(1R,2S,3R,6S,7R,8S)-Tricyclo[6.2.1.02,7]undeca-4,9-diene-3,6-diol

Author
D. Banister, Samuel, K. Clegg, Jack, J. Coster, Mark, A. Jolliffe, Katrina, Kassiou, Michael

Published
2007

Journal Title
Acta crystallographica. Section E, Structure reports online

DOI
https://doi.org/10.1107/S1600536806051002

Copyright Statement
Copyright remains with the authors 2007. For information about this journal please refer to the journal's website. All articles published in Acta Crystallographica Section E are open access and distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. See http://creativecommons.org/licenses/by/2.0/uk/legalcode

Downloaded from
http://hdl.handle.net/10072/22621

Link to published version
http://journals.iucr.org/e/journalhomepage.html
(1R,2S,3R,6S,7R,8S)-Tricyclo[6.2.1.0^2,7]undeca-4,9-diene-3,6-diol
Samuel D. Banister, Jack K. Clegg, Mark J. Coster, Katrina A. Jolliffe and Michael Kassiou
(1R,2S,3R,6S,7R,8S)-Tricyclo[6.2.1.0²,7]-undeca-4,9-diene-3,6-diol

The asymmetric unit of the title compound, C_{11}H_{14}O_{2}, contains two molecules. The alcohol groups have cis stereochemistry and are involved in hydrogen bonding (acting as both donors and acceptors), resulting in the formation of an infinite three-dimensional network.

Comment

We are currently investigating trishomocubane derivatives with a high affinity for the sigma receptor (Liu et al., 1999; 2001). The title compound, (I), was prepared as an intermediate in the synthesis of compounds intended to further explore the series. A crystal structure was obtained to confirm the relative stereochemistry of each alcohol group (C1, C4, C12, C15) after Luche reduction of the corresponding diketone. As expected, the reduction proceeds stereoselectively resulting in a cis-diol product (Fig. 1).

The precursor, (1R,2S,7R,8S)-tricyclo[6.2.1.0²,7]undeca-4,9-diene-3,6-dione, is formed by a Diels–Alder reaction between 1,4-benzoquinone and cyclopentadiene, yielding the endo adduct (Cookson et al., 1964; Yates & Switlak, 1990), the stereochemistry of which is not affected by the subsequent reduction of the ketone groups.

Figure 1

The structures of the two crystallographically independent but chemically identical molecules in the asymmetric unit, shown with 50% probability ellipsoids.
The alcohol groups are involved in hydrogen bonding with each O atom acting as both a donor and an acceptor to form an infinite three-dimensional network (Fig. 2 and Table 1). If each alcohol is defined as a node and the rest of the molecule as a linear connector, Wellsian analysis (Wells, 1977) suggests that the topology is a non-uniform (10,3)-type network. A depiction of the shortest loop is shown in Fig. 2. Owing to the distortion of the network it was not possible to assign the topology to one of the a–g subgroups of the (10,3) group and this network may represent a new topology.

Experimental

(1R,2S,7R,8S)-Tricyclo[6.2.1.0²,⁷]undeca-4,9-diene-3,6-dione was prepared by a published procedure (Marchand & Allen, 1974). A Luche reduction of this compound was performed according to the literature procedure (Marchand et al., 1986). Slow evaporation of an acetone solution of (I) afforded the large colourless prismatic crystals used for this study.

Crystal data

<table>
<thead>
<tr>
<th>Compound</th>
<th>C₁₁H₁₄O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. r.</td>
<td>178.22</td>
</tr>
<tr>
<td>Orthorhombic, Pca₂₁</td>
<td></td>
</tr>
<tr>
<td>a = 12.526(3) Å</td>
<td>b = 10.7003(13) Å</td>
</tr>
<tr>
<td>V = 1869.2(4) Å³</td>
<td></td>
</tr>
</tbody>
</table>

Data collection

Bruker–Nonius APEXII

<table>
<thead>
<tr>
<th>ω and Ø scans</th>
<th>21673 measured reflections</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_max = 0.766, T_min = 0.990</td>
<td>2747 reflections with I > 2σ(I)</td>
</tr>
</tbody>
</table>

Refinement

Refinement on F²

R[F²] > 2σ(F²) = 0.052

wR(F²) = 0.118

S = 1.03

3539 independent reflections

H atoms treated by a mixture of independent and constrained refinement

Table 1

<table>
<thead>
<tr>
<th>D-H···A</th>
<th>D-H</th>
<th>H-A</th>
<th>D-A</th>
<th>D-H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁-H-O₂</td>
<td>0.87 (3)</td>
<td>1.86 (3)</td>
<td>2.730 (2)</td>
<td>175 (3)</td>
</tr>
<tr>
<td>O₂-H-O₁</td>
<td>0.90 (3)</td>
<td>1.82 (3)</td>
<td>2.720 (2)</td>
<td>171 (3)</td>
</tr>
<tr>
<td>O₃-H-O₂</td>
<td>0.80 (3)</td>
<td>1.93 (3)</td>
<td>2.731 (2)</td>
<td>175 (3)</td>
</tr>
<tr>
<td>O₂-H-O₃</td>
<td>0.81 (3)</td>
<td>1.97 (3)</td>
<td>2.777 (2)</td>
<td>174 (3)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) x+1, -y+1, z; (ii) -x+1, y-1, z; (iii) x, -y, z; (iv) x, y, z.

Carbon-bound H atoms were included in idealized positions and refined using a riding model. Methine, aromatic and methylene C–H bond lengths were fixed at 1.00, 0.95 and 0.99 Å, respectively. Ueq(H) values were fixed at 1.2Ueq of the parent C atoms. Alcohol H atoms were located in a difference Fourier map and refined with Ueq(H) values fixed at 0.038 Å². In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: APEX2 (Bruker–Nonius, 2003); cell refinement: SAINT (Bruker–Nonius, 2003); data reduction: SAINT and XPREP (Bruker–Nonius, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997), WinGX2 (Farrugia, 1999), POVRAY 3.5 (Cason, 2002) and WebLab ViewerPro 3.7 (Molecular Simulations, 2000); software used to prepare material for publication: enCIFer (Version 1.1; Allen et al., 2004).

We gratefully acknowledge the Australian Research Council for support.

References

