it has determined
a quarter, then it partitions the hypothesis space into
two and uses a local vanilla MCL to determine which
half to proceed.

Let m0 be the number of particles at depth 0 (the top
level of the hierarchical structure). In our first version
(referred here as full description) the method uses par-
ticles whose pose descriptor is the vector ~x. That means
that at the top level we have a vanilla MCL with parti-

Figure 3: The two belief representations for a hierarchi-
cal MCL. (a) Particles that represent poses. (b) Parti-
cles with values in {0, 1} that represent which half of the
dimensional axis the location is believed to be.

cles with full pose resolution. At depth d, we have md

particles whose pose descriptor is again a full vector ~x.
The zone description version has discrete universe {0, 1}
of size two for all levels. At depth 0, a pose with value 0
means the first half of the partition in the kd-tree while
a value of 1 means the second half of the partition.

Figure 3(a) illustrates the data structure for the
vanilla MCL illustration step described in the previous
section. For the full description we refer to Figure 3 (a).
The data structure at level 0 holds particles with 1-
dimensional poses covering the entire domain of the first
coordinate. It also has weight for each particle and poses
have full resolution. The particles at depth 0 represent a
distribution p(~x) where the agent knows it is in the first
half of the domain. It follows a link to a new set of parti-
cles that present information about p(~x|In first half).
Using the particles at depth 0 that are in the first half
and the particles at depth 1 in the left child, the localisa-
tion determines that the robot is in the second quarter of
the strip of tiles. Now if more precision is required for a
decision/behaviour, the self-localisation can explore the
particles at depth 2. These particles (and implicitly the
particles in parent nodes) correspond to a representa-
tion of p(~x)|In second quarter) . The self-localisation
determines a belief that it is among the 4-th and 5-th
cells. Finally, by going one level down, tile 5 is deter-
mined as the current pose (the belief represented by the
data structure).

Note that the data structure is a tree, but we have
chosen to illustrate only the path that provides a belief
of location where accuracy increases with depth. Sec-
ond, note that for the full description version, poses
(particles) and weights are of the same type as for the
vanilla MCL. Therefore, the same motion model and sen-
sor model could directly apply to them when computing

4

with particles for the vanilla MCL. This makes a large
part of the code re-usable; however, we will need to ad-
just sensor models for very precise sensors to be useful
in higher levels of the structure. We will say more about
this later. More importantly, the iteration loop in the lo-
calisation algorithm performs the 4-steps of resampling,
sampling, importance sampling and normalisation only
for the particles in a path on the tree from the root to
the leaf (and not over all particles).

We argue that because work happens on a path from
the root to the leaf, the overhead of the hierarchical data
structure is negligible (and in fact less than in other hi-
erarchical data structures like Octrees where the com-
plexity has remained proportional to the total number
of nodes in the tree [Burgard et al., 1998]). We can have
two schemes to allocate the number of particles to nodes
of the tree. First, we allocate a number m0 of particles to
each node. Then the complexity of the iteration loop is
m0(depth+1) where depth is the depth of the leaf (recall
the root is depth 0). If vanilla MCL is using m parti-
cles, m0 = m/(depth + 1) results in a hierarchical MCL
that has the same time complexity as vanilla MCL but
can reply to global localisation queries in 1/(depth + 1)
of the time. Alternatively, we can allocate the number
m of particles that vanilla MCL would use uniformly
across levels of the tree; that is, mi = 2mi+1 we have
m = m0 + 2m1 + 4m2 + 8m3 + . . . 2depthmdepth but
the complexity of the algorithm is only

∑depth
d=0 md =

m0(1− 1/2depth). Thus, a value m0 = m/(1− 1/2depth)
makes hierarchical MCL have the same CPU require-
ments as vanilla MCL. Another way to think about this
is, under this second allocation scheme, let mo = m, use
the number of particles at depth 0 that one would use for
vanilla MCL and half them for each child (the overhead
will be negligible).

This also means that the algorithm’s CPU time re-
quirements for hierarchical MCL depends less on the de-
gree of dispersion, concentration or clustering of the par-
ticles; that is, of the certainty of the location. If one is
prepared to trade accuracy for CPU time, then we would
observe a larger ratio of improvement in CPU time as the
tree is deeper. It means that the difference in the speed
of our algorithm with vanilla MCL is more noticeable as
we handle domains with requirements for both loose and
high accuracy. A bit of reflection confirms this, since our
methods reduces to vanilla MCL when the chosen depth
is 0. That is the hierarchical method will be faster for
queries of location within a zone, but of equivalent CPU
for the high accuracy queries. With the many particles
as vanilla MCL, we would expect very solid robustness
to stochastic noise.

It is important to mention that variations and addi-
tions to MCL methods are easily adapted to our meth-
ods. This is because our methods can be regarded as

stacked vanilla MCLs. Thus, in particular, techniques
like randomly adding particles to allow resilience to the
kidnap problem are applicable as well as dual MCL.

Now we are in a position to describe a k-dimensional
hierarchical structure. That is, we assume the dimension
of a pose ~x is k. However, we will present illustrations
with k = 2. Note that a pose for a robot in a soccer field
may be bi-dimensional (x, y) or perhaps tri-dimensional
(x, y, φ) (if we consider the orientation φ). Some environ-
ments, like submersible robots may require 3 Cartesian
values for location (x, y, z) and another three angular
values (pitch, yaw and roll) to indicate orientation (in
that case, the dimension of the pose would be 6).

Our k-dimensional hierarchical structure is based on
the notion of a binary kd-tree. Binary kd-trees are tree
structures first introduced by Bentley [Bentley, 1975a]
to solve the problem of associative retrieval of multidi-
mensional keys. Each node in the tree has an associated
discriminant δ ∈ {1, 2, . . . , k}. All the nodes in the same
level have the same discriminant, and discriminant val-
ues are assigned cyclically in this way: the root node has
discriminant 1, its two subtrees have discriminant 2 and
so on up to the k − th level in which the discriminant
is k. In level k + 1 the discriminant is 1 again and the
cycle described before is repeated. Each node of the hi-
erarchical data structure is a vanilla MCL that uses the
particles at that level to decide between two possibilities
for the pose. Namely, for a node νn at depth d, we test
if the pose (d mod k) + 1 coordinate is less that a value
vνn

or its is greater than this value. For example, con-
sider the illustration in Figure 4 for a pose vector (x, y).
At the root, the discriminant is a value x0 to compare
against the fist component of the pose vector and deter-
mines that the belief is either that x ≤ x0 or that x > x0.
The figure illustrates the case when the vanilla MCL at
this level determines that the robot believes the pose is
such that x ≤ x0. At depth one, and on the left branch
of the kd-tree, the discriminant is a value y1 for the sec-
ond coordinate y of the pose. continuing in this fashion,
the path of the kd-tree illustrates the determination of
a position. Note that the illustration only shows a path
in the kd-tree and not the entire tree. The partition of
the domain by the discriminant values is illustrated by
solid lines (while the grid is shown with dashed lines).

For our algorithm, each node of the kd-tree has as-
sociated with it a vanilla MCL. In full representation,
as in the 1-dimensional case, there are md particles for
a node νd at depth d. These particles are set Sνd

t that
are managed using the iteration loop with its four steps.
Since the kd-tree is binary, the allocation of particles
to nodes can follow any of the two schemes we already
discussed for the 1-dimensional case. Again, the compu-
tational overhead is now even more negligible, since the
dimension k is at least a linear factor in the complexity

5

QQs

QQs���

	

HHj���

HHj���

HHj���

HHj���

x0

y1

y3

x2

x4

y5

δ : x?
> x0≤ x0

δ : y?
> y1≤ y1

δ : x?
≤ x2 > x2

δ : y?
> y3≤ y3

δ : x?
> x4≤ x4

δ : y?
≤ y5 > y5

×

×

Figure 4: A kd-tree represents a grid of the domain of
posses. A cell is identified by a path that alternates
discriminating among the coordinates of the pose vector.

of vanilla MCL. That is, with higher dimensions, our al-
gorithms become more affordable with respect to vanilla
MCL. A zone representation for the multi-dimensional
case uses particles with values in {0, 1} as in the 1-
dimensional case.

4 Implementation and experiment

There are four important points regarding the successful
implementation of our methods. In fact, our methods
are not as effective if these points are not incorporated.

1. The first point is that particles assigned to a
node in the data structure do not migrate to sib-
lings/neighbours in the tree, even if the actual pose
of the robot is very far from the grid-cell holding
those particles. To illustrate this consider again
Figure 4. The grid-cell marked × represents a pose
~x = (x, y) where x2 < x ≤ x4 and y5 < y ≤ y3.
Let us suppose that the robot is actually in the top-
right corner of the domain with values for x much
larger than x0 and values for y much larger than y1.
Moreover, the robots is over there for a long while.
Vanilla MCL (or Markov Localisation) eventually
would move most of its particles (respectively prob-
ability density) to that top-left corner. For vanilla
MCL, the number of particles representing a pose in
the grid-cell marked × (or a pose nearby this grid-
cell) would decrease rapidly. Only because of the
random placement of particles in the domain (the
mechanism to protect against the kidnap problem),
would particles nearby the grid-cell marked × would

appear.

This is not the case in our methods, a node at depth
d remains with md particles associated with it, and
therefore attached to values close to its grid-cell.
This is true for all levels. For example, the left
child of the root in Figure 4, which covers the region
x ≤ x0 and y ≤ y1 also would keep m1 particles even
if the robot believes and has being for a while in the
top right corner of the domain. Note that this is
possible because at depth 0 there would be enough
particles (and corresponding weights) to determine
that the pose has an x value greater than x0. This
allows our methods to have rapid coverage in all
areas of the domain.

2. Second, we allow particles associated with a node
to represent a pose outside the grid-cell (or region)
of the domain associated with such node. There is
a fundamental reason for this. Suppose we are in
the sampling step of a pose in the grid-cell marked
× and this pose is (x4, y3) (that is, on the border of
the cell). Moreover, lets assume that such particle
has the highest weight (so the robot believes it is
actually at ~x = (x4, y3)). And lets assume the robot
wants to go to the centre of the domain, so it has
performed an action a to move to the top-right. So
(x4 + ε, y3 + ε) ← Motion Model((x4, y3), a). Alto
ugh the new particle (x4 + ε, y3 + ε) is outside the
grid-cell, it is kept associated with the vanilla MCL
at the node marked × in the kd-tree. What we
achieve with this is a complete representation from
the point of view of the belief at that node. That
is, the sum of the weights of particles with pose
values outside the region corresponding to the node
is the representation (by the local vanilla MCL at
that node) that the robot is not in that region.

Note that our representation of a robot being some-
where else besides the region of coverage is similar
to the approach used for speeding Markov Localisa-
tion with selective update [Fox et al., 1999a]. How-
ever, also note that the pose values outside a node’s
region must be close to the region’s legal values.
We call this technique “collecting the pose values”.
Namely, we bound ε to a small value. In fact all par-
ticles in a node ν with values ~xε outside the region of
ν are given pose values so that with high probability
Motion Model(~xε) returns a value inside ν’s region.
This is important because, when the robot’s belief
moves back to being close to the grid-cell in ques-
tion (because the robot is coming back and maybe
it even gets back into the region of the node that
abandoned much earlier), the particles of that node
ν must rapidly represent belief of a pose in the re-
gion corresponding to ν. Note that while the robot

6

believes to be outside the region for ν, it will not up-
date particles in the vanilla MCL at ν (that is where
the CPU time savings come from in our method).
However, when updating particles at ν, it is because
it believes is is at ν, at least at upper levels in the
tree. It would be contradictory if at ν the belief
indicated a pose far from the region for ν.

3. If a sensor has very high noise or/and low precision,
it is incorporated into the sensor model of only the
vanilla MCL at shallow nodes in the tree (shallow
depth). Such a sensor in deeper nodes is not infor-
mative, it would at best just confirm that we are at
the node (and would not provide further resolution
within the region for that node).

A sensor of high accuracy is modelled closely for
deep nodes in the tree. However, it is converted to
what we call a virtual low resolution sensor for its
use in high nodes of the tree (shallow depth). We
shall explain this further so the rationale behind our
approach is justified.

We describe why high precision sensors are a prob-
lem for the vanilla MCLs at shallow nodes. Con-
sider again our one-dimensional example, but now
we have 128 cells (and not just 11 as before). The
assumption that each of these cells has a gray-scale
illumination that identifies the cells remains, also
the lowest value is at the leftmost cell, and values
linearly increase to the rightmost cell. To illustrate
our point we suggest here a sensor that is very pre-
cise. Say, it returns the gray-value plus or minus the
gray-scale value of one cell (that is the sensor gives
information of which out of 3 cells the robot is).
What happens at the top level when we have full
description particles and essentially we are deciding
if the robot is on the fist or second half of the array
of cells? Consider a particle in the second half with
value 80, while the robot is actually at 40 and has
just read the value 41. Then, during the importance
sampling, p(ot|~xt+1) would be zero most of the time.
In our example, the probability of reading 41 given
that one is at 80 is 0 for such a high precision sen-
sor. The problem is that this happens for almost all
particles, even those that are in the first half. As a
result, the vanilla MCL may artificially (as a result
of stochastic noise) assign a slight difference but just
few more particles to the wrong half. From there,
the vanilla MCL would not be to review its belief of
being in the wrong half because, on a high precision
sensor, p(ot|~xt+1) is equally poorly informative for
all ~xt+1 in the wrong half.

What we need is a sensor model for p(ot|~xt+1) that
presents the high precision sensor as a low precision
sensor where

(a) p(ot|~xt+1) is different from 0 for all particles in
the domain,

(b) the modes (points where the distribution is
maximum) are the same as for the high pre-
cision sensor.

(c) the distribution for the low precision sensor is
(locally) strictly monotonic.

As a consequence of these properties, the vanilla
MCLs will converge their belief to the poses of the
reading sensors. Thus, in our example, p(41|80)
would not be zero, but a very small value. More-
over, while p(41|41) would be the largest value,
p(41|xl) > p(41|x2) for all 41 < x1 < x2 (for in-
stance p(41|41) < p(41|60) < p(41|80).
As a result, when at the root of our hierarchical
MCL, the particles there would indeed be using the
sensor readings for revising the belief. It is intu-
itively clear, that even if a robot was at 80 and read
40 from a very high precision sensor, it should re-
vise its belief and at least believe it is in the first
half of the 127 cells (rather than trust its odome-
try too much). Moreover, the availability of a set of
particles will allow particles close to the value 40 to
re-test the hypothesis of being even close to 40 in
the next iteration loop.

4. Recall that the number of particles associated with
a node is constant. Although 90% of those par-
ticles are processed using the vanilla MCL itera-
tion loop, we always replace 10% of the particles
with random particles in the entire domain. This is
implemented by skipping the resampling step and
the sampling step for a randomly selected 10% of
the particles. New particles are feed directly to the
third step importance sampling of the iteration loop.
Feeding randomness into ML or MCL is a standard
technique because the possibility of having an in-
correct belief must be incorporated regularly into
the method (and thus, it works as protection to the
kidnap problem). In our methods, it becomes more
important since particles at a node will not be up-
dated for long periods of time if the robot is not
operating in the region represented by that node.
More importantly, we must rapidly revise the belief
at nodes high up.

5. Our methods work the importance step under what
we call a conditioned approach. We now explain
what this means and justify its use. Consider again
Figure 4 and a situation in where the robot be-
lieves to be in the grid-cell marked × with a pose
~x = (x4, y3). That is, if queried for the pose, the
localisation model would reply with an region cor-
responding to the path in Figure 4; the depth of the
node used would depend on the requested accuracy.

7

For just what side of x0 the root node would be used,
for example. With this information, a robot aiming
for the middle of the domain would issue a motion
a for (x4 + ε, y3 + ε), and read sensor information
st indicating another grid-cell. Then, the iteration
loop would be performed on the vanilla MCL at the
root. Once the iteration loop is completed, a child
is selected to continue the iteration loop one level
deeper. In our example, the left child of the root
would be selected and an iteration loop with the new
sensor value performed there. Once again, the itera-
tion loop is completed at the depth 1 before using it
to select the child to proceed. This would be again a
left node. But once the iteration loop is completed
on this child, the belief in this child would indicate
a value for the x-coordinate of the pose greater than
y3, so that the child selected at this depth would be
the right node. That is, although the path in Fig-
ure 4 is the path that represents the belief at a cer-
tain time step, after a motion and a sensor reading
are executed, it may not be that the iteration loop
is executed in the nodes of this path. The updating
of the belief is on another path that is obtained by
updating the belief at a node and following the child
using the updated belief at that node.
This strategy is sound, since it provides an updating
rule of the belief always using the most recent ver-
sion (the most up-to-date belief) as suggested by all
localisation recursive methods based on a Bayesian
formalism (including Kalman and Markov Localisa-
tion). If fact, if for whatever reason the updating of
the belief was halted halfway and did not complete
its revision of nodes from the root to a leaf, the data
structure still represents a localisation belief where
the most influential nodes (the ones at the root) are
as accurate as possible.

4.1 Experiment

We have implemented our methods and embedded them
is a simulation testing system. Embedding in a simu-
lation for testing self-localisation algorithms is common
practice [Burgard et al., 1998; Fox et al., 1999a; 1999b;
Fox, 2003; Thrun et al., 2001] because we can mea-
sure exactly the physical (virtual) position of the robot,
and several error conditions can be tested for sensors
or for errors in motion. We have confirmed empirically
the claims discussed earlier. Figure 5 shows the global
localisation error and the tracking performance of our
method against some previous versions of vanilla MCL.
The robot is initially placed in one extreme of the do-
main with a belief of random poses and weights all equal
to 1/m where m is the number for particles. Global lo-
calisation is evaluated by the speed by which the robot
reduces the error to less than 5 (which is the error in the

Figure 5: Results that illustrate that our method has
the fastest discovery of localisation and also the most
stable tracking (minimising error between true position
and believed position).

sensor). Tracking is evaluated by the robot maintain-
ing the error this low. The worst performance is by the
vanilla MCL with a ratio of 6 particles to 128 grid-cells
and a low quality sensor. The plot indicates this version
with green × symbols. This version not only takes about
300 iterations to localise but also has high peaks during
tracking. By incrementing the particles to 36 particles
and a high precision sensor, the error in global localisa-
tion improves just a bit (this is in pink with 2) . The
tracking is much better but hardly compensates for the
weak performance in global localisation. Interestingly,
if this version of vanilla MCL is provided with a low
precision sensor, we obtain the red + plot. Global lo-
calisation is much effective, requiring only 80 iteration
loops, and the penalty in tracking in negligible. This
illustrates that our technique of a virtual low resolution
sensor is effective for vanilla MCL (and therefore for the
root and other nodes of our hierarchical MCL).

Our method with the first allocation of particles
scheme are represented in dark blue and symbol ?. That
is all nodes have 6 particles, even the root has 6 par-
ticles for 128 grid cells. This is the method that runs
the fastest (together with green ×). It shows an error
in global localisation that is better than the two vanilla
MCLs. Although it takes 380 steps of the iteration loop,
it always has the correct answer for which half of the do-
main (that is, at the root there is no error). Its tracking
performance is solid and definitely acceptable.

Our method (36 particles for each 128 grid-cells at the
root and then half the number of particles the parent
per child) is shown in light blue and . The method
not only is efficient (requiring competitive CPU as the

8

Figure 6: Results that illustrate that our method has
the fastest recovery after a kidnapping and also the most
stable tracking afterwards.

vanilla MCL with pink 2), but its reduction of global
localisation is remarkable. It offers the smallest global
localisation error, recovering from a total neutral belief
in less than five iteration loop steps. The tracking is also
remarkable as can be appreciated in the plot in Figure 5.

We have also considered the kidnap problem. Figure 6
displays the result of a kidnap after 200 iteration loop
cycles for the methods discussed previously. We can see
that the vanilla MCL with a ratio of 6 particles for ev-
ery 128 grid-cells is very unstable. Other vanilla MCLs
do recover from the robot being translated 63 grid cells
away after converging to a location; however, our meth-
ods show the fastest recovery.

5 Discussion

We now contrast of methods with the literature.
• The approach called kd-trees in [Gutmann and

Fox, 2002] when referring to [Thrun et al., 2001]
as an efficiency improvement is because in [Thrun
et al., 2001] the data structure is called kernel
density trees. The data structure is used to ef-
ficiently represent a piece-wise linear distribution
for the Dual MCL. This is not a mechanism to
structure the particles efficiently. It provides effi-
cient manipulation of pice-wise distributions. Al-
though a reference to Bentley [Bentley, 1980] ap-
pears in [Thrun et al., 2001], this is because Bent-
ley suggests a possibility of representing piece-wise
linear probability densities and operations on den-
sities using multi-dimensional trees. The kd-tree
by Bentley was originally used for multidimensional
associate searching [Bentley, 1975a; 1975b; 1979;
Gaede and Günther, 1998; Sproull, 1991].

• Because Markov Localisation imposes a grid that
grows very rapidly with the dimension of the pose
vector, or with the desired accuracy, techniques were
developed for improving performance of implemen-
tations. Pre-computation of the sensor model stores
it as a look up table [Fox et al., 1999a] and selective
update labels some cells in the grid as passive, be-
cause their probability is very small, and skips their
updating. However, these techniques demand high
memory requirements still, are laborious to imple-
ment (as they demand monitoring of passive/active
cells) and are brittle to the parameters/thresholds
chosen. They also lack theoretical intuition and are
effective when the robot has a clear picture of where
it is (not in the kidnap problem). It should be noted
that the management of passive and active cells is
not trivial. The motion model increases the active
cells (adds cells to the list of active cells as part of
the prediction step that takes account of the uncer-
tainty of actions) while the perception model will
delete some active cells and place them among the
passive cells. The approach by [Burgard et al., 1998]
suggests using an Octrees to represent poses (x, y, φ)
consisting of two coordinates x and y (for a robot’s
location in 2D) and an orientation phi. This allows
to refine the resolution if the localisation software
dynamically adjust the branches of the tree at each
localisation step. The overhead of dynamically up-
dating the tree is not trivial. The Octree representa-
tion reduces significantly the complexity of Markov
Localisation form the large number of cells in the
grid (an exponential number in the height of the
tree), to just the number of nodes in the tree (which
of course is not complete). The normalisation and
updating complexity becomes proportional to the
number of leaf nodes in the Octree. Our methods
improve performance because we are concerned with
only the particles in a path from the root to a leaf
in our kd-tree.

• The first paper that seems to deal with the issue of
managing the particles for efficiency is [Fox, 2003].
However, the problems is rather different, since the
issue is how to keep and adequate number of parti-
cles (and random particle introduction) in a vanilla
MCL. The allocations schemes proposed here solve
this problem. The particle number management is
handled as they are distributed along the nodes of
our kd-tree.

6 Conclusions

We have implemented a hierarchical approach to Monte
Carlo Localisation. It allows the incorporation of sen-
sors of different accuracy or information content (the
sensor could be very accurate but there could be many

9

poses where that reading could be obtained). It allows to
rapidly secure information about the pose and increase
the accuracy for response time.

The methods become very effective in comparison with
standard MCL approaches (we have referred to them as
vanilla MCL). In should be noted that MCL approaches
are now regarded as superior to Markov Localisation of
Kalman filters in many scenarios. We introduced five
techniques that complement our methods and that pro-
vide robustness to the kidnap problem or to the stochas-
tic noise implicit in MCL. These provide particle man-
agement, mechanisms to represent complementary infor-
mation, generalisation of high resolution sensors to low
resolution sensors, rapid belief revision, and hierarchical
conditioning of belief update. As a result, the methods
become very effective and more competitive than previ-
ous approaches.

References
[Bentley, 1975a] J.L. Bentley. Multidimensional binary

search trees used for associative searching. Communi-
cations of the ACM, 18(9):509–517, 1975.

[Bentley, 1975b] J.L. Bentley. A survey of techniques
for fixed radius near neighbor searching. Technical
Report Report STAN-CS-78-513, Dept. Comput. Sci.,
Stanford Univ., Stanford, CA, 1975.

[Bentley, 1979] J.L. Bentley. Decomposable searching
problems. Information Processing Letters, 8:244–251,
1979.

[Bentley, 1980] J.L. Bentley. Multidimensional di-
vide and conquer. Communications of the ACM,
23(4):214–229, 1980.

[Betke and Gurvits, 1994] M. Betke and L. Gurvits.
Mobile robot localization using landmarks. IEEE Int.
Conf. Robotics and Automation, volume 2, pages 135–
142, San Diego, CA, May, 9-13 1994.

[Betke and Gurvits, 1997] M. Betke and L. Gurvits.
Mobile robot localization using landmarks. IEEE
Transactions on Robotics and Automation, 13(2):251–
263, April 1997.

[Burgard et al., 1998] W. Burgard, A. Derr, D. Fox,
and A. Cremers. Integrating global position estima-
tion and position tracking for mobile robots: the dy-
namic markov localization approach. Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS ’98),
pages 730–735, Victoria, BC, Canada, October 1998.
IEEE.

[Dahm and Ziegler, 2003] I. Dahm and J. Ziegler. Adap-
tive methods to improve self-localization in robot soc-
cer. G. A. Kaminka, et al eds, RoboCup 2002: Robot
Soccer World Cup VI, pages 393–408. Springer Verlag
Lecture Notes in Artificial Intelligence, 2003.

[Fox et al., 1999a] D. Fox, W. Burgard, and S. Thrun.
Markov localization for mobile robots in dynamic en-
vironments. Journal of Artificial Intelligent Research,
11:391–427, November 1999.

[Fox et al., 1999b] D. Fox, W. Burgard, and S. Thrun.
Monte Carlo localization: Efficient position estima-
tion for mobile robots. Sixteenth National Conf. on
Artificial Intelligence, pages 343–349, Orlando, CA,
July 18-22 1999. AAAI, AAAI Press.

[Fox, 2003] D. Fox. Adapting the sample size in parti-
cle filters through KLD-sampling. Int. J. of Robotics
Research (IJRR), 22(12):985–1040, December 2003.

[Gaede and Günther, 1998] V. Gaede and O. Günther.
Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231, June 1998.

[Gutmann and Fox, 2002] J.-S. Gutmann and D. Fox.
An experimental comparison of localization methods
continued. Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2002.

[Leonids and R., 1995] J. Leonids and Motwani R. The
robot localization problem. Algorithmic Foundations
of Robotics, pages 269–282, 1995.

[Röfer and Jüngel, 2004] T. Röfer and M. Jüngel. Fast
and robust edge-based localization in the SONY four-
legged robot league. 7th Int. Workshop on RoboCup
2003 (Robot World Cup Soccer Games and Confer-
ences), Padova, Italy, July 2004. Springer Verlag Lec-
ture Notes in Artificial Intelligence.

[Sproull, 1991] R.F. Sproull. Refinements to nearest
neighbour searching in k-dimensional trees. Algorith-
mica, 6:579–589, 1991.

[Thrun et al., 2000] S. Thrun, D. Fox, and W. Burgard.
Monte Carlo localization with minsture proposal dis-
tribution. National Conf. on Artificial Intelligence,
pages 859–865, Austin, USA, 2000. AAAI, MIT Press.

[Thrun et al., 2001] S. Thrun, D. Fox, W. Burgard, and
F. Dellaert. Robust Monte Carlo localization for mo-
bile robots. Artificial Intelligence, 128:99–141, 2001.

[Thrun, 1998] S. Thrun. Bayesian landmark learning
for mobile robot localization. Machine Learning,
33(1):41–76, 1998.

[Veloso et al., 1998] M. Veloso, W. Uther, M. Fujita,
M. Asada, and H. Kitano. Playing soccer with legged
robots. Proc. IROS-98, Intelligent Robots and Systems
Conf., Victoria, Canada, October 1998.

10

