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Abstract 

Cluster analysis of gene expression data is useful for 
iden- biologically relevant groups of genes. 
However, finding the correct clusters in the data and 
estimating the correct number of clusters are still two 
largely unsolved problems. In this paper, we propose a new 
clustering framework tbat is able to address both these 
problems. By using the oneprototype-take-onecluster 
(OFTOC) competitive learning paradigm, the proposed 
algorithm can 6nd natural clusters in the input data, and the 
clustering solntion is not sensitive to initialization. In order 
to estimate the number of distinct clusters in the data, an 
over-clustering and merging strategy is pmposed. For 
validation, we applied the new algorithm to both simulated 
gene expression data and real gene expression data 
(expression changes during yeast cell cycle). The results 
clearly mdicate the effectiveness of our method. 

1. Introduction 
Advances m the DNA microarray technology have enabled 
biologists to monitor thousands of genes simultmeonsly 
and measure the dole-genome mRNA abundance m the 
cellular process under various experimental conditions [I- 
31. A large mount of gene expression prosle data bas 
become available m several databases. The challenge now 
is to make sense of such massive data sets and this requires 
the development ofpowerful data analysis tools. 

A crucial step m the analysis of gene expression data is the 
detection of gene groupings that manifest similar 
expression patterns 14-81, Most current metbods for gene 
expression data analysis rely on the use of clustering 
algorithms [9-121. The fundamental biological premise 
underlying these approaches is that genes that display 
similar expression patterns are -regulated and may share 
a common function. 

Recently, a new competitive learning paradigm, called the 
oneprototype-take-one-cluster (OPTOC), has b e u  
proposed 1131. In conventional competitive learning, if the 
number of clusters is less than the natural clusters in the 

data, at least one of the prototypes would win data from 
more than one cluster. In contrast, OPTOC would win data 
from only one cluster, while ignoring the data fmm other 
clusters. The OPTOC based learning strategy has the 
following two main advantages: (1) It can find nahual 
clusters, and (2) The h a l  partition of the dataset is not 
sensitive to initiaiization. 

In this paper, we propose a new clustering framework 
based on the OPTOC leaming paradigm for clustering gene 
expression data. The new algorithm is able to identify 
nahual clusters m the dataset as well as pmvides a reliable 
estimate of the number of distinct clusters in the dataset. 

2. The OPTOC Framework 

In cluster analysis, we are generally interested in 
i d e n w g  regions of high data concentration in the data 
space. These regions of high data concentration form 
natural clusters in the dataset. Ideally, a clustering 
algorithm should be able to determine the number of 
natural clusters and their locations m the data space 
automatically. 

However, most conventional clustering algorithms require 
the prior speciilcaiion of the correct number of clusters. In 
conventional clustering, if the number of prototypes is less 
than that of the natural clusters in the dataset, there must be 
at least one prototype that wins patterns fmm more than 
two natural clusters. Even if the correct number of clusters 
is g ivq  there is no guarantee that the clusters found do 
correspond to the natural clusters m the dataset. The 
implications of not finding natural clusters are that: (i) a 
natural cluster might be erroneously divided into two or 
more classes, or worst stiU, (U) several natural clusters or 
prut of them are erroneously group mto one class. Such 
behaviors obviody lead to wmng inferences about the 
data. 

In contrast, the one-prototype-takedne-cluster (OPTOC) 
idea [13] allows one prototype to clmacterize only one 
natural cluster in the dataset, regardless of the true number 
of clusters in the data. The OPTOC clustering h e w o r k  is 
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achieved by the introduction of a dynamic neighborhood 
A, for each prototype 4 ,  such that patterns (i.e., data) 
inside the neighbrhocd of P, contribute more to its 
learning than those outside. Given an input panem x , and 
assume that P, is the winning prototype f a  x based on the 
minimum distance criterion, the neighborhood A, is 
updated by 

A: = A , + ( x - A , ) . Q ( ~ , A , , x ) . ~ ,  /n4 (I) 

where 0 is a switching function given by 

and 

n; =n4 + 6 i * ~ ( e , ~ , x )  (4) 

with n4 initialized to zero. Then, the winning prototype 

P, is updated by 

e: = P i + ( x - P i ) . S i  ( 5 )  

We can see from the a b v e  equations that if x is well 
outside the neighborbd of e. , i.e., I Pjx 1>4 P, Ai I , it 
would have very little iniluence on the learning of P, . On 
the other hand, if x is well inside the neighbrhood of e. , 
i.e., I P,xl<<l C A ,  I, both Ai and P, would shift toward x 
according to (1) and (9, and would have a large 
learning rate 6,.  

0.5 I I 

Fig. 1: One prototype takes m e  cluster ( O ~ O C )  and iwores the 
other hw clusters. 

During learning, the neighborhood I P, A, I will decrease 
monotonically. When 1 <A,  I is less than a tiny qwntity 
E ,  P, would eventually settle at the center of a natural 
cluster and the learning stops. Thns, each prototype will 
locate only one natural cluster and ignore other clusters. 
Fig.1 shows an example of learning based on the OPTOC 
paradigm. In this figure, PI finally settles at the center of 
S3 and ignores the other two clusters S1 and S2. 

3. Self-Splitting and Merging 
Competitive Clustering 

When the number of clusters in the input space is more 
than one, additional prototype needs to be generated to 
search for the remaining clusters. Let Cj denotes the 
center of all the panems that P, wins. The distortion 
I p.Cj I measures the discrepancy between the prototype 
pr found by the OPTOC learning process and the actual 
cluster structure m the dataset. For example, in Fig.1, C ,  
would be located at the center of the three clusters S1, S2 
and S3 (since there is only one prototype, it wins all input 
panems), while pr eventually settled at the center of S3. 
After the prototypes have all settled down, a large I PjCi I 
indicates the present of other natural clusters in the data. A 
new prototype would be generated from the prototype with 
the largest distortion when this distortion exceeds a certain 
threshold. Ideally, if a suitable threshold can be given, the 
cluster splitting process would terminate when all natural 
clusters in the dataset are found. Unforhmately, due to the 
high dimension and the complex structure exhibit by the 
gene expression data, the determination of a suitable 
threshold to find all natural clusters is very diflicnlt in 
practice. 

In order not to miss any ~ h u a l  cluster in the data, we 
over-cluster the dataset. After each OFTOC learning, the 
cluster with the largest variance is split, until the desired 
number of clusters is reached. When cluster splitting 
occurs, the new prototype is initialized far away from its 
mother prototype to avoid unnecesmy competition 
between the two. The location of the possible split, 4. , is 
also learned dynamically. Initially, 4. is set to be equal to 
the prototype to which it is associated with. Then, each 
time a new panem x is presented, the R, of the winning 
prototype pr is updated as follows, 

Rz* = R i  + ( x - R j ) . o ( ~ . , x , R i ) . p i  Inq (6) 

where 
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(7) 

Note that R, always hy to move away h m  . M e r  a 
successful split, (A,  , R, ) of every prototype P, are reset 
and the OF’TOC leaming loop is started again. 

With over-clustering, it is possible that a natural cluster in 
the dataset is split into two 01 more clusters. Thus, some 
clusters would be visually similar and should be merged 
together. The aim of the merging is to produce final 
clustering result in which all clusters have distinct patterns. 

Let us assume that the clusters in a dataset have Gaussian 
dislTibutions, and that the probability density function @df~ 
of a distinct cluster is unimodal. If two clusters are well 
separated their joint pdf would be bimodal. When two 
clusters are close to each other to the extent that their joint 
pdf form a unimodal shucture, then it would be reasonable 
to merge these two clusters into one. Let C, be the centers 
of cluster i and U, be its standard deviation. If 

the two clusters should be merged into one. When two 
clusters are merged into one, the mean and standard 
deviation of the merged cluster is re-calculated. The 
merging process is repeated, untd no more clustm can be 
merged together. 

4. Experiments 
In this section, we verify the performance of the proposed 
SSMCL algorithm using both simulated and real 
expression data. We titst use simulated gene expression 
profiles, where the correct solution was known a priori, to 
validate the effectiveness of ow algorithm in tinding 
natural clusters and the correct number of clusters. T%en 
we validate the algorithm by clustering the yeast cell cycle 
data set provided by Cho et al [I41 and examine the 
biological relevance of the clustering results. 

4.1 Simulated Data 

We randomly generated 20 seed patterns of gene 
expressions with 15 time points each. Then each pattern 
was transformed into a cluster by generating many profiles 
kom the pattern. Each cluster contains 30 to 165 profiles, 
with the total number of profiles in the dataset equal to 
1785. For each cluster, the data along each time point k 
were set to have a standad deviation of 0.15. The 
simulated data is shown in Fig.2. 

Fig2 1785 randomly generated tempmal pattws of gene 
expression gmuped in 20 clusters. Each cluster is represenfed by 
the average profile palem in the cluster (dot line). Solid lines 
indicate &e one staudard deviation levels of each expression 
about the mesa C d n  denotes duster #m containing n individual 
pmfles. 

We want to verify that the OPTOC clustering framework 
can tind all the natural clusters in the simulated dataset, 
independent of initialization. The splitting is stopped when 
20 clusters have been generated. Fig3 shows the clustering 
results. We found that the proposed OF’TOC based 
algorithm was successful in tinding all the natural clusters. 

Fig.3: Clustering result for the 1785 randomly generated temporal 
patterns of gene expression 

In the next experiment, we find out whether ow over- 
clustering and mer- strategy can merge similar clusters 
and stop at the exact number of clusters automatically, 
when the exact number of clusters in the data is not !mown. 
We set the number of clusters to 28. M e r  28 clusters are 
obtained, cluster merging is performed. T%e cluster 
merging process stopped automatically when exactly 20 
clusters were found and the results are shown in Fig.4. 
Correct Clustering of the data is also obtained 
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4.2 Biological Validation: Yeast Cell Cycle 
Data 

The yeast cell cycle data set has established itself as a 
standard for the assessment of newly developed clustering 
algorithm. 'Ibis data set contains 6601 genes, with 17 time 
points for each gene taken at 10-min intervals covering 
nearly two yeast cell cycles (160 min) [5]. The raw 
expression profiles are downloaded h m  
hnp://genomics.stanfordedu. Firstly, we eliminate those 
genes whose expression levels were relatively low and did 
not show significant changes during the entire time course 
by a variation filter witb criteria: (U) the value of 
expression profile at all 17 time points is equal to 01 greater 
than 100 (raw data units); (b) the ratio of the maximum and 
the minimum of each time-course expression profiles is at 
least equal to or greater than 2.5. 1368 gene expression 
profiles passed the variation filter and were normalized to 
be between 0 and 1. 

Fig.5 shows the resulting 22 clusters after over-clustering 
(number of clusters set to 30) and merging. The result 
shows no apparent visual similarity between clusters. We 
also checked the resulting 22 clusters using biological 
howledge. We used gene expression data tiom the study 
of Cho et al [14], where 416 genes have been intqreted 
biologically and 110 genes passed OUT filter. Those gene 
expression profiles include five fundamental patterns that 
correspond to five cell cycles phases: early G1, late G1, S, 
G2, and M phase. In Fig.6, we show the five clusters that 
contain most of the genes belonging to these five different 
patterns. It is obvious that these five clusters correspond to 
the five cell cycle phases 

Fig.5: The final clustering results for the yeart cell cycle data. 22 
distinct clusters are obtained 

Fig6 Five fuodamental patterns taken from Fig5 that correspond 
to the five cycle p b .  On each subplot, Iilled cycles "presenf 
the average pattern fm all protiles in the cluster. The genes 
presented are d y  those that belong to this cluster and are 
biologically characterized and assiped to a specific cell cycle 
phase ~ 4 1 .  

5. Conclusion 

Cluster analysis is an important tool in gene expression 
data analysis. In this paper, we have described a new 
clustering algorithm that is able to identify the natural 
clusters, and to estimate the Mlrect number of clusters, in a 
dataset in a systematic way. The ability to finding ~ t u r . 4  
clusters in a dataset is based on the OPTOC paradigm, 
which allows one prototype to characterize only one 
natural cluster in the dataset, regardless of the number of 
clusters in the data. In order to correctly estimate the 
number of natural clusters in a dataset, we proposed an 
over-clustering and merghg strategy. The over-clustering 
step minimizes the chance of missing any natural clusters 
in the data, while the merging step ensures that the final 
clusters are all visually distinct from each other. The 
effectiveness of the algorithm is verified by clustering 
simulated gene expressions data and real gene expressions 
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profile data for which the biological relevance of the 
results is h o w .  
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