An Extended Interpreted System Model for Epistemic Logics

Author
Su, Kaile, Sattar, Abdul

Published
2008

Conference Title
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence and the Twentieth Innovative Applications of Artificial Intelligence Conference

Copyright Statement
Copyright 2008 AAAI Press. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Use hypertext link for access to conference website.

Downloaded from
http://hdl.handle.net/10072/23542

Link to published version
http://www.aaai.org/Conferences/AAAI/aaai08.php
An Extended Interpreted System Model for Epistemic Logics

Kaile Su1,2 and Abdul Sattar2

1Key laboratory of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing, China
2Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia
sukl@pku.edu.cn; a.sattar@griffith.edu.au

Abstract

The interpreted system model offers a computationally grounded model, in terms of the states of computer processes, to S5 epistemic logics. This paper extends the interpreted system model, and provides a computationally grounded one, called the interpreted perception system model, to those epistemic logics other than S5. It is usually assumed, in the interpreted system model, that those parts of the environment that are visible to an agent are correctly perceived by the agent as a whole. The essential idea of the interpreted perception system model is that an agent may have incorrect perception or observations to the visible parts of the environment and the agent may not be aware of this. The notion of knowledge can be defined so that an agent knows a statement iff the statement holds in those states that the agent can not distinguish (from the current state) by using only her correct observations. We establish a logic of knowledge and certainty, called KC logic, with a sound and complete proof system. The knowledge modality in this logic is S4 valid. It becomes S5 if we assume an agent always has correct observations; and more interestingly, it can be S4.2 or S4.3 under other natural constraints on agents and their sensors to the environment.

Introduction

Epistemic logics or logics of knowledge have been studied by philosophers for a long time, and with the advent of agent oriented computing, they are of paramount importance for the formalization of autonomous agents. There are two main semantic approaches to epistemic logics, the possible worlds semantics (\texttt{?}; \texttt{?}) and the interpreted system model (\texttt{?}; \texttt{?}; \texttt{?}). The first approach is very fruitful, including S4, S4.2, S4.3 etc. The advantage of this approach is that various properties about the notion of knowledge can be characterized conveniently with a model theoretic feature in terms of the accessibility relations. The second approach, mainly due to Halpern and his colleagues (\texttt{?}; \texttt{?}; \texttt{?}), offers a very natural interpretation, in terms of the states of computer processes, to S5 epistemic logics. The salient point of the second approach is that we are able to associate the system with a computer program and formulas can be understood as properties of program computations. In this sense, the interpreted system model is computationally grounded (\texttt{?}). However, the epistemic logic characterized by the interpreted system model is forced to be S5, as the undistinguishability relation between two global states in an interpreted system is an equivalence one. A natural question is whether the interpreted system model can be extended as a natural and satisfying semantic model for those epistemic logics other than S5 such as S4, S4.2 and S4.3.

This paper extends the interpreted system model, and provides a computationally grounded one, called the interpreted perception system model, to those epistemic logics other than S5. The essential idea of the interpreted perception system model is that an agent may have incorrect observations to the environment and the agent may not be aware of this. On the contrary, in the interpreted system model, it is usually assumed that the visible parts of the environment are correctly perceived as a whole; as a result, the visible parts of the environment and the perceptions of the agent may be modelled as shared variables in both the design module of the environment and that of the agent. Our notion of knowledge can be defined so that an agent knows a statement iff the statement holds in those states that the agent can not distinguish (from the current state) by using only her correct observations. The resulting logic for the knowledge modality is S4. It becomes S5 if we assume an agent always has only correct observations to the environment; and more interestingly, it can be S4.2 or S4.3 under other natural constraints on agents and their observations.

Our philosophical hypothesis about knowledge is that an agent knows a statement iff the statement is true, the agent is certain of the statement and the agent is certain of the statement for good reasons. An important question is then raised here, “what are good reasons or bad reasons?” In our concrete computational model, we can naturally take the so-called “good reasons” to be correct observations. As a result, an agent’s knowledge is directly from her correct observations or is derived by her correct observations with her knowledge about the system.

The significance of this work is in three aspects. First, we provide a computational approach to evaluating the statements in epistemic logic for an agent with possibly faulty sensors. Secondly, we explore some particular classes of the interpreted perception systems, which are exactly related to several most influential epistemic logics in the philosophic community. Finally, although the notion of knowledge in Ar-
The Interpreted Perception System Model

Let us first briefly review the notion of *Interpreted System*, which is originally defined by Halpern and Moses (?). The fundamental notion on which interpreted systems are defined is the one of ‘local state’. Intuitively, the local state of an agent represents the entire information about the system observed by the agent. The (global) state of the system is defined as the pair of the local states of the agent and that for the environment.

Formally, a *system of global states* is a non-empty subset of Cartesian $L_e \times L_a$, where L_e represents a set of local states for the environment and L_a is a set of the agent’s local states.

Assume that we have a set Φ of primitive propositions, which we can think of as describing basic facts about the system. An *interpreted system of global states* consists of a pair (S, π), where S is a system of global states and π is a valuation function, which assigns truth values to primitive propositions.

The notion of an *interpreted system* in the framework in (?) represents the temporal evolution of a system by means of *runs*. A run, in their terminology, is a function from the set of natural numbers to the set global states, and an interpreted system is a set of runs over global states together with a valuation for the primitive propositions. In this paper, we do not deal with time, and work only on states for simplicity.

We now define *interpreted perception systems* by extending the notion of interpreted systems. The basic idea is that an agent may have incorrect observations to her environment. More specifically, we assume that the agent has n sensors, and divide the visible part of the environment into n-tuple so that the i-th ($i < n$) sensor perceives the i-th element of the visible part of the environment. As the agent may have faulty sensors, we distinguish what the agent sees or perceives from the visible part of the environment. For convenience, we call the visible part of the environment the *accessible state* of the agent through out this paper.

Given an accessible state (l_0, \cdots, l_{n-1}), and the agent’s perception (l'_0, \cdots, l'_{n-1}), if for some $i < n$, $l_i \neq l'_i$, then the agent’s i-th sensor should be faulty.

Formally, we have the following definitions.

Definition 1 An extended *global state* is a triple (l_e, l_a, l'_a), where l_e is a local state for the environment, l_a a n-tuple representing an accessible state of the agent, and l'_a a n-tuple representing the agent’s perception to her accessible state.

Given an extended global state $g = (l_e, l_a, l'_a)$, we use $\text{Env}(g)$, $\text{Acc}(g)$, and $\text{Per}(g)$ to denote l_e, l_a, and l'_a, respectively. For every $i < n$, we denote the i-th elements of l_a and l'_a by $\text{Acc}_i(g)$ and $\text{Per}_i(g)$, respectively.

Intuitively, if $\text{Acc}_i(g) = \text{Per}_i(g)$, then the i-sensor gets the correct perception for the i-th attribute value of the environment. Let \mathbb{C}_g be the set of those $i < n$ such that $\text{Acc}_i(g) = \text{Per}_i(g)$.

For convenience, sometimes we still use “global states” for “extended global states” in this paper.

Definition 2 A perception system is a non-empty set of extended global states. An *interpreted perception system* consists of a pair (S, π), where S is a perception system and π is a valuation function such that, for every $g \in S$ and $p \in \Phi$, $\pi(\text{Env}(g), \text{Acc}(g))(p) \in \{\text{true}, \text{false}\}$.

A Logic of Knowledge and Certainty

In this section, we introduce a modal logic of knowledge and certainty, called *KC* logic. The semantics for *KC* logic is given by using the perception system model. In this semantics, we capture the notion of knowledge by distinguishing correct perceptions from incorrect ones, so that the agent knows φ iff the agent can judge φ from the correct part of her perceptions.
iff system properties that are known to her under the assumption of the correct part of her perceptions about the environment is perceived incorrectly by the agent at the current state. This means that those global states where the agent has the same perception as at the current global state, and all at-
ttribute values of which he is certain appear to be knowledge (\(C\phi\)).

Semantics

We now propose a kind of semantics to interpret the \(KC\) logic formulas in terms of interpreted perception systems. In the following, we define the satisfaction relation \(\models_{KC}\) between a formula and a pair of an interpreted perception system and an extended global state. We now check what are the valid formulas for semantics \(\models_{KC}\) and certainty holds at all statements \(\phi\), respectively. Similarly, \(l_i^+\) and \(l_i^-\) denote the falseness of statement \(2+2=4\) and that of \(2+3=5\), respectively. Finally, we assume that the environment has a unique local state, denote by \(e\).

We now define a perception system \(S_0\) as follows:

\[
S_0 = \{(e, (l_1, l_2), (l'_1, l'_2)) | l_i, l'_i \in \{l_i^+, l_i^-\} \text{ for } i = 1, 2\}.
\]

Let \(p_1\) and \(p_2\) be the primitive propositions, which represent statements \('2+2=4'\) and \('2+3=5'\), respectively. The valuation function \(\pi\) is such that, for every extended global state \(g = (e, (l_1, l_2), (l'_1, l'_2))\), and \(i = 1, 2\), \(\pi(e, (l_1, l_2))(p_i) = \text{true} \iff l_i = l'_i\). Thus, we get a perception system \(I_0 = (S_0, \pi)\).

Let us consider the global state \(g_0 = (e, (l_1^+, l_2^+), (l'_1^+, l'_2^+))\), which indicates Alice is certain of \('2+2=4'\) and \('2 \times 2 \neq 4'\). It is easy to check that

- \(I_0, g_0 \models_{KC} K(p_1 \lor p_2)\), and
- \(I_0, g_0 \models_{KC} \neg Kp_2 \land \neg K\neg Kp_2\).

The latter indicates that the negative introspection axiom of \(S5\) does not hold in the interpreted perception system model.

Proposition 3 The following formulas that are valid with respect to \(\models_{KC}\):

- knowledge
 \[K(\varphi \Rightarrow \psi) \Rightarrow (K\varphi \Rightarrow K\psi)\]
 \[K\varphi \Rightarrow \varphi\]
 \[K\varphi \Rightarrow KK\varphi\]
- certainty
 \[C(\varphi \Rightarrow \psi) \Rightarrow (C\varphi \Rightarrow C\psi)\]
- knowledge and certainty
 \[K\varphi \Rightarrow C\varphi\]
 \[(C\varphi \Rightarrow CK\varphi) \land (\neg C\varphi \Rightarrow C\neg K\varphi)\]
 \[(C\varphi \Rightarrow CK\varphi) \land (\neg C\varphi \Rightarrow K\neg C\varphi)\]

From the proposition above, we can see that knowledge entails certainty and knowledge satisfies \(S4\) properties for semantics \(\models_{KC}\). The following example shows that \(S5\) does not hold for knowledge.

Example 4 Let us consider the scenario in the introduction section again. We assume Alice has two basic observations. The first observation is for getting the truth value of statement \('2+2=4'\), and the other for getting that of statement \('2+3=5'\). We use \(l_1^+\) and \(l_1^-\) to denote that statements \('2+2=4'\) and \('2+3=5'\) hold, respectively. Similarly, \(l_2^+\) and \(l_2^-\) denote the falseness of statement \('2+2=4'\) and that of \('2+3=5'\), respectively. Finally, we assume that the environment has a unique local state, denote by \(e\).

Let us consider the global state \(g_0 = (e, (l_1^+, l_1^-), (l'_1^+, l'_2^-))\), which indicates Alice is certain of \('2+2=4'\) and \('2 \times 2 \neq 4'\). It is easy to check that

- \(I_0, g_0 \models_{KC} K(p_1 \lor p_2)\), and
- \(I_0, g_0 \models_{KC} \neg Kp_2 \land \neg K\neg Kp_2\).

The latter indicates that the negative introspection axiom of \(S5\) does not hold in the interpreted perception system model.

Proof System

We now propose a proof system, denoted by \(\vdash_{KC}\), for characterizing valid formulas with respect to semantics \(\models_{KC}\). The proof system contains the axioms of propositional calculus plus those formulas in Proposition ??.

1. \(\vdash_{KC} \neg C\text{false} \Rightarrow (C\varphi \equiv \neg K\neg K\varphi)\)
2. \(\vdash_{KC} C\varphi \equiv CK\varphi\)

Note that the inference rules for modality \(C\) is unnecessary because we have \(\vdash_{KC} K\varphi \Rightarrow C\varphi\). Here are some interesting consequences of the proof system.

Proposition 5 The following hold proof system \(\vdash_{KC}\):

1. \(\vdash_{KC} \neg C\text{false} \Rightarrow (C\varphi \equiv \neg K\neg K\varphi)\)
2. \(\vdash_{KC} C\varphi \equiv CK\varphi\)
2. For each \(\pi \), we obtain the first part of the proposition.

\(K \phi \Rightarrow C K \phi \).

3. For every formula \(\phi \), we can prove, by induction on \(\phi \), that \((I, g) \models K \phi \text{ iff } (M, g) \models K \phi \).

The Completeness Result

In this section, we prove the completeness result about proof system \(\vdash_{KC} \). Because possible-worlds semantics provides a good formal tool for customizing a logic and has been well-studied for many years (??), we first build a bridge between interpreted perception systems and Kripke structures.

KC Kripke Structures

We now consider those Kripke structures corresponding to interpreted perception systems. We assume the standard definitions for Kripke structures. We refer the reader to (??) for a detailed exposition of the subject.

Definition 6 A Kripke structure \(M = (W, \pi, K, C) \) is called a KC Kripke structure if

- \(K \) is reflexive and transitive relation.
- \(C \subseteq K \).
- For all \(w_1, w_2, w_3 \in W \), if \(w_1 C w_2 \), then \(w_1 C w_3 \) iff \(w_2 K w_3 \).
- For all \(w_1, w_2, w_3 \in W \), if \(w_1 K w_2 \), then \(w_1 C w_3 \) iff \(w_2 C w_3 \).

The following lemma builds a bridge between interpreted perception systems and KC Kripke structures.

Lemma 7 A formula \(\phi \) is satisfiable with respect to \(\models_{KC} \) iff it is satisfiable by a KC Kripke structure.

Proof: We first show that a formula \(\phi \) is satisfiable in an interpreted KC system \(I \) with respect to \(\models_{KC} \), then it is satisfiable by a KC Kripke structure. Given an interpreted perception system \(I = (R, \pi) \), we define a KC Kripke structure \(M_I = (W, K, C, \pi') \) as follows:

1. \(W \) is the set of extended global states of \(I \).
2. For all \(w_1, w_2 \in W \), we identify relations \(K \) and \(C \) as follows:
 (a) \(w_1 K w_2 \) iff \(\text{Per}(w_2) = \text{Per}(w_1) \), and \(\text{Acc}(w_2) = \text{Acc}(w_1) \) for all \(i \in C_{w_1} \) and
 (b) \(w_1 C w_2 \) iff \(\text{Acc}(w_2) = \text{Per}(w_1) \) and \(\text{Per}(w_2) = \text{Per}(w_1) \).
3. \(\pi' \) is such that, for all \(w \in W \) and primitive proposition \(p \),
 \(\pi'(w)(p) = \pi(\text{Acc}(w), \text{Env}(w))(p) \).

For every formula \(\phi \), we can prove, by induction on \(\phi \), that \((I, g) \models K \phi \text{ iff } (M, g) \models K \phi \). Thus, if a formula is satisfiable by an interpreted perception system with respect to semantics \(\models_{KC} \), then it is satisfiable by a KC Kripke structure.

Now we show that if a formula is satisfiable by a KC Kripke structure \(\phi \), then it is satisfiable by an interpreted perception system with respect to semantics \(\models_{KC} \).

First, for every possible world \(w \in W \), we set a sensor for the agent, which tells the agent whether the current world is distinguishable from \(w \). For convenience, we enumerate the \(|W| \) many sensors, and for each \(w \in W \), we have a number \(i_w < |W| \) and let the \(i_w \)-th sensor of the agent be related to the possible world \(w \).

For every possible world \(w \in W \), we define an extended global state \(g_w = (l_e, l_a, l'_a) \) such that

1. \(l_e = w \).
2. For each \(w' \in W \), the \(i_{w'} \)-th element of \(l_a \) is \(1 \) if \(w K w' \), otherwise, \(0 \).
3. For each \(w' \in W \), the \(i_{w'} \)-th element of \(l'_a \) is \(1 \) if \(w C w' \), otherwise, \(0 \).

Let the set \(S \) of extended global states be \(S = \{ g_w \mid w \in W \} \). The valuation function \(\pi \) is such that, for every \(g_w \in S \) and primitive proposition \(p \), \(\pi(\text{Env}(w), \text{Acc}(w))(p) = \pi'(w)(p) \). Finally, we get the interpreted perception system \(I_M = (S, \pi) \).

Again, for every formula \(\phi \), we can prove, by induction on \(\phi \), that \((I_M, g_w) \models \phi \text{ iff } (M, w) \models \phi \). This completes the outline of the proof.

The Completeness Proof

We now present an important technical result, the soundness and completeness of the KC proof system.

Theorem 8 The KC proof system is sound and complete with respect to interpreted perception systems.

Proof: The soundness part of the proof is simple and obvious; we give only the proof for the completeness part, which is inspired by the completeness proofs in (?). By Lemma 7, we need only to prove that every formula consistent with the KC proof system is satisfiable in a KC Kripke structure.

First, we construct a special Kripke structure \(M' \), called canonical Kripke structure, as follows. Consider the set \(W \) of all maximal consistent sets of formulas. Given a \(w \in W \), define

\(w/X = \{ \phi \mid X \phi \in w \} \)

where \(X \) denotes one of the modalities \(K \) and \(C \).

Let \(M' = (W, \pi, K, C) \) be a Kripke structure, where

\(W = \{ w : w \text{ is a maximal consistent set} \} \)
\(\pi(w)(p) = \begin{cases} \text{true} & \text{if } p \in w \\ \text{false} & \text{if } p \notin w \end{cases} \)
\(X = \{ (w, w') \mid w/X \subseteq w' \} \),

where \(X \) denotes one of \(K \) and \(C \).
We can show as in the completeness proof for standard normal modal logics, by induction on the structure of \(\phi \), that for all \(w \) we have that

\[
(M^c, w) \models \phi \iff \phi \in w.
\]

Finally, we can prove that the Kripke structure \(M^c \) is a \(KC \) Kripke structure. This completes the outline of the proof.

Several Classes of Perception Systems

The notion of knowledge captured in the interpreted perception model satisfies \(S4 \) settled by (\?). Moreover, for those agents without any faulty sensor, the interpreted perception system model degenerates into the interpreted system model, and the knowledge modality is \(S5 \) valid. In this section, we present several specific classes of perception systems, which are related to some influential epistemic logics between \(S4 \) and \(S5 \).

Definition 9

Let \(S \) be a perception system.

1. We say that \(S \) is directed, if for all \(g \)-undistinguished global states \(g_1 \) and \(g_2 \) in \(S \), there is a global state \(g_3 \) in \(S \) that is both \(g_1 \)-undistinguished and \(g_2 \)-undistinguished.

2. \(S \) is called connected, if for all \(g \)-undistinguished global states \(g_1 \) and \(g_2 \) in \(S \), we have that \(Cg_1 \subseteq Cg_2 \) or \(Cg_2 \subseteq Cg_1 \).

Clearly, \(S \) is directed if connected. Moreover, in the case where \(S \) is finite, the directedness of \(S \) means that for every global state \(g \), there is a \(g \)-undistinguished global state where the agent has most correct observations.

Let \(\vdash_{KC+\delta} \) and \(\vdash_{KC+\varepsilon} \) denote the proof systems resulting from \(\vdash_{KC} \) by adding formulas \(\neg K \neg \varphi \Rightarrow K \neg \varphi \) and \(K(\varphi_1 \Rightarrow \varphi_2) \Rightarrow K(\varphi_1) \vee K(\varphi_2) \Rightarrow K(\varphi_1) \), respectively. It can be proved that Proof system \(\vdash_{KC+\delta} \) (\(\vdash_{KC+\varepsilon} \)) is sound and complete with respect to those interpreted perception systems where the underlying perception systems are directed (connected).

Let us consider one more specific class of perception systems.

Definition 10

A perception system \(S \) is called \(C \)-serial one if for every \(g \in S \), there is \(g' \in S \) such that \(Acc(g') = Per(g) \) and \(Per(g') = Per(g) \).

As we assume that the agent is not aware of her faulty sensors, the agent thinks of a global state possible iff the agent’s accessible state in the global state is the same as her perception. Therefore, the \(C \)-seriality guarantees that there is always a global state that the agent thinks of possible.

Because the agent has no incorrect observation in a possible global states guaranteed by the \(C \)-seriality, we can see that the \(C \)-seriality implies the directness for any perception system.

Let \(\vdash_{KC+D\varepsilon} \) denote the proof system resulting from \(\vdash_{KC} \) by adding \(\vdash_{KC+D\varepsilon} \neg C\text{false} \), where \text{false} is proposition of the form \(\neg p \land p \) for some primitive proposition \(p \). We can get that proof system \(\vdash_{KC+D\varepsilon} \) is sound and complete with respect to interpreted \(C \)-serial perception systems.

It is interesting to note that in proof system \(\vdash_{KC+D\varepsilon} \), the modality \(C \) can be eliminated by \(\vdash_{KC+D\varepsilon} C\varphi \iff \neg K \neg K \varphi \) (recalling Proposition 5). Moreover, the resulting proof system is just \(S4.2 \).

On the other hand, if we put \(C\text{false} \) into proof system \(\vdash_{KC} \), then each formula of form \(C\varphi \) can be replaced by a tautology like \(\neg C\text{false} \), and hence proof system \(\vdash_{KC} \) degenerates into the standard epistemic logic \(S4 \). Similarly, proof systems \(\vdash_{KC+\delta} \) and \(\vdash_{KC+\varepsilon} \) may degenerate into the standard epistemic logics \(S4.2 \) and \(S4.3 \), respectively.

Related Work

This work is more or less related the issues of awareness (\?), uncertainty (\?), and plausibility (\?). However, as this paper hinges on a grounded semantics for epistemic logics other than \(S5 \), we mainly discuss the related work on epistemic logic and computationally grounded semantics.

Logics of knowledge and certainty

Epistemic logicians have suggested a list of modal logics as epistemic ones. These logics include \(S4 \) (\?), \(S4.4 \) (\?), \(S4.2 \) (?), and \(S4.3 \) (?). They assume some features (axioms) of the logical behavior of epistemic concepts and then construct various kinds possible world semantics that satisfy the pre-assumed feature (axioms). However, the aim of these logics is not to provide a concrete computational approach to evaluating statements in epistemic logic, though philosophical intuitions have been argued subtly for the underlying possible world semantics.

The notion of certainty used in this paper has been first introduced by Lamarre and Shoham (\?) and similar notions are Lenzen’s strong belief (\?) and Voorbraak’s rational belief (\?). Lenzen (\?) lists many of the syntactic properties of the notions of knowledge, belief and certainty (i.e., strong belief), but it does not provide any semantics. Lamarre and Shoham (\?) provide a model theory of knowledge, belief and certainty, with respect to which all Lenzen’s collection of axioms are valid; however, their logic is also based on possible world semantics as standard epistemic logics.

Computationally grounded logics

Besides the interpreted system model, the agent-environment system model (\?) is an influential computationally grounded model in the field of agent theory. A multi-modal logic, called \(VSK \) logic is established as a computationally grounded logic, which enables us to represent what is visible of the environment to individual agents, what these agents actually perceive (see), and what the agents actually know about the environment. The perception operator \(\mathcal{S} \) in \(VSK \) logic corresponds to our certainty operator \(C \). Intuitively, their interpretation of \(\mathcal{S}\varphi \) is that the perception received by the agent carries the information \(\varphi \); while \(C\varphi \) in this paper means that, according to the received perception, the agent feels certain of \(\varphi \). Thus, Wooldridge and Lomuscio’s notion of perception is an external one, while ours is internal. Another feature of \(VSK \) logic is that \(S5 \) system is adopted for the three modalities.
The deontic interpreted system model (9) is also an interesting extension of the interpreted system model. The basic idea is to label an agent’s accessible state as red ones or green ones. It can be related to the perception system model, since the so-called red states may be thought of as those states where the agent get the wrong perception and hence may behave incorrectly.

The interpreted KBC system model is a natural computationally grounded model of agency (9). A logic of knowledge, belief and certainty, called the KBC logic, is established based on this model. Both the interpreted KBC system model and the interpreted perception model share the same idea that the sensors of an agent may become inaccurate and thus the visible part of the environment (or the agent’s accessible state) may differ from the perception received by the agent. However, the two models are significantly different in that the agent’s perception, in the interpreted perception model, is divided into an n-tuple, which enables us to express which parts of the agent’s perception are corrected. Moreover, the statement $K \varphi$ in the interpreted KBC system model essentially means that the agent should know if she did not have any faulty sensor, while in the interpreted perception system model, φK indicates that the agent can deduce φ from her correct parts of perception (and her knowledge about the system).

Conclusions

We have extended the interpreted system model, and provided a computationally grounded model, called the interpreted perception system model, to those epistemic logics other than S5. The key idea is to assume that an agent may have incorrect observations to her accessible state, and we deduce her knowledge by using only her correct parts of the observations. Based on the interpreted perception system model, we have established a logic of knowledge and certainty, which may degenerate into the standard epistemic logic $S4$ when we eliminate modality C. We have also define several classes of perception system models, with respect to which, the related proof systems have been shown to be sound and complete, respectively. When only modality K is considered, the related proof systems become $S4.2$ and 4.3, two influential epistemic logics in the philosophic community.

We are currently working on those temporal epistemic logics, of which the epistemic dimension is other than S5. It is very natural to introduce temporal operators only if we consider systems of runs instead of those of extended global states.

Acknowledgement

This work was supported by National Natural Science Foundation of China grants 60496327, 60725207 and 60473004, 973 Program of China under grant 2005CB321902, and the Australian Research Council grant DP0452628.

References

