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ABSTRACT
Remote monitoring of coastal conditions in locations of
high public usage is a fast growing application of informa-
tion technology. Remote mounted CCD camera systems
provide a relatively cheap and potentially rich source of in-
formation on the state of the near-shore beach zone. The
present paper presents a non-technical overview of a sys-
tem for appropriate feature extraction and integration with
other sources of weather and wave data for the purpose of
assessing and predicting beach safety conditions using neu-
ral network based models. The feasibility of combined im-
age processing and feature extraction routines for providing
real-time input to neural network models of beach safety is
demonstrated.
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1 Introduction

1.1 Optical Coast Monitoring

Advances in video image analysis techniques allow for
the cost-effective, long-term data collection of near-shore
hydrodynamic processes. In recent years, a wide range
of algorithms for generating measurements from the
temporal and spatial dynamics of video pixel arrays have
been reported. Successive collections of arrays of pixel
intensities (either single pixel, or cross-shore or long-shore
array) are presented as atimestack. The ARGUS system
[1] for optical monitoring is perhaps the most well known
approach, and it demonstrated the utility of video-based
methods for measurement of a range of processes, such
as wave period and direction [7]. Recent work has
demonstrated the utility of video for monitoring long-shore
currents [4], wave celerity and near-shore bathymetry [21]
and near-shore bar behaviour [23].

In order to obtain quantitative information from the
video stream, the reference frames of the image must be
related to the actual beach geography. Holland et al [7]
demonstrate that this may be accomplished given the tech-

nical parameters of the camera (e.g. lens distortion), as
experimentally measured. Ground Control Points (GCP’s)
should also be placed and given three-dimensional coordi-
nates in the beach reference frame to enable solving the
problem of mapping of the geography to the reference
frame.

Video-based methods have been applied to mea-
surements of: sandbar morphology [7], near-shore fluid
processes, sand bar length scales, foreshore topography
and drifter motions [7], [8]; intertidal beach profiles
[18]; water depth and currents [17]; wave direction [5];
near-shore bathymetry [2], and examination of swash flows
using particle image velocimetry (PIV) [8].

1.2 Assessment of near-shore safety

A fact sheet produced by the World Health Organization
lists drowning as the second leading cause of unintentional
injury death after road traffic injuries. Tourists were noted
to be at unacceptably high risk of drowning. A study of
drownings in Australia [13] presents a figure of 32% of
non-boating related drownings occurring at the surf and
ocean with 18% comprising overseas tourists. Of the 88
tourists from 12 countries drowned in Australia during
1992-1997, 89% drowned in the ocean. 61% are noted
as drowning at surfing beaches or elsewhere in the ocean.
Short [20] ranked Northcliffe, Southport, Surfers Paradise
and the Gold Coast Spit as among some of Queensland’s
most hazardous beaches.

The identification of the potential for rip current
formation and other hazardous situations can assist author-
ities to manage resources related to public safety, while
assisting with beach management and erosion control
issues. The development of automated methods for moni-
toring near-shore conditions is important as both a research
methodology, and for the public benefit. Automated data-
collection techniques can improve real-time predictive
capabilities for near-shore circulation and morphology
[22].

Australian national bodies have noted the importance



of identifying hazards and risk in the coastal zone through
integrating advanced technologies such as satellite, air-
borne and shore-based remote sensing. Other reports note
the importance of effective long-term monitoring of fluid
and sediment transport processes, breaking waves and
induced currents, sand-bar morphology, as well as bottom
boundary layers and associated turbulence [22].

There is obvious potential for using data generated
from video-based monitoring of the near-shore wave field
in order to predict concurrent and future beach safety. The
present study details a case-study of a beach monitoring
scenario with high- and low- altitude cameras. The
application of time-stack analysis to the raw pixel data
enables the detection of beach condition variables useful
for beach-state and safety predictions.

1.3 Intelligent techniques for prediction and
interpretation of video imagery

Intelligent techniques such as artificial neural networks
(ANNs) have emerged as powerful tools for many real-
world applications. ANNs have featured prominently in
the areas of coastal management, ocean engineering and
other environmental applications [11] [16]. In recent times,
ANNs have been frequently used for the purpose of pre-
diction and forecasting in the area of coastal/ocean pro-
cesses. Krasnopolsky and Chalikov [10] used ANNs for
to approximate for nonlinear interactions in wind wave
models. Lee [12] used a simple backpropagation ANN
trained on 69 tidal constituents to predict long-term tidal
levels. Aitkenhead et al. [15] proposed a novel ’local in-
teraction’ ANN-based method for time series prediction of
various variables in a stream (i.e. flow rate, temperature
etc.). They found that their technique outperformed the
commonly used backpropagation algorithm and simulated
annealing. Deo and Jagdale [14] used a traditional back-
propagation ANN for the prediction of breaking waves. For
training they used three inputs including deep-water wave
height, wave period and the seabed slope. Their network
had two outputs producing the breaking wave height and
the water depth at the time of breaking. The authors found
that using the ANN-based model, they obtained better pre-
dictions for the aforementioned variables than with tradi-
tional empirical schemes. Finally, Altunkaynak and Ozger
[3] presented a wave height prediction technique using per-
ceptron Kalman filtering. They used past measurements of
significant wave height and wind speed variables for train-
ing their model. It was then employed to predict significant
wave height values for future time intervals based purely
on wind speed measurements.

Another important area related to this project that
has benefited from neural-based techniques is that of ob-
ject detection and image analysis from still and video im-
ages. Schofield et al. [19] used ANNs for background

scene identification in video images for the counting of
persons. As an application for autonomous vehicle nav-
igation, Wohler and Anlauf [24] employed an adaptable
time-delay ANN to analyse complete image sequences for
the purpose of driver assistance through the detection of
overtaking vehicles. Ha et al. [6] have employed a neural-
based edge detector for vehicle detection and traffic param-
eter estimation in their image-based traffic monitoring sys-
tem. Finally, Kingston et al. [9] have employed a standard
feedforward ANN trained with the Levenberg-Marquardt
algorithm for providing estimates of sandbar location from
remote sensed video imagery. The data used to train their
network consist of simultaneous measurements of the near
shore bathymetry and video imagery of the double bar sys-
tem at Egmond aan Zee, the Netherlands.

1.4 Towards an beach safety monitoring sys-
tem

The significant amount of scientific and engineering
progress in remote monitoring methods for coastal mon-
itoring demonstrates the potential for a completely auto-
mated system for generating estimates and predictions of
beach safety from remote monitoring systems. Such a sys-
tem is under development at G.C.C.M., Griffith Univer-
sity, and as well as providing a system-wide overview, the
present work demonstrates the feasibility of certain algo-
rithms for automatically extracting essential information of
beach state from remote optical sources in real time.

Referring to the system overview given in figure 1, the
key descriptors of the beach condition monitoring system
are:

integration: it draws together data from a variety of
sources, incorporating remote optical measurements,
and information from meteorological and other
sources, such as current and future offshore swell
height and directions, and tide forecasts.

distribution: the system comprises components at remote
physical locations, and draws upon information from
3rd parties.

intelligence: it generates and utilizes internal models of
the relationship between integrated feature vectors
and beach safety from observation of the data using
neural networks.

modularity: the system comprises a heterogenous family
of subsystems:

• low level hardware routines, i.e. video captur-
ing and archiving, network queries for 3rd party
networks and time-stamping routines

• pure image processing systems, i.e. template
matching, edge detectors

• statistical routines for generation of feature vec-
tors, i.e. mean, standard deviation and skewness
measures for characterizing break profiles



Figure 1. Flowchart detailing the beach condition monitor-
ing and prediction system.

Figure 2. Typical horizontal time-stacks taken at random
times in a test video recording. The white arrows indicate
the angle of current flow over time. This flow is not evident
when sufficient particles do not exist on the water surface
(a,b,c), but quite clear after a breaking wave leaves swash
on the surface (d).

• two neural network modules with independent
inputs and outputs

Such a complete system is necessarily of a relatively
high degree of complexity. As well as providing a general
overview of the complete system, the present paper focuses
on the use of image processing routines for the purpose
of feature extraction in the context of a wider intelligent
system.

2 Method

2.1 Site and Infrastructure

The remote monitoring site is situated at Narrowneck
beach, located just north of Surfers Paradise at the north-
ern end of the Gold Coast, Queensland. It is a typical
open coast, east Australian beach usually consisting of a
bar-trough topography and experiencing a net northward
littoral drift of approximately 500,000m3/yr. A Sony
SSC-DC393P cameras with 7-70mm vari-focal auto iris
zoom lens is mounted on a lifeguard tower directly in front
of Narrowneck beach, Gold Coast, Australia. The camera
is located 20 metres in front of the high water line, at an
elevation of 10 metres above mean sea level. A second
camera is installed on the roof of a nearby residential tower.

The CCD cameras are connected to local PCs acting
as streaming servers through video capture cards. Raw
video data is captured at 320x240 pixel resolution for 10



minutes each hour and transmitted to the distal base archiv-
ing PC over a virtual private network (VPN). A second rel-
atively powerful PC serves as the main analysis PC, ac-
cessing files on the archive computer for image processing
and generating and archiving feature vectors in real-time.
A final separate machine is intended to be used for neural
network simulation and training.

Queries are made to 3rd party Bureau of Meteorology
servers that provide real-time local WW3 model readings
and forecasts at 1, 3, 6 and 12 hours for wind heading and
speed, and estimates of swell frequency, magnitude, and
direction. Queries are also made to electronic versions of
tide tables, providing current, and predicted tide levels cor-
responding to each of the WW3 prediction time frames.

2.2 System Architecture

Figure 1 illustrates that the system architecture may be
broadly described in four functional stages:

1. Raw data is gathered from distal locations, in 10
minute sections, time-stamped and archived. At this
point a verticaltime-sliceconsisting of a single col-
umn of pixels, arranged as a Y-Time matrix over the
10 minute time period.

2. Image processing routines generate the first level of
abstraction from the raw pixel data, generating inter-
mediate representations, such as break locations in Y-
Time matrix (see Figure 4).

3. Extraction of statistical properties of intermediate fea-
tures (e.g. standard deviation and skewness of cross
shore position of breakers) and creation of a time se-
ries of multi-dimensional features.

4. Instantaneous neural network estimation of overall
beach safety (trained using human expert judge-
ments). A second network performs prediction of fu-
ture beach safety states using a combination of het-
erogenous inputs: meteorological model output, ex-
tracted features, and current beach state.

The present study reports in more depth items 2 and
3 above: algorithms for image processing and extraction of
wave field features suitable for presentation to a supervised
learning module.

3 Algorithm and Results

As stated above, the present paper presents in detail the per-
formance of two inter-related feature extraction algorithms
designed to extract and quantify the characteristics of the
breaking wave field and long-shore currents, creating out-
put suitable for use as input to a neural network. Figure
2 illustrates that long-shore currents are evident as diago-
nal ’streaks’ in the time X-Time image after the passage
of white-water through the slice (2.d), but are much less

Figure 3. Contour of pixel cross-correlations with point
c(0, 0) (a), converted to radial format (b) and averaged (c),
yielding a maxima (in this case) at 53o ≡ 0.17m/s.

Figure 4. Vertical slice video time-stack with detected
break zones, breakers, and break heights.



evident at other times. This presents a challenge for the
issue of measuring the velocity of the long-shore current
flow, which is a critical determinant of safety to bathers
and leads to difficulty in implementing particle image ve-
locimetry (PIV) techniques, which rely on correlations be-
tween consecutive snapshots with a small time offset. After
filtering the raw pixels in the 320x9000 pixel X-Timewidth
image with a Prewitt edge detector, this issue is overcome
by creating randomly sampled data set of 10,000 samples
comprising pixel pairs with a range of time and horizontal
offsets. Figure 3.a shows a contour map of the correla-
tions with the random coordinate pixelp(x, t) and the cor-
responding displaced pixelp(x + dx, t + dt). After con-
verting to radial coordinates with respect top(x, t) (3.b)
and estimating the maxima with respect to radial distance
independently, the estimates using the range of radial dis-
tances fromp(x, t) may then be averaging to provide an
overall estimate (3.c). The estimated long-shore current
may be derived from the angle correlation maxima using
straight-forward calibration methods. Further, since the es-
timated angles over the range of radial offsets are them-
selves (for the present purpose) independent samples, a
confidence estimate of the mean may be calculated using
standard statistical methods. This is important because at
times where surface textures are rare or non-existent, any
particle-correlation method will perform poorly, and has
the potential to feed spurious features to neural network
models in subsequent processing stages.

Safety assessment models require information re-
garding the bathymetry (contour of the ocean floor) off
a beach, as this substantially affects the potential for rip
current formation. The well known ARGUS monitoring
systems demonstrated that bathymetry may be effectively
estimated from the locations of the white-water. Breaking
wave sizes, rhythms and patterns are also potentially
important predictors of beach safety, are often a function
of local bathymetry and geography. Hence, estimation
of these parameters from the locally mounted cameras
is preferred to relying on large scale meteorological and
oceanographic models. Figure 4.a displaying detected
individual breaks in the main break zone (shown with a
horizontal line). The break detection method is based on
defining a breaking wave in cross-shore position - time
space as a coherent high contrast change from dark to light
over time. Figure 4.a shows that it effectively detects the
time - cross-shore position over 95% of breaking waves.
Figure 4.b illustrates that estimating simple mean and
standard deviations over pixels with respect to cross-shore
position may provide an acceptable profile of the cross-
shore bathymetry. Figure 4.b plots the mean (solid line)
and standard deviation (dotted line) over Y pixel index,
with local maxima indicating the break and swash zones
of the three break zones. As would be expected, the
standard deviation maxima (solid arrow - representing high
contrast breaking wave phenomena) is followed in each
case by an average maxima(dotted arrow - representing
white water). The three detected sand-bars may be seen

visually in 4.b. The number and positions of the bars are
useful indicators of beach safety. Figure 4.c illustrates
the method of detecting the height of individual breakers
through detecting transitions from dark to light pixels over
time. The mean and other parameters of the wave height
distribution of interest as beach condition features.

4 Conclusions

A non-technical discussion of an ongoing project for the
automatic assessment and prediction of beach safety has
been provided. Advances in image processing methods
applied to environmental monitoring situations has dra-
matically increased the quality and quantity of data that
may be collected from CCD cameras. By combining these
data gathering methods with other sources of environmen-
tal data, appropriate feature extraction routines and neural
network based models, we are developing a system that re-
lies on distributed resources to provide accurate, real-time
estimates of beach safety. Similar systems may be devel-
oped for scientific, environmental, or security based appli-
cations.
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