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Abstract 

The Fourier transform is one of the most important 
transformations in image processing. A major 

component of this influence comes from the ability to 

implement it efficiently on a digital computer. This 

paper describes one such efficient implementation and 

discusses its implications to digital technology as well 
as biological vision. The significance of the fast 

Fourier transform (FFT) presented in this paper is that 

it provides geometrical meaning to the regrouping of a 

Cooley-Tukey type FFT. 
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1. Introduction 

The Fourier transformation is one of the most 

important transformations in image processing in 

particular and signal processing in general. Its origins 

date back to 1807 when Jean Baptiste Joseph Fourier 

defined the notion of representing a function as a 

trigometric series. Until the invention of the digital 

computer, the Fourier series was a purely analytic tool. 

However, with the development of the fast Fourier 

transform the notion has become a useful 

computational tool. Today, most of us use fast Fourier 

transforms everyday without even knowing it as this 

technology is employed in digital cameras, disc drives 

and even our cell phones [1].  

Since its original inception in the early 1960’s, the 

FFT has undergone a multitude of mutations many of 

which have resulted in patents. The motivation behind 

the development of these FFT variants is the 

commercial advantage gained by achieving rapid 

creation of a signal and a rapid reconstruction of the 

original signal from it.  

 This paper describes another variation of the FFT 

named SHIA-FFT, which is of type Cooley-Tukey and 

is particular to a mathematical structure known as 

Spiral Architecture originally described in [2], and 

later extended by He and Wu [3]-[4]. The SHIA-FFT 

algorithm employed on an image represented on either 

a hexagonal lattice or a rectangular lattice builds the 

Fourier transform and its inverse in incremental steps 

of low pass frequencies to high pass frequencies. This 

property has implications to biological vision as well 

as technology and is discussed in this paper.  

Middleton [5], described a fast Fourier Transform, 

named HIP-FFT, on an image represented on a 

hexagonal lattice. The paper makes two important 

contributions to the theory of FFTs: 1) it provides 

empirical evidence for the quality of the Fourier 

transform when performed on a hexagonal lattice; 2) it 

provides the mathematical motivation underpinning the 

FFT on the hexagonal lattice. SHIA-FFT distinguishes 

itself from HIP-FFT in one regard. HIP-FFT employs a 

third coordinate system, as defined in [5], to relate the 

addresses on the hexagonal lattice to the re-grouping 

process. The SHIA-FFT achieves this regrouping with 

the use of a transformation from Spiral Honeycomb 

Image Algebra.  

2. Spiral Honeycomb Image Algebra 

(SHIA)  

The distribution of photoreceptors on the primate’s 

retina and the distribution of cells in the human cortex 

[6]-[7] are highly suggestive of primitive image 

transformations associated with the vision process. A 

natural data structure that emerges from geometrical 

considerations of this distribution, named Spiral 

Honeycomb Mosaic (SHM), is outlined in detail in [2]. 

The underlying geometry of the SHM is a hexagonal 

lattice, with each hexagon having a designated positive 

integer address. The numbered hexagons form clusters 

of super-hexagons, of size 7
n
, these self-similar super-

hexagons tile the plane in a recursively modular 

manner. A super-hexagon of size 7
n
 and its 

concomitant addressing scheme is seen in Figure 1a.  
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1a.

1b.

    Figure 1: 1a) displays the address space of a 49 
    hexagon SHM; 1b) results from applying M10 of 
    SHIA to Figure 1a. 

The addressing scheme of the SHM has associated 

with it a collection of transformations named Spiral 

Honeycomb Image Algebra (SHIA).  These 

transformations form a powerful mathematical 

structure known as a Euclidian ring, which possesses 

almost all the algebraic properties normally attributed 

to the real and complex number systems. SHIA 

emerges from the two algebraic operations defined on 

the SHM, Spiral Addition and Spiral Multiplication. 

Each of these algebraic operations defines a 

transformation on the address space of SHM. When a 

super-hexagon also has associated with it a discrete 

sampling of a 2-dimensional signal, the algebraic 

operations take on a geometrical interpretation of the 

sampled signal. The spatial information embodied in 

the signal is captured algebraically by the operations. 

Spiral Addition is associated with translation of the 

signal and Spiral Multiplication is associated with the 

dual transformations of rotation and scaling. A critical 

property of these transformations is that no information 

of the originally sampled signal is ever lost under the 

action of the transformations. An explanation for this 

property and a full discussion of the SHIA is found in 

[2].

The transformation from SHIA pertinent to the fast 

Fourier transformation as discussed in this paper is 

M10 and its inverse. The relation between the address 

space of Figure 1a and 1b is exactly that of M10.  

Figure 2 (a-d) displays the effect of M10 when applied 

to an image represented on the SHM.  Each of the four 

images can be derived from successive applications of 

either M10 or its inverse to any of the other images 

displayed in the figure. In other words, M10 and its 

inverse perfectly recover pixel information of the 

originally sampled image from any of its 

transformations.  

2a.

2b.
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2c.

2d.
       

       Figure 2. Displays four transformations of an 
       image represented on a SHM of size 2401 
       pixels.  2a) displays the result of M10 applied 
       to 2d;  2b) displays result of applying M10 to  
       2a;  2c) displays the result of applying M10 to 
       2b;  2d) displays the input image and results 
       from the application of M10 to 2c. 

Another property of M10, which is observable in 

the images displayed in Figure 2, is that each 

transformation assembles the image at a unique 

resolution. Figure 2a represents the image at multiple 

views of the image at the lowest possible non-trivial 

resolution. That is, the image is composed of 343 sub-

images, each of which is composed of seven equally 

spaced pixels from the input image. If M10 is applied 

to this image, the resultant image is that displayed in 

Figure 2b, one that is composed of 49 sub-images of 

size 7
2
. Successive applications of M10 reduce the 

number of sub-images by a factor of seven and 

increase the size of each sub-image by the same factor. 

Once the image of Figure 2d is achieved, (one sub-

image of size 7
n
), a further application of M10 results 

in the image displayed in Figure 2a. In this particular 

case, the modular aspect of the M10 has produced the 

identical effect of applying inverse M10 to Figure 2b. 

It is exactly this lossless recovery property and the 

particular partitioning property of M10 that facilitates 

the efficient re-grouping of the computations of the fast 

Fourier transform.  

3. Fast Fourier Transform in SHM  

The fast Fourier transform distinguishes itself from 

the Fourier transform, commonly known as Discrete 

Fourier Transform (DFT) by the order in which the 

computations of the complex arithmetic operations, 

addition and multiplication, are performed. The DFT is 

defined as:  

F (u) = 

−

=

1

0

)mod*()(
n

x

nuxexf
where u = (0,.…,n-1)

     
(1) 

Where f(x) represents the input signal as a complex 

number and e
(x*u mod n)

 represents the (x*u mod n) 

address of n equally spaced complex numbers on the 

unit circle of the complex plane.  

A casual analysis of Equation 1 reveals that DFT is 

of order O(n
2
) in the number of complex arithmetic 

operations performed.  In contrast, a Cooley-Tukey 

type fast Fourier transform re-groups the complex 

operations to achieve an O(nlog(n)) algorithm.   The 

SHIA-FFT algorithm is of type Cooley-Tukey and is 

described informally in Section 3.1.  Section 3.2 

provides a more formal presentation of the algorithm. 

3.1. Informal Statement of Algorithm 

Initially, the input signal is represented on an SHM 

of an appropriate size, say 7
4
. Denote this collection of 

values as f(x). The discrete unit circle of size seven 

from the Complex plane is mapped onto another SHM. 

Denote the collection of these values as u(x). Then a 

three-step process, localization, discrete Fourier 

transform and globalisation are applied at each of the 

log(n) levels.  

Localization is achieved by applying M10 to f. The 

result is to transform the original spatial domain into 

that which is observable in Figure 2a. In other words, 

the effect is a re-grouping of the spatial domain at the 

lowest resolution. The standard DFT is applied to each 

of the 7
(n-1)

 sub-images of size 7.  
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3a. Level 0   

3c. Level 2 

      Figure 3. Displays the four stages of the Fourier 
      transform of the image displayed in 2d.   
      3a) displays the result on completion of level 0; 
      3b) displays result on completion of level 1;  
      3c) displays result on completion of level 2;  
      3d) displays the completed transform level 3. 

The lowest level of the FFT is complete as seen in 

Figure 3a.  

At Level 1, the localization is achieved by applying 

M10 to both the resulting frequency domain from the 

previous level and the unit circle of size 7
2
. The effect 

on this transformation on the new spatial domain is a 

re-grouping, in clusters of seven, at the next higher 

level of resolution. The effect of M10’s application to 

the new unit circle is a re-grouping, in clusters of 

seven, of the unit circle into seven clusters, each of 

which contains seven addresses of equal and maximal  

3b. Level 1 

3d. Level 3 

spacing on the unit circle. At this stage, the localization 

process is complete and the DFT on each of the seven 

clusters is performed. In order to complete the three-

step process at this level, the globalisation process is 

then performed. This amounts to applying the inverse 

of M10 on each super-hexagon of size 49. The effect of 

this transform is a re-grouping of the frequency domain 

into consecutive super-hexagons at the second lowest 

resolution; sub images of size 49. This result can be 

seen in Figure 3b.  

At each of the subsequent levels, this same three-

step process of localization, discrete Fourier transform 

and globalisation is performed. The results at each 

level achieve the Fourier transform at the next higher 

level of resolution, the results of which are presented in 

Figure 3c and 3d.   

A formal presentation, in pseudo code, of the 

process described above follows: 
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3.2. Formal Statement of Algorithm 

DATA:  

Integer base    // base of the SHM 

Integer imageSize  // an integer power of base 

Integer curSubImageSize    //current 

Integer curNoOfSubImages   //current 

Array of complex numbers: f, F, unitCircle, u 

START 

SET the Input image, as an array of size imageSize  

SET curSubImageSize = 1  

SET curNoOfSubImages  = imageSize 

//initialise spatial domain 

INIT  f  as an array of size imageSize  

/initialise frequency domain 

INIT F with the input image     

WHILE  curSubImageSize < imageSize 

    curSubImageSize = base * curSubImageSize  

    curNoOfSubImages  = imageSize/curSubImageSize  

    f = localiseSpatialDomain ( F )  

    F = performDFTLocally ( f )  

    F = globaliseFrequencyDomain ( F )  

    RETURN with F 

ENDWHILE 

END

METHOD localiseSpatialDomain ( F )  

     CALL M10( F )                   
RETURN with f 

METHOD performDFTLocally ( f  )  

     unitCircle =  createUnitCircleSize (

                                                   curSubImageSize )   

     u = M10( unitCircle)  

     SET Integer subImage = 0      

     WHILE subImage < curNoOfSubImages  

         Integer address =subImage*curSubImageSize  

         WHILE (address < curSubImageSize)   

              dFT( f[ address ] ), u[ address ] )  

               address = address + base  

         END WHILE 

INCREMENT subImage 

     END WHILE 

RETURN with F 

METHOD globaliseFrequencyDomain ( F )  

    SET Integer address = 0 

    SET  Integer subImage = 0  

    WHILE  subImage < curNoOfSubImages  

         F[address] = inverseM10( F[ address ] )   

INCREMENT subImage  

         address = address + curSubImageSize 

   END WHILE 

RETURN with F 

METHOD M10( a  )  

    RETURN with a            // M10 applied to a  

METHOD InverseM10 ( a )      

    RETURN with a            // Inverse M10 applied to a  

METHOD createUnitCircleSize ( Integer n )  

    RETURN with array of n equally spaced  

                     complex numbers from the unit  

                     circle  

METHOD dFT ( f, u )  

    SET Integer x = 0    

    WHILE x < base   

             SET Complex sum = 0  

             SET Integer k = 0 

             WHILE k < < base   

                       sum = sum +  (f[x] * u[I*x % base] )  

                       INCREMENT k

                       F[x] = sum   

             END WHILE        

INCREMENT x

     END WHILE 

4. Implications of SHMFFT to biological 

vision and technology 

Although the fast Fourier transform on the SHM as 

described in this paper, is a O(nlog(n)) algorithm, and 

thereby no more efficient than the other Cooley-Tukey 

type FFT algorithms, it is significant to researchers in 

both the image processing and biological vision 

communities. To the former community, it provides 

intuitive meaning to what was previously dismissed as 

just a clever re-grouping of computation in the Fourier 

Domain. In particular, the fact that the application of 

M10 at various stages in the production of the 

frequency domain reveals clearly the relation between 

the resolution information captured in the frequency 

domain to each level of the log(n) levels of 

computation.  

There are implications of M10 to the biological 

vision community. The M10 transform has been used 

to describe the patterns of connectivity seen in the 

primary visual cortex [8]. In particular, the transform 

describes an isomorphism between the short- and long-

range intrinsic connections. The M10 transform has 

likewise been used to explain the relationship between 

the retinotopic input mapping of the primary visual 

cortex and the local mapping of orientation preference 

and spatial frequency selectivity in the upper layers of 

the primary visual cortex [8]-[9]. 
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5. Conclusion

This paper has presented a Cooley-Tukey type fast 

Fourier transform applied to signals representable on a 

hexagonal lattice. The key to the algorithm presented is 

a transformation, M10, from the Spiral Honeycomb 

Image Algebra. The algorithm is computationally 

comparable to other FFTs. However, the deeper 

significance of the algorithm results from the intuitive 

meaning that it brings to the re-grouping process of the 

class of FFT algorithms.  
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