
Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005 

BICLUSTERING GENE EXPRESSION DATA BASED ON A HIGH 
DIMENSIONAL GEOMETRIC METHOD  

XIANG-CHAO GAN1, ALAN WEE-CHUNG LIEW2 , HONG YAN1,3 

1Department of Computer Engineering and Information Technology 
City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 

2Department of Computer Science and Engineering  
Chinese University of Hong Kong, Shatin, Hong Kong  

3School of Electrical and Information Engineering 
University of Sydney, NSW 2006, Austra 

E-MAIL: 50004098@student.cityu.edu.hk, wcliew@cse.cuhk.edu.hk, h.yan@cityu.edu.hk 

Abstract: 
In gene expression data, a bicluster is a subset of genes 

exhibiting a consistent pattern over a subset of the conditions. 
In this paper, we propose a new method to detect biclusters in 
gene expression data. Our approach is based on the high 
dimensional geometric property of biclusters and it avoids 
dependence on specific patterns, which degrade many 
available biclustering algorithms. Furthermore, we illustrate 
that a bilclustering algorithm can be decomposed into two 
independent steps and this not only helps to build up a 
hierarchical structure but also provides a coarse-to-fine 
mechanism and overcome the effect of the inherent noise in 
gene expression data. The simulated experiments demonstrate 
that our algorithm is very promising. 
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1. Introduction 

In DNA microarray experiments, a key step in the 
analysis of gene expression data is to discover groups of 
genes that share similar transcriptional behavior. Clustering 
gene expression data into homogeneous groups is 
instrumental in functional annotation, tissue classification, 
motif identification. A review can be found in [1]. However, 
standard clustering methods, such as the k-means, 
hierarchical, or self-organizing map algorithms, have their 
limitations. They require that the related genes behave 
similarly across all measurement conditions. When a 
database includes many heterogeneous conditions from 
many experiments, clustering algorithms often cannot 
produce a satisfactory solution.  

In this case, biclustering algorithms are preferable. In 
gene expression data, a bicluster is a subset of genes 
exhibiting a consistent pattern over a subset of conditions. 

This means that biclustering performs clustering 
simultaneously in two dimensions. In some situations, 
where an interesting cellular process is active only in a 
subset of conditions, or a single gene may participate in 
multiple pathways that may, or may not, be co-active under 
all conditions; biclustering approaches are a key technique 
to use.  

When evaluating a biclustering algorithm, one of the 
key measurements is the patterns it can detect. There are 
many different patterns useful for gene expression data. 
This will be explained in detail in the following section. A 
good algorithm should incorporate as many as possible 
patterns and be flexible and extendable. However, most 
available algorithms are based on specific patterns and this 
limits their application. The Double Conjugated Clustering 
(DCC) [2] and Block clustering [3] are designed to detect 
constant values. The Coupled Two-Way Clustering (CTWC) 
[4] and Sheng el al.’s algorithm [5] are interesting in their 
account of the constant rows or columns bicluster. Segal et 
al. [6] assume the additive model in their algorithm. 
Lazzeroni and Owen (2000) introduce the notion of a plaid 
model using general additive model. Wang et al. [7] and 
Yuval et al. [8] develop their algorithms based on a 
multiplicative model.  

In practice, a perfect bicluster with constant columns or 
coherent values seldom exists in gene expression data due 
to noise in experiments. A good biclustering algorithm 
should be able to adapt to noise situations and find the most 
feasible solution. To overcome the effect of noise, many 
biclustering algorithms use parametric method and assume 
that both noise and gene data values that do not belong to 
the target bicluster satisfy a certain statistical distribution. 
This limits the application of their algorithms. 

Based on the above analysis, we require a good gene 
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expression data biclustering algorithm be flexible and noise 
immune. In this paper, we develop a novel biclustering 
algorithm based on the high dimensional geometric 
property of the biclusters. We decompose the biclustering 
algorithm into two independent steps and this facilitates our 
algorithm to easily incorporate all possible patterns. In 
addition, we use a coarse-to-fine mechanism to overcome 
the effect of noise in gene expression data, which has been 
proven to be very efficient for overcoming the noise effect 
in the image processing and pattern recognition fields. 

2. Geometric Characteristic of A Bicluster  

An interesting criterion when evaluating a biclustering 
algorithm is the identification of the type of biclusters the 
algorithm is able to find. There are three major classes of 
biclusters that are well known to be related to gene 
expression data: (a) Biclusters with constant values; (b) 
Biclusters with constant values on columns or rows; (c) 
Biclusters with coherent values on columns or rows. An 
example of column-oriented biclusters is presented in 
Figure. 1. Note there are also some bicluster approaches 
that view the elements of the matrix as symbolic values 
regardless of the exact numeric values. Since it is not the 
emphasis of our paper, we omit it for simplicity. A detailed 
survey of the most available biclustering algorithms based 
on the type of biclusters detected can be found in [9]. 

 
(a) (b) (c) (d) 

Figure 1: Examples of three types of biclusters: (a) 
Constant Bicluster, (b) Constant Columns, (c) Coherent 
values by additive models, where each row and column can 
be obtained by adding a constant to each of the others, and 
(d) Coherent values by multiplicative models, where each 
row and column can be obtained by multiplying each of the 
others by a constant value. 

 As mentioned before, most available algorithms are 
based on specific patterns and this limits their applications. 
The Double Conjugated Clustering (DCC) [2] and Block 
clustering [3] methods are designed to detect constant 
values, (Fig.1.a). The Coupled Two-Way Clustering 
(CTWC) [4] and Sheng el al.’s [5] algorithms extract 
constant rows or column biclusters, (Fig.1.b). Segal et al. [6] 
assume the additive model in their algorithm, (Fig.1.c), and 
Yuval et al. [9] develop their algorithms based on a 
multiplicative model, (Fig.1.c). 

To avoid dependence of biclustering algorithms to a 
specific pattern, we investigate the common property of a 
bicluster first in this paper. From a geometric viewpoint, a 
bicluster in Fig. 1 (b), (c), and (d) is denoted by a single 
line in a high dimensional space. Each gene in the 
bicluster is a point lying in this line when we only consider 
the conditions selected by this bicluster. For example, if 
we denote the four conditions in Fig.1 as x, y, m and n, the 
bicluster in Fig.1(c) can be denoted as 

 and 211 −=+=−= nmyx nmyx
3
225.0 ===  for the 

bicluster in Fig. 1(d). 
However, when all conditions, not only the conditions 

selected by corresponding biclusters but also the conditions 
do not belong to the bicluster, are considered, this 
geometric property changes. We cannot denote a bicluster 
with a line any more. Without loss of generality, assume a 
three-conditioned experiment with the conditions denoted 
as x, y, z respectively. If a bicluster covers conditions x and 
z, there exists a bundle of hyperplanes that pass through all 
points in this bicluster. All these hyperplanes conform to the 
following equation: 

0310 =++ zaxaa  (1)  
where ai, (i = 0, 1, 3) are constant and a2y is omitted since 
a2 = 0. A demonstration is given in Fig. 2.  
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Figure 2: A demonstration of a bicluster’s geometric 

property: the bicluster covering x, and z conditions lies in a 
plane in (x, y, z) space. 

In Equation (1), there exist coordinates x, z while y, 
which does not belong to the bicluster, has disappeared. We 
find that a hyperplane denotes a possible bicluster: The 
coordinates appearing in its equation denote the conditions 
the bicluster covers and the points in the hyperplane denote 
the genes in the bicluster.  

Based on the above analysis, instead of directly 
seeking specific bicluster patterns, which have been proven 
to be a NP-complete problem, in this paper we decompose a 
biclustering procedure into two steps: First, we detect the 
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hyperplanes existing in the gene expression data; then we 
analyze whether a required pattern exists for the genes 
which lie on these hyperplanes. The block diagram of our 
algorithm is as follows. 
.

 
Figure3: The block diagram of the proposed biclustering 

algorithm using high dimensional geometric method. 

3. Plane Fitting by Fast Hough Transform Method 

In the block diagram of our algorithm (see Figure 3), a 
robust high dimensional plane fitting method is a key step 
in our algorithm. To achieve this goal, we make use of the 
Hough Transform (HT). Hough Transform is a powerful 
technique for line extraction and pattern detection in image 
processing and computer vision [11]. However, the standard 
Hough Transform may not be feasible for high dimensional 
data because of the computational complexity and storage 
requirement. 

Here we use the Fast Hough Transform (FHT)  [12] 
since it has easy high-dimensional extension and gives 
considerable speed and less storage requirement than the 
conventional methods. Furthermore, FHT is also a 
coarse-to-fine method and is noise insensitive. We here 
review the basic principles of the FHT.  

As with a Hough transform, the FHT is also a mapping 
from an observed data space, which is often called a feature 
space in image processing, into a parameter space. Each 
feature point in data space (In gene expression data, a point 
is data values of a gene) generates “votes” for a set of 
parameter-space points. An area in the parameter space 

containing many mapped points reveals the feature of 
interest. 

 
Hyperplane formulation 

The FHT is applied to problems in which points in the 
parameter space are hyperplane represented as 

  a . (2) njXa
k

i
iijj ,,2,1for0

1
0 ==+∑

=

where Xi is the i-th dimension of the parameter space. Each 
aij is a function of observed feature points and is normalized 

such that∑ =
=

k

i ija
1

2 1 . For parameter space (X1, X2, …, Xk), 

the bound and the desired quantization of Xi are given. 
Since the value interval of each Xi is given, all k intervals 
will form a hypercube. We can use a hypercube to represent 
the parameter space.  

The FHT algorithm recursively divides the parameter 
space into hypercubes from low to high resolution. It 
performs the subdivision and subsequent “vote counting” 
only on hypercubes with votes exceeding a selected 
threshold. This hierarchical approach leads to a significant 
reduction in both computation and storage compared to the 
conventional Hough Transform. 
Hyperplane/hypercube intersection test criterion. 

The FHT needs to determine whether a hypercube 
receives a vote from a particular hyperplane. We can use a 
simple, conservative test to see whether the hyperplane 
intersect the hypercube’s circumscribing hypersphere, that 
is, if  

rCaa
k

i
ii ≤+∑

=1
0  (3)  

where [C1, …,Ck] are the coordinates of the hypercube’s 
center and r is the radius of the hypersphere. 
K-tree representation 

For the FHT, we represent the parameter space as a 
nested hierarchy hypercube. We can associate a K-tree with 
the representation. The root node of the tree corresponds to 
a hypercube with side-length S0 having one vertex at the 
origin [0,…,0] and the diagonally opposite vertex at [S0,…, 
S0]. Each node of the tree has 2k sons arising when that 
node’s hypercube is halved along each of its k dimensions. 
Each child has a child index, a vector b = [b1, …, bk], where 
each bi is -1 or 1. The child index is interpreted as follows: 
if a node at level l of the tree has center Cl then the center of 
its child node with index [b1, …, bk] is  

],,[
2 1

1
k

l
l bb

S
C …++  (4) 

where Sl+1 is the side length of the son at level l+1 and 
. 2/1 ll SS =+
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We here present an incremental formula for evaluating 
the test in (3), The normalized distance can be computed 
incrementally for a child node at level l+1 with child index 
[b1, …, bk] as follows, 

∑
=

+=
k

i
ia

S
a

R
10

0
0 2

1  (5) 

∑
=

+ +=
k
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iill baRR

1
1 2

12  (6) 

The test (3) can be expressed as: A hyperplane 
intersects a hypercube if  

2|| kR ≤  (7)  
 
To facilitate the understanding of the FHT, we here 

provide a plane detection example in 3D data. Given M 
range data points, (xj, yj, zj), j = 1,…,M, the plane detection 
problem is to find one or more planes that best fit these 
feature points. If the plane can be represented as 

xxy bzmymx ++=  (8) 
where mx and my are the directional normals of the plane. 
By choosing (my, mz, bx), we get a 3-parameter space. A 
feature point (xj, yj, zj) is transformed into the parameter 
spaces 

03210 =+++ xjzjyjj bamamaa  
where 

jjj Lxa /0 −=

jj La /13 =

, , , 

,and 
jjj Lya /1 = jjj Lza /2 =

1++ jj zy=jL .  

 
Our biclustering algorithm  

To summarize, when given a set of genes expression 
data {Fj} under diverse experimental conditions, the high 
dimensional geometric biclustering method can be 
summarized as: 
Parameters or function needs to be predetermined:  
1. A minimum vote count “T” as threshold and the desired 

resolution “q”. 
2. A transformation that maps each gene expression data Fj 

into a hyperplane in parameter space represented by 

. where XnjXaa
k

i
iijj ,,2,1for0

1
0 ==+∑

=
i is 

bounded by [0, S0] . The root of K-tree at [S0/2, …, S0/2] 
 
Procedure: 
1. Transform genes expression data into parameter space.  
2. Compute the initial normalized distances from the 

hyperplane to the root node and perform the vote 
procedure for the root node. For each set of gene 

expression data, if Equation (7) is satisfied, add one to 
the vote number of the root node. If the vote number for 
root node is bigger than the threshold T and resolution is 
less than q, subdivide the root node into the K-tree child 
nodes.  

3. Vote for each child node and subdivide them if possible. 
A similar vote-and-subdivide mechanism is performed 
for each new node until no new nodes appear.  

4. When there is no node with resolution equal to q and the 
vote number is bigger than T, record the node with the 
biggest resolution as it is the most probable solution. 
When there are several nodes with resolution equal to q 
and a vote number bigger than T, incorporate the planes 
covering the same parts of the genes. 

5. For each bundle of planes, the conditions with zero or 
low value in the plane equations are discarded. Under 
the remaining conditions, verify whether the genes in 
the planes satisfy the expected pattern. If yes, we get a 
bicluster; otherwise just discard it. Same processing 
continues until all bundles are processed. 

 
The above procedure is very efficient for a modest 

database. Since the computational complexity of the FHT 
algorithms change more dramatically with the dimension 
increase than with the change of gene numbers, we here 
provide a simple divide-and-conquer mechanism for large 
datasets. First, divide the conditions into several 
non-overlapping blocks and each block includes all genes 
but different conditions. Then, we perform the proposed 
biclustering algorithm for each block. For a detected 
bicluster in one block, we test whether the other conditions 
can be incorporated into it. Lastly, we delete the same 
bicluster. Using this simple extension, we actually 
transform the biclustering problem which performs 
clustering on the two dimensions simultaneously into a 
low-dimensional biclustering problem and a simple 
clustering problem in one dimension. 

4. Experiment results 

We analyze the performance of our algorithm on 
several datasets. We verify that the proposed algorithm is 
not limited to a specific pattern by using our algorithm to 
detect three different patterns: constant columns, constant 
rows and coherent values by multiplicative models. All 
three patterns are very useful and frequently mentioned in 
biclustering algorithms for gene expression data. For a clear 
evaluation, we also generate a synthetic dataset with three 
overlapping biclusters to examine the ability of our 
algorithm to find multiple biclusters, especially when 
overlaps between biclusters are present. For these synthetic 
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datasets, since the genes and conditions covered by each 
bicluster are known, they will give a detailed look at our 
algorithm.  

 
Synthetic data with one embedded bicluster 

Biclusters with constant columns. We embed a pattern 
of 25 rows by columns 8 into a dataset of size 100 by 30. In 
this experiment, the pattern is constant columns and the 
value of each row is produced from a uniform distribution 
U(-5, 5). The background is also generated from the 
uniform distribution U(-5, 5). A similar experiment was 
performed by Sheng et al. (2003).  

The final pattern of the bicluster revealed by our 
algorithm is shown in Fig. 4. We see that all the columns 
where the embedded pattern locations were correctly found. 
In addition, all embedded rows were recovered. We can 
compare our performance to that of (Sheng et al. 2003). For 
their algorithm, all columns where the embedded pattern 
locations were correctly found and most of the embedded 
rows were recovered. 

 
Figure4: Results of the synthetic data set with a bicluster of 
constant columns. (a) The data matrix. (b) The position of 
the data matrix belongs to the bicluster. (c) The pattern of 
the bicluster. (d) Pattern and the position of the bicluster 
revealed by the proposed high geometric method.  

 
Biclusters with constant row and biclusters with 

coherent values by multiplicative models. Our algorithm is 
very flexible at detecting different patterns, besides the 
pattern of constant columns. We now also test the 
performance of our algorithm using following two patterns: 
constant rows and coherent values by multiplicative models. 
The experimental results are provided in Figure 5 and 
Figure 6, respectively. We found that for all these three 
datasets, the resulting biclusters are correctly found with the 
same conditions and same genes as the original known 
bicluster. 

 
Figure 5: Results of the synthetic data set with a bicluster of 
constant rows. (a) The data matrix. (b) The position of the 
data matrix belongs to the bicluster. (c) The pattern of the 
bicluster. (d) pattern and the position of the bicluster 
revealed by the proposed high geometric method. 
 

 
Figure 6: Results of the synthetic data set with a bicluster 
with coherent values by multiplicative models. (a) The data 
matrix. (b) The position of the data matrix belongs to the 
bicluster. (c) The pattern of the bicluster. (d) The 
multiplicative coefficients of each row in the bicluster. (e) 
pattern and  position of the bicluster revealed by the 
proposed high geometric method. 

 
Synthetic data with multiple overlapping biclusters 

To examine the ability of our algorithm to find multiple 
biclusters, especially when overlap between biclusters is 
present, we embed three biclusters into a noisy background 
described by a uniform distribution U(-5, 5). The dataset is 
of size 200 rows by 40 columns, and the three embedded 
biclusters are of the following sizes, 40 by 7 for Bicluster 1, 
25 by 10 for Bicluster 2, and 35 by 8 for Bicluster 3. As can 
be seen in the main plot of Figure 7(a), Bicluster 1 overlaps 
with Bicluster 2 at two columns, and Bicluster 3 overlaps 
with Bicluster2 at five rows and three columns. 
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In this experiment, we divide the dataset into 4 blocks, 
each with 10 conditions and 200 rows. In the first block, the 
bicluster 1 was found with all 7 conditions and 40 rows. 
Bicluster 2 was also found with the first 3 conditions and 25 
rows, and the other 7 conditions was tested and then added 
into the bicluster. In the 2nd block, bicluster 3 was found 
with 8 conditions and 35 rows. Bicluster 2 with 7 
conditions missed in Block 1 is detected and then the other 
3 conditions are found back in the subsequent analysis. 
Since Bicluster 2 is detected twice, one is deleted. 

Based on the above analysis, three biclusters are 
perfectly detected. An unexpected outcome of our 
algorithm is in Block 2, a bicluster with 3 conditions 
overlapping with Bicluster 2 and Bicluster 3 and 60 rows 
comprises all rows of Bicluster 2 and 3 is detected as a new 
bicluster. After a careful analysis, we think it is a reasonable 
result. Furthermore, a good algorithm should detect many 
possible patterns and let the users decide which is 
preferable. 

 

 
(a) (b) (c) (d) 

Figure 7: Results form the synthetic data set with multiple 
overlapping biclusters. (a) The data matrix, (b), (c) and (d) 
The three biclusters found by the proposed method. 

5. Conclusions 

We have developed a new high dimensional geometric 
method for gene expression data biclustering. Our 
algorithm is significantly different from the available 
algorithms. We illustrate that a biclustering algorithm can 
be decomposed into two independent steps and this not only 
helps it to build up a hierarchical structure but also provides 
coarse-to-fine mechanism to overcome the effect of the 
noise in gene expression data. The simulated experiments 
demonstrated that our algorithm is very promising. 
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