
Concept Learning of Text Documents

Jiyuan An1, Yi-Ping Phoebe Chen1, 2

1 School of Information Technology, Faculty of Science and Technology,
Deakin University, Melbourne, VIC 3125 Australia

2Australian Research Council Centre in Bioinformatics

{jiyuan,phoebe}@deakin.edu.au

Abstract

Concept learning of text documents can be viewed as
the problem of acquiring the definition of a general
category of documents. To definite the category of a text
document, the Conjunctive of keywords is usually be used.
These keywords should be fewer and comprehensible. A
naïve method is enumerating all combinations of
keywords to extract suitable ones. However, because of
the enormous number of keyword combinations, it is
impossible to extract the most relevant keywords to
describe the categories of documents by enumerating all
possible combinations of keywords. Many heuristic
methods are proposed, such as GA-base, immune based
algorithm. In this work, we introduce pruning power
technique and propose a robust enumeration-based
concept learning algorithm. Experimental results show
that the rules produce by our approach has more
comprehensible and simplicity than by other methods.

1. Introduction

Classification of documents is one of the main
problems in web mining [5] [6] [7]. Most methods
proposed are based on distance of Vector Space Model
[3] [13]. Because of the potential high dimensionality of
the vector space, distance-based cluster algorithms can not
be applied effectively in text documents. It is called “curse
of dimensionality” [1]. To enhance selective of
documents, many researchers proposed different kinds of
distance, such as cosine measure, Jaccard measure and
phase-based distance [2].

This paper proposes a concept learning algorithm to
describe categories of text documents. The produced rules
can be used to classify different document categories. The
different categories are represented by different rules. To
produce the rules, a naïve method can be employed,
enumerating all possible keyword combinations and then
examining whether they appear all documents of the
category or not. However, because of the enormous
number of keyword combinations, it is impossible to
extract the most relevant keywords to describe the
categories of documents by using the naïve method. Many

heuristic methods are proposed, such as GA-base [4],
immune based algorithm. In this work, we introduce
pruning power, and propose an enumeration-based
algorithm.

2. Our approach

The documents under the same category have some
common features. They usually include some common
keywords. For example, the documents in computer
category may have “IBM”, “Linux” and etc., while
documents about sports may have “World Cup”,
“Olympic games” and etc. keywords. We classify
documents using the information of which kinds of
keywords appeared in them. The keyword combinations
generate rules to describe concepts of text documents.

To describe the concepts of categories of text
documents, many different rule sets can be found from
very complex rule sets to very simple rule sets. However,
since the simplicity is a very important criterion [9], we
must use a small rule set to describe the concepts.
Moreover, each rule should be short. Another important
factor to evaluate the rule sets is explanation, that is, the
rules should be interpretable.

According to terminology in concept learning, we call a
given category’s documents positive documents, and the
others are called negative documents. There are usually
more than two categories, so we assume the target
category is positive documents, and the other category’s
documents are negative documents. Our goal is to find the
rules which cover largest positive documents but no
negative documents are included, so the rules can be
viewed as positive covers.

In this paper, we enumerate all possible keyword
combinations, and then calculate the numbers of positive
documents and negative documents covered by every
keyword combination, and then see which keyword
combination has the biggest cover for positive documents.
This process is repeated until every positive document is
covered by at least one rule. We employ the technique
used in AQ algorithm [10]: When the first rule is found,
we delete all documents covered by this rule. On the

Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04)
0-7695-2100-2/04 $ 20.00 IEEE

remaining positive and negative document set, the
algorithm is repeated. The 3rd, 4th,…,rule can be found in
the same way. At last, on the remaining documents, there
are no positive documents left. By doing so, we guarantee
produced rules cover all positive documents and exclude
every negative documents.

2.1 A naïve algorithm

To describe a category of text document, more than one
rule usually are needed. As shown in Figure 1, the
algorithm continues until all the positive documents are
covered by one of produced rules. In line 2-4, from all
possible keyword combinations, a rule R which covers the
biggest positive document is found, while no negative
documents are covered by R. To find the second rule, all
documents covered by R are deleted (line 5), and then
program repeats on the remaining document set. Noted
that all deleted documents are positive documents. By
using the naïve algorithm, each produced rule covers more
positive documents than other keyword combinations.
Since finding the set of biggest covers are NP-hard
problem, we can not guarantee the set of rules produced
by naïve problem is the best one, but the naïve algorithm
is principally mountain-climbing method; each rule is the
“best” one at each step.

Figure 1 A naïve Algorithm to find rules

Although the naïve algorithm can find effective rules to
describe the concepts of text documents, it can not find
rules effectively. It is because that enumerating all
possible keyword combinations costs a lot of CPU time.
When the number of keywords becomes large, it is
impossible to use naïve algorithm to produce rules. For
English text documents, even we delete stop words and
rarely appeared words. The number of keywords is usually
much more than 100. We show the number of number of
keyword combinations with the simplest case, i.e. every
keyword has 2 discrete values (0 and 1). For n keywords,
there are 1 1

2nC C× 1-keyword combinations, and
2 1 1

2 2nC C C× × 2-keyword combinations. If we have only two

keywords (2=n), 1-keyword combinations are 4:
k0=“1”, k0=“0” k1=”1”, k1 = “0”. 2-keyword combinations
are: (k0, k1) = {(“1”, “1”), (“1”, “0), (“0”, “1”), (“0”,

“0”)}. The algorithm chooses the biggest positive covers
from 1-keyword (c1), 2-keyword (c2), …, n-keyword(cn)
combinations. The number of all possible combinations of
keywords is up to 1

21
()

n i i
ni

C C
=

×� . Consequently, the naïve

algorithm is not practicable to examine the enormous
number of keyword combinations whether they appear in
documents or not. On the next section, we introduce
pruning power technique to improve the naïve algorithm,
and get the same results as from naïve algorithm.

2.2 Pruning power

Firstly, let’s observe a relationship between rule and its
cover. When we lengthen a rule, its cover definitely
becomes smaller. For example, a rule k1 = “1”covers t
documents. The rule k1=”1” & k2=”0” covers only a part
of t documents. That is, the number of documents cover
by second rule is smaller than the original rule.

)"0""1"()"1"(211 =∩=⊇= kkCoverkCover .

Based on this observation, the naïve algorithm can be
improved. To express our idea concisely, here we explain
some notations. The symbol r denotes a rule to describe a
category of documents. We can use a formula to repress
it:)"1""1"(21 �∩=∩== kkr . k =”1” means that

keyword k appears in a document. k = “0” means a
document does not include keyword k. A rule (k1=”1” &
k2=”0”) covers the documents which has keyword k1 and
no keyword k2 appeared. The number of positive
documents covered by the rule r is denoted by length(r).
According to the observation, for rule r1 and r2, we have:

)()()()(2121 krlengthrlengthrlengthrlength ∩≥�≥
where k is an arbitrary keyword. …..(1)

Figure 2 The improved algorithm

Improved algorithm
Input:
n: number of keywords
Output:
ans : rule set
1.While the number of positive documents <> 0
2. For nc = 1:n {the number of keywords in a combination}
3. Foreach nc-keyword combination
4. Calculate the NumPos and NumNeg
5. {NumPos, NumNeg: number of positive and negative
6. documents covered by nc-keyword combination.}
7. if (NumNeg = 0) & (NumPos -> maximun)
8. ans <- {ans, nc-keyword}
9. Endif
10. End foreach
11. End foreach
12. Delete all documents covered by R
13.End while

Improved algorithm
Input:
n: number of keywords
Output:
ans : rule set
1.While the number of positive documents <> 0
2. For nc = 1:n {the number of keywords in a combination}
3. Foreach nc-keyword combination
4. Calculate the NumPos and NumNeg
5. {NumPos, NumNeg: number of positive and negative
6. documents covered by nc-keyword combination.}
7. if (NumNeg = 0) & (NumPos -> maximun)
8. ans <- {ans, nc-keyword}
9. Endif
10. End foreach
11. End foreach
12. Delete all documents covered by R
13.End while

Naïve algorithm
1.While the number of positive documents <> 0
2. Foreach keyword combination
3. Find a rule R Which is the biggest positive cover.
4. End foreach
5. Delete all documents covered by R
6.End while

Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04)
0-7695-2100-2/04 $ 20.00 IEEE

Based on Equation 1, the line2-4 in Figure 1 can be
improved. Enumerating keyword combination start from
1-keyword, 2-keyword,…. If we find the biggest cover,
then append the keyword combination to answer set and
stop enumerating. The program is shown in Figure 2.
From our experiment, program stops at early stage. Most
keyword combinations are pruned.

2.3 Reduction of keyword combinations

The number of keywords is a very big number, but
most documents include just a very little subset of the
keywords. For example, the keyword “linux” usually does
not appear in mathematics category. We can present the
relationship between documents and keywords with a very
big matrix. Its columns are keywords, its rows are
documents. In the matrix, most of element values are 0.
Even introducing the pruning power explained in previous
Section, the number of keyword combinations is still very
large. It is impossible to apply enumeration-base
algorithm to classification of text documents. Fortunately,
to describe the concept of document category, we focus on
the keywords appeared in the documents. Usually we do
not care what kinds of keywords do not appear in the
category’s documents. So we can enumerate the keyword
combinations (k = ’1’), and omit the keyword
combinations (k = ’0’). Consequently, the number of

keyword combinations becomes� =

n

k
k
nC

1
, where n is the

number of keywords.

2.4 The algorithm

A positive cover is represented by a rule consisting of
1, 2,…, n keywords. Using the pruning power described in
previous Section, we propose a method to find biggest
positive cover. The method makes it possible to find rules
to describe a category with enumeration based algorithm.
In our algorithm, the positive covers (or rules) are found
step by step until every positive document is covered by at
least one rule. Like algorithm AQ15 [11], when a rule
found, all positive documents covered by the rule are
removed. The process illustrated in Figure 2 is repeated.
That is, from the remaining positive documents and
negative documents, the next biggest positive cover can
be found. In the same way, all the positive documents
covered by the rule are removed step by step. The process
will continue until all positive documents are removed.
Finally, the remaining ones are all negative documents, all
the positive documents removed. The concept learning
process stops and every positive document is covered by
at least one rule; and no negative documents are covered
by the found rules. To describe another category of text
documents, we just change the positive documents set.
The documents under the new category become positive

documents. The documents under other categories are set
negative documents.

3. Experiment

We tested enumeration-based algorithm on ten
categories of web documents. We use keywords to
describe the concepts of different categories. In our
experiments, firstly, we show the pruning power of
keyword combinations. Since our program is based on
memory, if there are too many keyword combinations
need to be calculated, our approach loses its practicable.
Secondly, we compare the results with other methods. We
select one of the most effective methods decision tree as a
reference. As shown in [9], the rules produced must
satisfy completeness, consistency and simplicity. The first
two conditions are the essential. The simplicity means that
the rules should be short and reflecting the characters of
the categories.

3.1 Dataset

Our experimental data set has 314 web documents
collected from University of Waterloo various web sites.
It was downloaded from http://pami.uwaterloo.ca/~hamm
ouda/webdata/ [2]. Ten categories and the number of
documents in the categories are list below:

1. Black bear attach (30)
2. Campus network (33)
3. Canada transportation roads (22)
4. Career services (52)
5. Co-operative education (55)
6. Health services (23)
7. River fishing (23)
8. River rafting (29)
9. Snowboarding skiing (24)
10. Winter Canada (23)

We deleted the stop words, such as “a”, “an”, “on”, and
change all words into their root, for example “fishing” �

“fish”. If a word appears in documents rarely, we think it
is a noise in classification of text document. So we delete
low frequent words. In the experiment, we delete words
that appear in documents below 40 times. Finally, we got
619 keywords as features to represent documents.

3.2 Pruning power

To find a biggest positive cover, we have to create 1 to
n-keyword queues. We call them bins. The size of k-
keyword bins is an important criterion of our algorithm. If
the size is too big, it will takes long CPU time to select the
large positive cover, and can not run program based on
memory. By introducing pruning power, the size of bin for
constitute first rules is small. In our experiment, 5/9

Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04)
0-7695-2100-2/04 $ 20.00 IEEE

categories stop before 3-keyword combinations. The other
categories stop before 6-keyword combinations. The
number of candidates kept in bins is very small (not over
600). The algorithm can be run based on memory in a
usual computer.

3.3 Comparison with decision tree C4.5

The rules produced by decision tree C4.5 conclude
NOT literal. That make rules lack of interpretability. For
example, the first category “Black bear attach” is
represented as “~art”& ~snowfall & bear & ~package
&~raft” (“~” denotes “NOT”). Form this description, the
category is explained: there is no relation with “art”,
“snowfall”, “package” and “raft”, but “bear”. We believe
that no one can understand the concept description well.
The experiment was implemented base on the source
downloaded from [14].

Our concept leaning algorithm extracts keywords that
exist in the documents. So in the rules produced by our
algorithm, there is no “NOT”. From the rules shown in
Table 1, we can outline easily the characters of the
category of documents. For example, the category 0 can
be described with two words “bear” and “attack”.

The category 8 and 9 (snowboarding skiing and winter
Canada) are two similar categories. Snowboarding skiing
is occurred in winter. In winter Canada, many people play
snowboarding skinning. From the rules produced by our
concept learning algorithm, the word “snowboard”
appears in every documents of category 8, while the word
“snowfall” exists in every documents of category 9.
“inform”, “function” or “time” intersect with “snowboard”
can describe category 8.

Table 1 The rules produced by enumeration based
algorithm

4. Conclusions

In this paper, we proposed a robust concept learning
algorithm to describe the category documents. The
algorithm is based on the enumeration of keywords. To
reduce the vast number of keyword combinations, we
introduced pruning power to create k-keyword bins. Since
the bin size is very small, our algorithm becomes
practicable in a usual personal computer. From our
experiment, the rules produced by our algorithm have
more interpretable and concise than by other methods.

5. Acknowledgments

The work in this paper was supported by Grant
DP0344488 from the Australian Research Council.

Reference
1. Beyer, K. S., Goldstein, k. Ramakrishnan, R. Shaft, U.:
When Is ''Nearest Neighbor'' Meaningful? ICDT 1999: 217-235
2. Hammouda, K. M., Kamel, M. S.: Phrase-based Document
Similarity Based on an Index Graph Model. ICDM 2002: 203-
210
3. Jain, A. K., Dubes, R. C.: Algorithms for Clustering Data.
Prentice-Hall 1988
4. Jong, K., Spears, W., Diana F. Gordon: Using Genetic
Algorithms for Concept Learning. Machine Learning 13: 161-
188 (1993)
5. Li, Y. and Zhong, N., Interpretations of association rules by
granular computing, ICDM 2003: 593-596
6. Li, Y and Zhong, N. Ontology-based Web mining model:
representations of user profiles, WI 2003: 96-103.
7. Li, Y. Zhang, C. and Zhang, S. Cooperative strategy for
Web data mining and cleaning, Applied Artificial Intelligence,
an International Journal, 2003, Vol 17 No 5-6, pp. 443-460.
8. Michalski, R. S.: “On the quasi-minimal solution of the
general covering problem,” in Proceedings of the Fifth
International Symposium on Information Processing, vol. A3,
1969, pp. 125–128
9. Michalski. R. S. Carbonell, J. G. and Mitchell, T. M.:
“Machine learning an artificial intelligence approach”, Morgan
Kaufmann Publishers, INC., 1983
10. Mitchell, T. “Machine learning”, McGraw Hill, 1997
11. Michalski, R. S., Mozetic, I., Hong, J, Lavrac, N., "The
AQ15 inductive learning system: An overview and
experiments," Technical Report UIUCDCS-R-86-1260,
University of Illinois, Urbana-Champaign. IL, 1986
12. Quinlan, J. R.: Induction of Decision Trees. Machine
Learning 1(1): 81-106 (1986)
13. Salton, G., Wong, A., Yang, C. S.: A Vector Space Model
for Automatic Indexing. Commun. ACM 18(11): 613-620
(1975).
14. Winston, P. “C4.5 Decision Tree”,
http://www2.cs.uregina.ca/~hamilton/ 2002

Bear &
attach

Category 0

Snowfall &
effect

time &
snowboard

rule3

Snowfall &
rang &
amp

Snowfall &
rain

Category 9

Function &
snowboard

Inform &
snowboard

Category 8

Transport
& traffic

Rule 2

transport
& road &
program

Rule 1

Category 2

Bear &
attach

Category 0

Snowfall &
effect

time &
snowboard

rule3

Snowfall &
rang &
amp

Snowfall &
rain

Category 9

Function &
snowboard

Inform &
snowboard

Category 8

Transport
& traffic

Rule 2

transport
& road &
program

Rule 1

Category 2

Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04)
0-7695-2100-2/04 $ 20.00 IEEE

