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Abstract. We propose a quantum trajectory analysis of a 
scheme to measure the states of a coupled dot device (qubit) 
where there is a fluctuating energy gap Δ between the two 
states. The system consists of the qubit and a readout dot 
coupled to source and drain leads. The tunnel rate through the 
detector is conditioned by the occupation number of the nearer 
quantum dot (target) of the qubit and therefore probes the states 
of the qubit. We derive a Lindblad-form master equation to 
calculate the unconditional evolution of the qubit and a 
conditional stochastic master equation calculating the 
conditional evolution for different tunneling rates. The results 
show the effects of various device parameters and provide the 
optimum selection and combination of the system structure. 

 
 

1. Introduction 
 
There have been wide interests and numerous proposals in the area of 
quantum transport and measurement in mesoscopic electronic system [1- 
11]. Coupled quantum dots have been suggested as qubits: the basic 
element of a quantum computer. In addition to manipulations of quantum 
states, a readout device is required to perform quantum measurements of 
the resulting state of the qubit. The accurate readout of data encoded in the 
qubit states is an important part of the performance of a quantum 
computer. In this paper, we analyse a method to measure the states of a 
coupled dot qubit based on the theory of open quantum system [12]. The 
measurement postulate of quantum mechanics states requires that the 
unitary quantum evolution to be applied to the total system, which 
includes the measurement apparatus and the measured system.  However 
the measurement process automatically introduces a statistical description 
of the system dynamics. A density matrix describing a pure state has the 
property: ρ2 = ρ, which is not the case for a density matrix describing a 
statistical ensemble. The Lindblad equation [13] is the quantum master 
equation of the reduced dynamics that still preserve the three basic 
properties of the density matrix: positivity, Hermitivity and the norm 
required to describe a pure state, as well as markoviaity describing a 
subsystem that undergoes an irreversible dynamics to equilibrium. The 
whole system in this study includes a measurement device of a quantum 
tunneling readout-detector (RD) such as the quantum contact point, single 
electron transistor, or quantum dot coupled to source and drain leads, and 
a coupled-quantum dot of the charge qubit as the system being measured. 
We derive a conditional stochastic master equation to describe the 
conditioned evolution of the qubit. The ensemble-averaged evolution of 



the qubit state is calculated for various parameter combinations to 
estimate the optimum selection. 
 
  In section 2 we introduce the system and modeling followed by section 3 
calculating trajectories in the cases of without and with variable energy 
gap between two dot states. We discuss the results in section 4 and 
summarize in section 5. 
  
2. The System and modeling  
 
The system studied is depicted schematically in figure1. There is a single 
electronic bound state that can be occupied in each dot of the qubit. The 
energy difference between these two bound states is Δ and the electron 
can tunnel between two dots at rate t. In the RD, the electron-tunneling 
rate is conditioned on the occupation of the nearer dot (target) at D0 and 
D0+D1 for non-occupied and occupied cases respectively. 
. 
 

 
 

Figure 1 Illustration of the system 
 
The total Hamiltonian of the qubit system for coherent coupling case (Δ = 
0) is 
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,  represent the Fermi annihilation and creation operators for the 

single electron state of the ith dot and t is the tunneling rate between two 
dot states. For the readout dot, the background tunnelling current, when 
the target is not occupied, is D0, and the rate of the detected signal of the 
occupation of the target is D0 + D1 with D1 > 0. We assume that the 
tunneling through the RD is one way only (↓ direction as shown in figure 
1) and the escaping tunneling rate is large compared to other rates and 
based on these we can derive a Lindblad-form master equation [4]: 
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where γdec = 2D0+D1 is the decoherence rate. The stochastic record of 
measurement comprises a sequence of times at which electrons tunnel 
through the RD. In the zero response-time limit, the current consists of a 



sequence of δ function spikes: i(t) = edN/dt where dN(t) is a classical 
point process defined by the following conditions 
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where E[x] indicates a classical average of a classical stochastic process x. 
The first condition states that dN(t) equals zero or one. The second means 
that the rate of events is equal to the quiescent rate D0 plus an additional 
rate D1 if and only if the electron is in the target dot. Applying the theory 
of open quantum systems [12], we obtain the stochastic master equation 
conditioned on the observed event in time dt as [4] 
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where   T[ ]A B ABA=
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3. Calculations 
 
3.1 Coherent tunneling case 
 
To simplify the calculations we introduce the Bloch representation of the 
state matrix: 
 

 

! 

" =
1

2
I + x# x + y# y + z# z( )    (4) 

 
The Pauli matrices are defined as 
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The moments of the Pauli matrices are given by <σα> = α (α = x, y, z), 
which provide physical meanings. For example, when the system is in a 
definite state (dot 1 or dot 2), the average population difference z is equal 
to ±1.  The set of coupled stochastic differential equations for the Bloch 
sphere variables can be expressed as: 
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Detailed derivation and approximation are referred in ref. [4]. The 
subscript c indicates that these variables refer to the conditional state. 
Calculated the trajectories at various coupling rates when D0 = 0 are 
plotted in figure 2. When the coupling between the dots is small (t <γdec 
/2) the electron is located in a fixed dot (z = -1 at dot 2 and z = +1 at dot 
1) for a long time till a sudden transition as shown in figure 2(a). For 
strong coupling case, as shown in figure 2(c) when t  > > γdec/2, the 
trajectory shows nearly sinusoidal oscillations with jumps occurring at an 
average rate of γdec /2, this means that the electron is not localized but 
shared by two dots through the strong tunnelling. In figure 2 (b), with the 
moderate coupling strength, the trajectory shows that the electron is 
neither well localized nor regular harmonically oscillating between two 
dots. 
 
 

 
 
Figure 2 Trajectories for various coupling rates: t = (a) 0.1; (b)  0.5; and (c) 5 D1. 
 
3.1 Energy gap Δ≠ 0 case  
 
We extend the application to the case that there is an energy difference of 
Δ ≠ 0 between two dot states, which is a model of, for example, the qubit 
system proposed by Kane [14]. The relevant Hamiltonian can be written 
as 
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differential equations for the Bloch sphere variables describing 
conditional dynamics now become: 
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The numerical calculation results are presented in figure 3. By comparison 
with figure 2 one can see the effect of the energy gap. It takes much 
longer time to tunnel through the gap from one dot to the other for the low 
tunneling rate case (note: the time scales on the horizontal axes are 



different in these two figures) while quasi-harmonic oscillation features 
are kept in high tunneling rate region (tunneling rate >> gap Δ). For the 
moderate coupling rate the plot shows none-localization and non-
sinusoidal oscillations between two dots with lower frequency compared 
to those in figure 2. 
 
   In order to investigate the influences of various parameters of devices on 
the system dynamics (performance) we investigate the unconditional 
ensemble average properties of the system in detail. 
 

 
Figure 3 Trajectories for various t with Δ = 1, the parameters are shown on top of 
each plot and the rates are all normalized by D1. 
 
3.3 Ensemble average properties 
 
The relevant Hamiltonian can be diagonalized by rotating an angle of 
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the transformation from the original representation to the new 
representation is given by: 
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In the new representation, the evolution of the ensemble-averaged Bloch 
sphere variables is described by 
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We can monitor the state of the qubit from the evolution of the moment 
z(t). The calculated results of ensemble-averaged evolution of the system 
state are plotted in figures 4 - 8 illustrating the influence of various 
parameters. When a particular parameter is chosen to vary in a plot, all 
other parameters in the figure are fixed. 
 
4. Results and discussion 
 
For the ensemble evaluation of the qubit state we use the approximate 
values of real Δ and t given by Kane [14], ie. Δ/h = 110 GHz and 2t/h = 
1GHz. The values of the ratio of t/Δ in all plots are therefore chosen as 
5x10-3.   
 

 
 

Figure 4 Locality of the electron at D0 = 0.5, Δ = 0.1 and t = 10-4 D1. 
 
 

 
 

 Figure 5 Influence of Δ: from top Δ = 10, 5, 0.2, 0.1 D1.  
 
Figure 4 shows a typical evolution of the locality of the state. It is obvious 
that the system is not oscillating but deviates from the initial state to a 
mixed state as time approaches “infinity”, which is different from the 
coherent tunneling case. The insert is enlarged details of the early stage, 
which shows a sharp deviation followed a flatter slope. Figures 5- 7 show 



the effects of the energy gap Δ, the coupling rate between the two dotes t 
and the quiescent rate of current tunneling through the RD D0 
respectively.  
 
 

 
 

Figure 6 Influence of t, from top: t = 10-4, 5x10-4 D1 
 
 

 
 

Figure 7 Influence of D0: from top D0 = 0, 0.5, 1 D1. 
 
 

 
 
Figure 8 Comparison of measurement quality for various D1. The dashed lines are corresponding 
characteristic times. 
 



           
Figure 9 Comparison of measurement quality for different values of D0 at a fixed ratio of  D0 / D1 = 
0.5. 
 
In the plots all parameters are normalized by the rate D1. Both top lines (a) 
in figure 6 and figure 8 are very close to the top frame edge. As expected, 
we see that the larger Δ (figure 5 (a)) and the smaller t (figure 6 (a)), the 
slower deviation and the smaller background rate of the detector D0 ((c) in 
figure 7), the better measurement quality. The interesting feature in figure 
7 is that with a small D0, z(t) shows a sharp first slope followed a flatter 
second slope, which is most desirable condition, as it may be interpreted 
as that the state is distinguished quickly with less deviation from the initial 
state. Now we reach a question naturally: how would one judge the 
quality of a measurement? One parameter determining the quality of a 
measurement is the localisation rate, which is related to the signal-to-noise 
ratio. The characteristic time is defined as the minimum time when the 
two possibilities of the electron locality are distinguishable. In our system 
it is given by T = (2D0+D1)/D1

2, which is twice inverse of the localisation 
rate [4]. Within the characteristic time the closer to the initial state, the 
better measurement. Figures 8 and 9 illustrate the comparisons of the 
measurement qualities with various parameter combinations. Figure 8 
shows that the larger D1 (strong coupling between the qubit and the 
detector), the more sensitive detection, the RD reads out the state of the 
qubit in a shorter time with less disturbance. In figure 9, D0 and D1 vary in 
their absolute values at the fixed ratio of D0 /D1 = 0.5. It is clear from the 
graph that the larger rates of RD (curve c) make better measurement and 
strong coupling is therefore preferred. The above outcomes may provide 
reference for the device designers when they tackle optimum selection of 
the parameters. For example if the technology limits the reduction of 
quiescent current of a non-ideal detector one could increase the 
measurement tunneling rate D1 by device designing or bias setting in 
experiments to compensate and achieve better measurement quality.    
  
5. Summary 
 
It has been suggested to use mesoscopic electronic systems such as 
coupled quantum dots, superconducting junctions and single spin-
polarised electrons as qubits. We model the quantum measurement of 
states of such systems using the theory of open quantum system. The 
requirements to perform quantum calculations and a quantum 
measurement (readout) appear to contradict each other. During the 
manipulations the dephasing should be minimised, while a quantum 



measurement should dephase the state of the qubit as far as possible. We 
propose a measurement scheme to study the dynamics of the system. To 
guarantee the calculated evolution representing the state of a real physical 
system we derive the Lindblad-form master equation. We calculate the 
conditional evolution of the states and the ensemble-averaged evolution of 
the states of the coupled quantum dots as the qubit. The results show the 
effects of various device parameters on the quality of the measurements. 
These may contribute to the device parameter selection and experimental 
designing of the readout processes of a solid-state quantum computer for 
the better performance.  
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