Maintaining Multi-way Dataflow Constraints in Collaborative Systems

Kai Lin, David Chen and Geoff Dromey
School of Information and Communication
Technology, Griffith University
Brisbane, QLD 4111, Australia
Kai.Lin@student.griffith.edu.au,
{D.Chen, G.Dromey}@griffith.edu.au

Abstract

Multi-way dataflow constraints are very useful in the
development of collaborative applications, such as
collaborative CAD and CASE systems, but satisfying
multi-way dataflow constraints in the presence of
concurrency in collaborative systems is difficult. In this
article, we discuss the issues and techniques in
maintaining multi-way dataflow constraints in concurrent
environments. In particular, we also proposed a novel
strategy that is able to reconstruct computation flows to
satisfy multi-way dataflow constraints according to
concurrent user operations in collaborative systems. Our
strategy ensures both constraint satisfaction and system
consistency, which is independent of the execution orders
of concurrent operations.

1. Introduction

A constraint specifies a relation or condition that must
be maintained in a system. A dataflow constraint is an
equation that has one or more methods associated with it
that may be used to satisfy the equation [19]. Dataflow
constraints are used in many applications, such as graphic
editing systems, graphical interface toolkits, spreadsheets,
simulation systems, etc. They are capable of expressing
relationships over multiple data types and are
conceptually simple [8], [15], [19].

Multi-way constraints have a number of advantages
over one-way ones [8], [15], [19]. They provide a flexible
measure to maintain relations or conditions among
constrained variables, which ensures the constraints be
satisfied in multi-direction.

Multi-way dataflow constraints are very useful in the
development of concurrent interactive applications, such
as collaborative CAD (computer aided design) and CASE
(computer aided software engineering) systems. They can
be adopted to confine and coordinate concurrent
operations.

A task demanding people to work collaboratively is
often complex and may contain many constraints. Thus, it
is very practical and powerful for collaborative systems to
maintain constraints automatically on behalf of users. For

1-4244-0030-9/05/$20.00 ©2005 IEEE

Chengzheng Sun
School of Computer Engineering
Nanyang Technological University
Singapore, 639798
CZSun@ntu.edu.sg

example, when people work collaboratively to design a
project using Java Class notation, many conflicts may
arise if a system only relies on individuals to maintain
Java single inheritance constraint.

On the other hand, satisfying multi-way dataflow
constraints in collaborative systems is very difficult.
Concurrent operations may result in some constraints
becoming difficult to satisfy even though they may be
maintained easily in single user environments. For
example, it is hard for us to satisfy the constraint defining
“X=Y+Z”, when three users concurrently change X, ¥ and
Z respectively. In addition, interferences among
constraints may be very intricate and difficult to
coordinate in collaborative systems.

Much work has been done on the maintenance of
multi-way dataflow constraints in single user interactive
applications [8], [12], [15], [19]. However, maintenance
of constraints in concurrent environments has many new
features which cannot be handled by single user
strategies, such as ensuring both constraint satisfaction
and system consistency, handling the constraint violations
generated by concurrent operations, etc.

In this paper, we discuss the issue of maintaining
constraints in collaborative environments and propose a
novel strategy to satisfy multi-way dataflow constraints
according to concurrent user operations in collaborative
systems. Our strategy ensures both constraint satisfaction
and system consistency, which is independent of the
execution orders of concurrent operations.

The rest of this article is organized as follows. Section
2 introduces the issue of maintaining multi-way dataflow
constraints in collaborative systems. We discuss problems
of constraint maintenance in collaborative environments
and propose a novel strategy that is able to reconstruct
computation flows to satisfy a set of predefined multi-
way dataflow constraints according to concurrent user
operations in collaborative systems. Comparison with
related work is introduced in section 3 and the major
contributions and future work of our research are
summarized in section 4.

2. Maintaining constraints in concurrent
environments

2.1. Multi-way dataflow constraint

A dataflow constraint is an equation that has one or
more Constraint Satisfaction Methods (CSM) associated
with it that may be used to satisfy the equation [19]. For
example, a constraint C representing the relationship
“X=Y+Z" is a dataflow constraint. C can be satisfied only
in one direction (i.e. C is a one-way constraint), if there is
only one CSM associated with it, such as “X«Y+2”
which means X should be calculated according to Y and
Z. Here, both Y and Z are input variables and X is the
output variable of C. On the other hand, a multi-way
constraint in general has a method for calculating a value
for each of the variables it constrains, in terms of the
values of the other variables [15]. Thus, multi-way
constraints can be satisfied in multi-direction. In the
above example, if C is a multi-way constraint, C can be
satisfied by applying the other two CSMs, “Y«-X-Z" and
“ZX-Y", as well.

Dataflow constraints are commonly expressed in terms
of constraint graphs, such as figure 1(a) that represents
two constraints. C; defines “W=X+)"" and C, constrains
“X=Y+Z”. In this and subsequent figures, a circle
represents a variable and a square expresses a constraint.
Initially, the constraint system is represented as an
undirected bipartite graph, such as figure 1(a), where a set
of undirected edges denote the relationships between
variables and constraints [8], [12], [15], [19]. If a
constraint satisfaction method M is selected to satisfy
constraint C, all the inputs to M are represented as
directed edges from the input variables to C and a
directed edge from C points to M’s output. In figure 1(b),
Y and Z are the inputs and X is the output of constraint C,.

(c)

representations of two
constraints: initially the graph is undirected as in
(a). The directed graphs in (b) and (c) are
solution graphs of the two constraints

Figure 1. Graphic

A set of constraints, CS={C,;, C,,..., C,}, are satisfiable
if for each C;eCS, 1<i<n, a method M can be selected to

satisfy it, such that (1) all satisfiable constraints and their
variables form a directed, acyclic graph and (2) no
variable in the graph can be pointed to by more than one
directed edge (i.e. a variable can be the output of at most
one constraint in the graph). A direct graph that satisfies
these two conditions is called a solution graph [19].

A solution graph represents a computation flow to
satisfy a set of constraints. Different solution graphs can
be formed to satisfy the same set of constraints. For
example, to satisfy two constraints C;: “W=X+V"and C;:
“X=Y+Z", the computation flows shown in both figure
1(b) and figure 1(c) can be adopted.

User operations may change constrained variables in
interactive systems. Suppose a solution graph, SGi,
represents the initial computation flow to maintain all the
satisfiable constraints of a system. If a user operation
modifies a constrained variable V;, to satisfy the
downstream constraints of V;, the outputs of these
constraints should be recalculated according to the new
value of V. For any constraint C in the current solution
graph, if there is a directed path from V; to C, C is a
downstream constraint of V;. For example, in figure 1(b),
both C; and C, are downstream constraints of Y. Thus,
when Y is changed by a user operation, X and W that are
the outputs of C, and C; should be recalculated to satisfy
the constraints.

On the other hand, we cannot satisfy all the upstream
constraints of V; according to SGi. A constraint C is an
upstream constraint of V;, if there is a directed path from
C to V; in the current solution graph. For example, in
figure 1(b), C, is an upstream constraint of variable X.
When X is changed by a user operation, O, it is
determined by O rather than by C,. Therefore, the initial
computation flow, where X is the output of C,, cannot be
applied to satisfy the constraint. To satisfy C,, we can
change the computation flow of C, or abort/block the user
operation. Satisfying constraints only by
aborting/blocking user operations is undesirable, because
it destroys users’ work and degrades or even breaks the
interactions between users and applications.

A significant merit of multi-way constraints is that
they can be satisfied in multi-direction. Therefore, when
user operations change constrained variables, it is
desirable to maintain constraints by reconstructing their
computation flows, which can retain operations’ effects.

For a set of satisfiable constraints, CS={C;, C,,..., C,},
the reconstruction of the computation flow for any C;eCS,
1<i<n, may cause the computation flow of another
constraint to be reconstructed, propagating to further
constraints. For example, in figure 1(b), a user operation
that changes W triggers the reconstruction of the
computation flow for C;. If X is selected as the new
output of C;, the computation flows of C; and C, conflict
with each other, because X is the output of both
constraints. To solve this problem, we may change the

computation flow of C,as well. After the reconstructions
of the computation flows of both constraints, we may
obtain a new solution graph as shown in figure 1(c).

In collaborative systems where user operations may be
generated concurrently, reconstructing constraints’
computation flows is difficult. For example, it is hard for
us to determine the computation flow to satisfy a
horizontal-line constraint, which requires that the y values
of the both endpoints of a horizontal-line should be equal,
when two users concurrently change both endpoints of a
horizontal-line to different vertical positions from
different sites.

In this paper, we focus on the issue of reconstructing
computation flows to maintain a set of predefined
satisfiable constraints when concurrent user operations
modify the constrained variables in collaborative systems.
Here, a set of predefined satisfiable constraints means (1)
which constraints should be maintained in a system has
been determined and these constraints have been satisfied
on the initial document state, and (2) no constraint is
added to or deleted from the system after the execution of
the first user operation. Therefore, user operations, which
modify constrained variables, cannot interfere with the
additions and deletions of constraints.

Moreover, our research is based on acyclic constraint
graph, which means that there is not any cycle in the
undirected bipartite graph that represents the relations of
the predefined constraints and their variables.
Maintaining cyclic constraints in collaborative systems
can be very difficult, which is beyond the scope of this
paper and will be discussed in our subsequent
publications.

2.2. Problems of maintaining multi-way dataflow
constraints in collaborative systems

Collaborative systems are groupware applications to
support people working together in groups, such as
electronic conferencing/meeting, collaborative CAD and

Solution graph at user 1's site
1.0 initial state

CASE [16], [17]. Multi-way dataflow constraints are very
useful in collaborative systems, which can confine and
coordinate concurrent operations. For example, in a
collaborative spreadsheet system, dataflow constraints
may represent the relationship among different cells.
Thus, users can concurrently input data to different cells
from different sites and the underlying system maintains
the relationship automatically.

To meet the requirement of high responsiveness in the
Internet environment, replicated architecture is widely
adopted in collaborative systems. Shared documents are
replicated at the local storage of each collaborating site,
so that operations can be performed at local sites
immediately and then propagated to remote sites [1], [16].
However, maintaining consistency among replicas is
more complex than sharing a single copy of centralized
data, especially in collaborative systems with constraints,
which is illustrated in the following scenario:

Scenario 1. Constraint C; defines “middle-point=(left-
point+right-point)/2”. Two users generate operations
changing the positions of middle-point and left-point at
the same time from different sites.

Figure 2 represents scenario 1. The initial computation
flow of C;is shown in rectangular boxes 1.0 and 2.0. Two
concurrent operations are generated in the scenario: O;=
Move(left-point, P,) by user 1, and O,= Move(middle-
point, Py) by user 2. At the site of user 1, left-endpoint is
first moved to position P, resulting in the recalculation of
middle-point. The solution graph of C; will not be
modified, because C;is a downstream constraint of left-
endpoint, as shown in rectangular box 1.1. When O,
arrives and is executed at user 1’s site, it will invoke the
reconstruction of C;’s computation flow. Two possible
solution graphs are shown in rectangular boxes 1.2 and
1.3. At the site of user 2, after the execution of O,, two
possible computation flows to satisfy C; are shown in
rectangular boxes 2.1 and 2.2. Applying O; to these two
solution graphs, we can obtain two possible computation
flows of C;, as shown in rectangular boxes 2.3 and 2.4.

Solution graph at user 2's site
2.0 initial state

© ©

® ; L ®7 L@

0,= Move(lefi-point, Pa) 0= Move(Middle-point, Pb)
11afterex. O, 21afterex. O, 22afterex. O,
: ‘ ‘ ‘ ‘
® L@ ®& L@ ®" L@
RS RO 23afterex. O, 24afterex. O,
et | ot wie) | oie)
L@ " ® & ® ®T7 L@

Figure 2. Maintenance of a constraint generates divergence in collaborative environments

In scenario 1, after executing the two operations in
different orders, we can obtain three possible computation
flows to satisfy C;. Therefore, it is very likely to generate
divergence. In this example, the computation flow shown
in rectangular box 1.2 (identical to the one shown in
rectangular box 2.3) is preferable, because it retains the
effects of both user operations.

Many problems in collaborative systems are derived
from concurrent operations. Therefore, serialization
undo/redo strategy is often adopted in collaborative
systems. This strategy maintains consistency by ensuring
that operations are executed in the same order at each site
according to their total ordering relation [16], [17].
Nevertheless, applying undo/redo strategy to satisfy
constraints has many demerits:

First of all, it is very difficult to implement undo/redo
strategy in collaborative systems with multi-way dataflow
constraints. For example, in scenario 1, suppose O; total
ordering precedes O,. When O; arrives at user 2’s site, O,
should be undone. However, undoing O, is not so easy a
job as to restore the value of middle-point, because the
computation flow of C; is reconstructed after the
execution of O,. If a system contains many constraints, it
is complicated and difficult to restore a solution graph to
its previous states.

Moreover, even if we can ensure that concurrent
operations are executed in the same order at different
sites, the problems of scenario 1 still cannot be solved.
For instance, even though O; is executed before O, at
each site, we still cannot ensure that each site will obtain
the preferred solution graph shown in rectangular box 1.2
of figure 2. They may also get the result shown in
rectangular box 1.3.

Finally, this strategy degrades the performances of
collaborative systems. If an operation with a smaller
timestamp is delayed, we may have to undo and redo
many operations to execute the operation. Interactive
applications need efficient performance to meet the
demands of real-time direct manipulation. Therefore, it is
undesirable to adopt this strategy to maintain multi-way
dataflow constraints in collaborative systems.

Our challenge is to devise a strategy that is able to
reconstruct computation flows to maintain a set of
predefined satisfiable constraints according to concurrent
user operations in collaborative systems adopting
replicated architecture, and the strategy should have the
following features: (1) maintaining both satisfiable
constraints and system consistency, (2) independent of
the execution orders of concurrent operations, and (3)
taking the effects of concurrent operations into account.

2.3. Timestamp constrained variables to compare
priorities

Priority strategies are widely adopted in collaborative
systems [11], [18], which maintain consistency according
to the priorities instead of the execution orders of
concurrent operations. They can be applied to handle
conflicts and maintain constraints in collaborative
environments.

When an operation O, which intends to modify
variable V, is ready for execution at site 4, if the current
value of V' is the execution effect of O;, (we say O;
determines V), the execution of O will mask the effect of
O;. If O and O; are concurrent operations, they conflict
with each other and it is likely that O is executed before
O, at site B. Thus, the effect of O will be masked after the
execution of O; at site B and divergence occurs.

To solve this problem without undoing/redoing
operations, a priority strategy is adopted. If there is a
conflict in retaining all operations’ effects in collaborative
applications, the strategy masks operations’ effects
according to their priorities. For instance, in the above
example, if the priority of O is higher than the priority of
0;, O; will be masked at each site.

Applying this priority strategy, the correct masking
result is independent of the execution orders of the
concurrent operations which conflict with each other: If
concurrent operations are executed in the ascending order
of their priorities, the correct masking result can be
achieved by their natural masking effects. On the other
hand, if an operation with a higher priority is executed
before an operation with a lower priority, the correct
masking result can be achieved simply by voiding the
lower priority operation. For example, if O, which has a
higher priority, is executed before O; at site B, O; will not
have any effect at the site.

In this paper, the timestamp of an operation denotes its
priority, the bigger the timestamp the higher the priority.
Let n be the number of cooperating sites in a system.
Each site maintains a State Vector (SV) with n
components. Initially, SV[i]=0, for all /<i<n. After
executing an operation generated at site i, SV[i]|=SV]i]+1.
An operation is executed at the local site immediately
after its generation and then multicast to remote sites with
a timestamp of the current value of the local SV [16]. In
this paper, the value of timestamp SV, is defined as
SVol I+ SVo[2]+...+ SVo[n]. For any two operations O,
and O,, the timestamp of O, is bigger than the timestamp
of Oy, if and only if O, total ordering precedes O, [16].

To achieve the correct masking result efficiently, we
introduce the concept of the timestamp of a variable,
which is the association of a variable with operation-
timestamp:

If user operation O; changes variable V (V is
determined by O,), the timestamp of V is the timestamp of
Oi.

For example, if V' is determined by O; when O,
intending to change V is ready for execution at a site, the

timestamp of V' must be the timestamp of O, Thus,
whether O should be masked can be decided simply by
comparing the timestamps of O and V.

It is also possible that variable V' is determined by a
constraint rather than by an operation. For instance, V' is
the output of constraint C defining “V=X+Y". To satisfy
C, either X or Y should be selected as the new output of C
when V' is changed by O and becomes an input of C (i.e.
X or Y should be changed to satisfy C when a user
changes V). If X is selected as the new output and it is
previously determined by operation O, the effect of O,
will be masked, because X is determined by constraint C
rather than by O; after the execution of O. If O;’s priority
is higher than O’s priority, the outcome cannot satisfy the
priority strategy which masks the operations with lower
priorities if there is a conflict of retaining all operations’
effects in collaborative systems with constraints. Thus,
system consistency cannot be ensured if these operations
are executed in different orders at different sites. To
achieve the correct masking result, before executing O,
the timestamps of O, X and Y should be compared (Here,
we suppose that both X and Y are determined by user
operations). O can be executed only if its timestamp is
bigger than the timestamp of an input of C. If O can be
executed, the one with the smallest timestamp amongst all
the inputs of C should be selected as the new output of C,
and the operation previously determines it will be masked
automatically when the value of the new output is
recalculated according to the inputs of C.

Figure 3. Graphic representations of three
constraints: one of the inputs of C is determined
by C; in (a), timestamp value of each variable
before and after the execution of O is
represented above the variable’s name in (b) and

(c).

Some inputs of constraint C may be determined by
other constraints. For example, in figure 3(a), Y is an

input of C and the output of C; (i.e. Y is determined by C)).
Thus, before executing O, which intends to modify V in
figure 3(a), the timestamp of O and the timestamps of the
inputs of both constraints C and C; should be compared.
If some inputs of C; are determined by other constraints,
such as C; determining £, the timestamps of the inputs of
these constraints should also be compared. This process
continues until the timestamps of all the inputs of all the
upstream constraints of J are compared. It may be very
time consuming.

Comparing the timestamps of the inputs of a constraint,
C, is to find the input, V;, whose timestamp is the
minimum of the timestamps of all the inputs of the
constraint. V; will be selected as the output of C when the
current output of the constraint is changed by a user
operation. Therefore, we can define the timestamp of the
output of constraint C according to the timestamp of V;:

If variable V is the output of method M of constraint C
(V is determined by C), V's timestamp is the minimum of
the timestamps of M’s inputs.

Let V be the output of constraint C, whether operation
0, intending to change ¥, should be masked can be easily
determined by comparing the timestamps of O and V.
Thus, it is unnecessary to compare the timestamps of all
the inputs of all the upstream constraints of V. For
example, suppose in figure 3(b), W, M, Z and X, are
determined by user operations O;, O, O; and O,
respectively. Their timestamp values are 2, 3, 4, and 5. E
is determined by constraint C;. Therefore the timestamp
of E is set as the timestamp of # whose timestamp is the
minimum of the timestamps of all the inputs of C;. For the
same reason, the timestamp values of both Y and V' that
are the outputs of C; and C, are set as 2. Operation O,
which intends to modify V in the current solution graph,
can be executed only if its timestamp is bigger than the
timestamp of V. Suppose the timestamp value of O is 6 in
this example. O will be executed and /s timestamp will
be set as the timestamp of O, because V' is determined by
O rather than by C after the execution of O. To satisty C,
Y that has the smallest timestamp amongst all the inputs
of C, will be selected as the new output of C. Both the
timestamp and value of Y should be reset according to the
current inputs of C. Y is the output of constraint C;
previously, when it becomes the output of C, the
computation flow of C; should be reconstructed.
Otherwise, the computation flows of C and C; conflict
with each other. Accordingly, E that has the smallest
timestamp amongst all the inputs of C; should be changed
to the new output of C;. This process continues until 7,
which is not determined by any constraint previously, is
selected as the new output of C;. After O is executed and
the computation flows of the three constraints are
reconstructed, the final solution graph and the timestamp
value of each constrained variable are shown in figure
3(c). In the final solution graph, O,, O;, and O, still

determine M, Z and X, but O;, which determines W
previously and has the smallest timestamp amongst all the
operations, is masked. The outcome achieves the correct
masking effect.

2.4. A computation flow reconstruction strategy

Based on the timestamp information of constrained
variables, our Computation Flow Reconstruction strategy
(CFR) can be represented as follows:

If a user operation O intends to change a constrained
variable V in a solution graph, SGo, the timestamps of
and O will be compared. If the timestamp of V' is bigger
than the timestamp of O, O cannot have any effect on the
current document state. Otherwise, O will be executed
and the timestamp of V" will be set as O’s timestamp. To
maintain the downstream and upstream constraints of J in
SGo, procedures Down_flow() and Up flow() will be
invoked in sequence.

Procedure Down_flow (V)

For each constraint C while V is an

input of C, do

(1) Let Vo be the output of C, reset
the timestamp of Vo

(2) Recalculate the wvalue of Vo

(3) Call Procedure Down_flow (Vo)

After O changes V, for each constraint C while V' is an
input of it, C’s output, V,, should be recalculated and the
timestamp of ¥, should be reset, because both the value
and the timestamp of V' which is an input of C are
changed. The effects of modifying the timestamp and
value of V, should be propagated to V,’s downstream
constraints.

Procedure Up_flow (V)

If V is the output of constraint C in

SGo, then

(1) Set wvariable Vm, an input of C,
whose timestamp is the minimum of
the timestamps of all the inputs of
C, as the output of C

(2) Set V as an input of C

Solution graph at user 1's site
1.0 initial state

(3) Reset the timestamp of Vm
(4) Recalculate the value of Vm
(5) Call Procedure Down_flow (Vm)
(6) Call Procedure Up_flow(Vm)

In the above algorithm, if 7 is the output of constraint
Cin SGo, after the execution of O, which modifies V, V'is
changed to an input of C, and V,,, an input of C in SGo,
whose timestamp is the minimum of the timestamps of all
the inputs of C, is set as the output of C. Accordingly, the
timestamp of V,, should be reset and the value of V,,
should be recalculated according to the current inputs of
C. The effects of the modification of V,, should be
propagated to all the downstream constraints of V,, and
the constraint that previously determines ¥, in SGo. This
process continues until an input is selected as the new
output of an upstream constraint of V" in SGo, and this
input is not determined by any constraint in SGo.

The proposed CFR strategy reconstructs the
computation flows for a set of predefined constraints
according to the timestamps of constrained variables and
user operations, which is independent of the execution
orders of concurrent operations. For a group of
concurrent operations, OG={0,;, O,,...,0,}, applying to k
multi-way dataflow constraints, C; C,..., Cj;, on
document state DSo, if each input of any C;, /<i<k, has a
unique timestamp on DSo, applying CFR strategy, we
will obtain a unique solution graph SG; after executing
all the concurrent operations in OG in any order. For each
constrained variable V' in SG,, if V is determined by
operation O;,€ OG, 1<i<n, O;’s timestamp is the maximum
of the timestamps of all the operations in OG which target
V. Otherwise, if V' is determined by a constraint, the
timestamp of V" in SG; is bigger than the timestamp of any
operation in OG, which intends to change V. Thus, which
operations have effects on the final document state is
independent of the execution orders of these concurrent
operations. The operations, which have effects on the
final document state, determine the inputs of the
constraints. Thus, the final value of each constrained
variable is also independent of the execution orders of
concurrent operations.

Solution graph at user 2's site
2.0 initial state

®© ©
®F L@ ®F®
p 0,= Move(lefi-point, Pa) 0,= Move(Middle-point, Pb)
Llafterex. O, ® 2lafterex. O, 22afterex. O,
© ®© ®
®F L@ &K "® ®F @
12after ex. O, 23afterex. 0,
© ®©
@ &K ®

Figure 4. Maintaining both constraint and consistency

The effects of the proposed strategy can be illustrated
by following examples:

In scenario 1, suppose the timestamps of O; and O, are
T; and T, (T;>T5). The initial timestamp of left-endpoint,
right-endpoint and middle-point are T, T, and T,
respectively, which are smaller than 7; and 7.

At user 1’s site, the timestamp of /lefi-endpoint is T
after the execution of O;. When O,is executed at the site
of user 1, middle-point becomes an input of C;. Thus, the
computation flow of C; should be reconstructed. After the
execution of O,, the timestamp of middle-point is set as T».
Therefore, right-point will be selected as the new output,
because its timestamp is smaller than the timestamps of
both left-endpoint and middle-point. The final
computation flow of C; at user 1’s site is shown in
rectangular box 1.2 of figure 4.

At user 2’s site, if T, <T), after the execution of O,, we
obtain a solution graph as shown in rectangular box 2.1 of
figure 4. Otherwise, if 7, >7), the solution graphic is
shown in rectangular box 2.2. Under both conditions, the
timestamp of middle-point is set as T, after the execution
of O .

When O, is executed at user 2’s site, if the current
solution graph is in the state shown in rectangular box 2.1,
the execution of O; will not cause the reconstruction of
C’s computation flow. Thus, after executing O; at user
2’s site, we obtain a solution graph shown in rectangular
box 2.3 of figure 4. On the other hand, if O; is applied to
the solution graph shown in rectangular box 2.2, the
execution of O; will change C;’s computation flow.
Under this condition, only right-endpoint can be selected
as the output of C;, because the timestamps of both /efi-
endpoint and middle-point are bigger than the timestamp
of right-endpoint after the executions of both operations.
Thus, the final solution graph of C; at the site of user 2 is
shown in rectangular box 2.3, which is identical with the
final solution graph at the site of user 1. Therefore, both
consistency and constraint are maintained

Scenario 2, the initial solution graph of three
constraints and the timestamp value of each constrained
variable are shown in figure 5(a). Two users concurrently
execute operations O; and O,, which change V and W
respectively. The timestamp values of O; and O, are 6 and
7.

At user 1’s site, the two operations are executed in the
order O;, O»:

(1) When O; is executed, V' becomes an input of C,
because it is determined by O, rather than by C. Thus
the timestamp of V is set as the timestamp of O;.
Then, Y is selected as the new output of C, because its
timestamp is the minimum of the timestamps of all
the inputs of C. After Y is set as the output of C, the
timestamp of Y is reset and the value of Y is
recalculated, which triggers the reconstruction of the
computation flow for C; and results in that E

becomes the new output of C;. The change of the
computation flow of C; triggers the modification of
the computation flow for C;, and W is selected as the
new output. Thus, after O; is executed, the solution
graph is shown in figure 5(b),

(2) When O; is executed, the computation flow of C; is
reconstructed. M becomes the output and W is
changed to an input of C;, as shown in figure 5(c).

At the site of user 2, the two operations are executed in

the order O,, O;:

(1) When O, changes W in the solution graph shown in
figure 5(a), the outputs of all the downstream
constraints of W should recalculate their values and
reset their timestamps. Because # is not the output of
any constraint in the initial solution graph, no
constraint’s computation flow will be modified, as
shown in figure 5(d),

(2) When Oy is applied to the solution graph shown in
figure 5(d), Y, E, and M, which are the inputs with
the smallest timestamps of C, C; and C;, will be
selected as the new outputs of the three constraints.
After the execution of O;, the new solution graph is
shown in figure 5(c).

After executing the two operations in different orders
at different sites, we obtain the identical solution graphs
to satisfy the three constraints.

(d)

Figure 5. The solution graphs of three
constraints, the timestamp value of each
variable is represented above the variable’s
name.

2.5. Freshness of constrained variables

If many inputs of a constraint, C, have the same
timestamp, applying the proposed CFR strategy to
reconstruct the computation flow for C may generate
divergence. For example, in scenario 1, suppose on the
initial document state the timestamp of each constrained
variable is 7, which is smaller than the timestamps of both
O, and O,. After executing O, at the site of user 2, we
may obtain two possible solution graphs, as shown in
rectangular boxes 2.1 and 2.2 of figure 2. Even if only
one operation is executed, we get two possible solution
graphs. Therefore, system consistency cannot be ensured.

The correctness of CFR strategy is based on the
precondition that each input variable of a constraint has a
unique timestamp. Every user operation has a unique
timestamp. If an input variable of C is modified by a user
operation O, its timestamp will be set as the timestamp of
O. Therefore, its timestamp must be different from the
timestamps of the other inputs of C. However, on the
initial document state where no user operation has been
executed, the timestamp of each constrained variable is
null. Thus, the precondition, which requires a unique
timestamp of each input of a constraint, cannot be
satisfied. Under this condition, extra information should
be provided to ensure the correctness of the proposed
CFR strategy. The following approach is straightforward:

Each constraint associates each of its constrained
variables, V, with a unique variable number, denoting as
C.Vn(V), which means the variable number of V" defined
by constraint C. When the computation flow of constraint
C is to be reconstructed, if the timestamps of many inputs
of C are null, the one with the smallest variable number
will be selected as the output of C.

For a single constraint, variable numbering approach
works. However, if a variable relates to more than one
constraint, it may have many variable numbers, each
number corresponding to a constraint, such as in figure 6,
both C; and C; may define the variable number of V, so
that 7, does not have a unique variable number. It is
difficult to reconstruct the computation flows to maintain
the constraints and consistency under this condition.

c2.vn(vd) CLVn(Ve)

C2.Vn(Va) C1.Vn(Vb) C1.Vn(\Vc)

C2.Vn(Vb)

Figure 6. Graphic representation of two
constraints, the variable number of each variable
is represented above/below the variable’s name

The above problem can be avoided if a variable can
only be numbered by at most one constraint. However,
comparing the variable numbers defined by different
constraints is still a challenge. For instance, suppose in
figure 6, V,is only numbered by C, while V, is numbered

by C;. When a user operation changes V., we should
determine the output of C; by comparing the variable
numbers of V), and V,, but it is possible that the values of
C.Vn(V,) and C,.Vn(V,) are equal, then, how can we
compare the variable numbers defined by different
constraints?

To handle the above problems, we can associate each
predefined constraint with a unique constraint number. A
constraint number denotes the importance of its
associated constraint, the bigger the constraint number,
the more important the constraint. Accordingly, when a
user operation changes V. in figure 6, rather than
comparing the values of C.Vn(V,) and C,.Vn(V},), we
compare the constraint numbers of C; and C, that define
the variable numbers of V, and V), respectively. If the
constraint number of C; is bigger than the constraint
number of C,, V, will be selected as the output of C;.
Otherwise, V, will be the new output of C;.

Based on the above discussion, we define the freshness
of a constrained variable, which is used to ensure the
correctness of the proposed CFR strategy:

The freshness of a constrained variable is a 3-ary
tuple, (T, Cn, Vn). T is the timestamp of the variable. Cn
and Vn are constraint number and variable number of the
variable.

If variable V is the output of method M of constraint C
(V is determined by C), V's freshness is the minimum of
the freshness of M’s inputs.

For two variables V; and V5, the freshness of V;, (T},
Cny, Vny), is bigger than the freshness of V, (T, Cn,,
Vn,), if (1) neither 7; nor 7 is null, and 7,>75, or (2) T}
is not null but 7, is null, or (3) both 7; and 7, are null,
and Cn;>Cn,, or (4) both T; and T, are null, Cn;=Cn,,
and Vn = Vn 2.

Accordingly, we extend the CFR strategy to handle the
problem that more than one inputs of a constraint have
null timestamps: When an operation O changes a
constrained variable ¥, the computation flows of J’s
upstream constraints should be reconstructed according to
the freshness rather than the timestamps of the
constrained variables. In addition, the freshness of the
outputs of all the downstream constraints of /" should be
reset according to the current freshness of their inputs.

Suppose on the initial document state, the solution
graph to satisfy a set of predefined satisfiable constraints
is SGo, to maintain these constraints using CFR strategy,
we should initialize the freshness of each constrained
variable, so that (1) the freshness of a variable cannot be
defined by more than one constraint, (2) the freshness of
any input of any constraint C should be different from the
freshness of the other inputs of C, and (3) for the output
of a constraint, its freshness should be the minimum of
the freshness of all the inputs of all its upstream
constraints.

The above results can be achieved by applying the
following frreshness initialization strategy:

(1) In constraint number descending order, find a
constraint C in SGo, while no input of C is
determined by any other constraint,

(2) For each V}, which is an input of C, if the freshness of
V: has not been initialized, initialize the freshness of
Vi as (null, Cn, C.Vn(V;)), where Cn is the constraint
number of C and C.Vn(V;) is the variable number of
V; defined by constraint C,

(3) After the freshness of all the inputs of C has been
initialized, set the freshness of the output of C as the
minimum of the freshness of C’s inputs,

(4) For any V, a constrained variable of C, if V' is not
associated with any other constraint in SGo, delete V°
from SGo,

(5) Delete C from SGo,

(6) Repeat the above process, until all the constraints and
their constrained variables are eliminated from SGo.

According to the above approach, the constrained
variables of constraint C; can be initialized only if (1) no
input of C; is determined by any other constraint in the
initial solution graph, or (2) every constraint which
determines an input of C; in the initial solution graph has
been deleted from SGo (i.e. their constrained variables
have been initialized). Because our discussion is based on
acyclic constraint graph, at least one constraint can satisfy
the above condition (1) on the initial document state and
the above process terminates only when all the constraints
have been eliminated from an acyclic solution graph.

Initializing the freshness of constrained variables by
the above mechanism, the proposed CFR strategy is able
to reconstruct computation flows to satisfy a set of
predefined multi-way dataflow constraints according to
user operations. Both constraint satisfaction and system
consistency are maintained while concurrent operations
are allowed to be executed in any order.

3. Related work

There is a large body of research efforts contributing
to dataflow constraint maintenance in single user
interactive applications [3], [4], [8], [12], [15], [19].

Many approaches are based on constraint hierarchies
and walkabout strength strategy [4], [8], [15]. Constraint
hierarchies denote the importance of each constraint in
different levels, such as required, strong, medium and
weak, etc. Each variable is associated with walkabout
strength information. When a constraint is added to a
system, this information is used to determine whether or
not to enforce the constraint and what other constraint
should be unenforced to avoid a conflict [8].

Walkabout strength strategy determines computation
flows incrementally by comparing constraints’
importance. Therefore, to change the value of a

constrained variable V to v, walkabout strength strategy
imposes a new constraint C to ¥, which confines the
value of V equals to v. C must be defined important
enough to change the value of V' which is previously
confined by other constraints. However, in collaborative
environments, updating variables by adding new
constraints has many demerits. First of all, adding new
constraints may cause other constraints to become
unsatisfiable. When users change constrained variables by
imposing new constraints, it is common that each user
sets his/her constraints as the most important ones to
avoid them to be masked by the constraints defined by
other users. This may cause some predefined constraints
become unsatisfiable, which is contradictory to our
intention that applying constraints to confine and
coordinate user operations in collaborative systems.
Moreover, when users concurrently add constraints to a
system, walkabout strength strategy cannot ensure system
consistency.

Doppler [2] and CAB [10] are related to constraint
control in collaborative applications. Doppler supports
distributed, concurrent, one-way constraints in user
interface applications. Doppler algorithm can be applied
to systems where constraint solution graphs are
distributed, but consistency maintenance in collaborative
systems adopting replicated architecture is beyond its
concern. Doppler only maintains one-way constraints.
Therefore, the solution graph to satisfy constraints is
predefined and cannot be changed by user operations that
modify constrained variables.

CAB presents an active rule based approach to
modeling user-defined semantic relationships in
collaborative applications and explores a demonstrational
approach for end-user customization of collaboration
tools to support the definition of those relationships.
Constraints in CAB include those for coordination
between distributed users such as awareness, access, and
concurrency control, which are beyond the scopes of
graphic objects [10]. However, just as its author stated,
many complications of maintaining constraints in
collaborative environments, such as how to handle
constraint violations and coordinate interferences among
constraints, are not investigated in CAB.

In comparison with the above research efforts, we
have focused on the issues and techniques in maintaining
multi-way dataflow constraints in collaborative systems
and proposed a novel strategy that is able to reconstruct
computation flows to satisfy a set of predefined multi-
way dataflow constraints according to concurrent user
operations in collaborative environments. In our
approach, user operations will not change the importance
of any constraint and cannot cause any predefined
satisfiable constraint to become unsatisfiable. Our
strategy ensures both constraint satisfaction and system

consistency, which is independent of the execution orders
of concurrent operations.

4. Conclusion and future work

Multi-way dataflow constraints are very useful in
collaborative systems, which can confine and coordinate
concurrent operations. However, satisfying multi-way
dataflow constraints in the presence of concurrency in
collaborative systems is a challenging task. The
difficulties are caused by concurrent operations that
modify constrained variables and cause the
reconstructions of the computation flows for constraints.
Being able to solve this problem is crucial in the
development of collaborative applications, such as
collaborative CAD and CASE systems.

In this paper, we propose a computation flow
reconstruction strategy to solve this problem. This
strategy ensures both constraint satisfaction and system
consistency. Our solution does not require operations to
be undone/redone to achieve convergence, as undoing
and redoing operations degrades system performance and
increases complexity.

We are currently investigating any-undo strategy in
collaborative systems with multi-way dataflow constraints,
which allows user operations be undone/redone in any
order at any time. Undo is a very useful and common
feature in interactive applications, but just as we
discussed previously, undoing an operation may be very
difficult in collaborative systems with constraints.

There are some limitations in applying our strategy to
collaborative systems. For example, if constraints can be
added to or deleted from a system when users are
manipulating the constrained variables, divergence may
occur. Moreover, our strategy lacks the ability to handle
cyclic and inequality constraints. How to solve these
problems is currently being investigated and will be
reported in our subsequent publications.

5. References

[1] Begole James et al., “Resource Sharing for Replicated
Synchronous Groupware”. [EEE/ACM Transactions on
Networking. Vol. 9, No.6, Dec. 2001, pp.833-843.

[2] Bharat, K. and Hudson, S. E, “Supporting Distributed,
Concurrent, One-way Constraints in User Interface
Applications”, In Proceedings of the ACM Symposium on
User Interface Software and Technology, ACM, New
York, 1995, pp.121-132.

[3] Borning, A. and Duisberg, R., “Constraint-based Tools for
Building User Interfaces”, ACM Transactions on
Graphics, Vol.5, No.4, Oct.1986, pp.345-374.

[4] Borning, A. et al., “Constraint Hierarchies”, Lisp and
Symbolic Computation, Vol.5, No.3, Sep.1992, pp.223-
270.

[5] Dourish, P., “Developing a Reflective Model of
Collaborative Systems”, ACM Transactions on Computer-
Human Interaction, 2(1), 1995.

[6] Dourish, P., “Consistency Guarantees: Exploiting
Application Semantics for Consistency Management in a
Collaborative Tookit”, In Proceedings of the ACM
Conference on Computer Supported Cooperative Work,
ACM, New York, 1996, pp.268-277.

[7] Edwards, W.K., “Flexible Conflict Detection and
Management in Collaborative Applications”, In
Proceedings of the ACM Symposium on User Interface
Software and Technology, ACM, New York, 1997, pp.139-
148.

[8] Freeman-Benson. B, et al., “An Incremental Constraint
Solver”, Communications of the ACM, 33(1), Jan. 1990,
pp-54-63.

[9] Ignat, C.-L, Norrie, M.C., “Grouping in Collaborative
Graphical Editors”, ACM Conference on Computer-
Supported Cooperative Work, Chicago, USA, Nov.6-10,
2004, pp.447-456.

[10] Li, D. and Patrao, J., “Demonstrational Customization of a
Shared Whiteboard to Support User-defined Semantic
Relationships amongst Objects”, ACM GROUP’01,
Boulder, Colorado, USA, Sep. 30-Oct. 3, 2001, pp.97-106.

[11] Lin, K., Chen, D. Sun C. and Dromey, R.G., “Maintaining
Constraints in Collaborative Graphic Systems: the CoGSE
Approach”, 9th European Conference on CSCW, Paris,
France, Sep. 2005.

[12] McCartney TP., “User Interface Applications of a Multi-
way Constraint Solver”, Washington University
Department of Computer Science technical report WUCS-
95-22,1995.

[13] Monfroy, E. and Castro, C., “Basic Components for
Constraint Solver Cooperations”, Proceedings of SAC,
2003.

[14] Myers, B. A., “Graphical Techniques in a Spreadsheet for
Specifying User Interfaces”, In Proceedings of ACM
CHI'91 Conference on Human Factors in Computing
Systems, User Interface Management Systems, 1991,
pp.243-249.

[15] Sannella, M. et al., “Multi-way versus One-way
Constraints in User Interfaces: Experience with the
DeltaBlue Algorithm”, Software-Practice and Experience,
Vol. 23(5), 1993, pp.529-566.

[16] Sun, C., et al, “Achieving Convergence, Causality-
preservation, and Intention-preservation in Real-time
Cooperative Editing Systems”, ACM Transactions on
Computer-human Interaction, 5(1), 1998, pp.63-108.

[17] Sun, C. and Chen, D., “Consistency Maintenance in Real-
time Collaborative Graphics Editing Systems”, ACM
Transactions on Computer-Human Interaction, Vol. 9,
No.1, 2002, pp.1-41.

[18] Sun, D. et al, “Operational Transformation for
Collaborative Word Processing”, ACM Conference on
CSCW, Chicago, USA, Nov. 6-10, 2004.

[19] Zanden B., “An Incremental Algorithm for Satisfying
Hierarchies of Multi-way Dataflow Constraints”, ACM
Transaction on Programming Languages and Systems,
Vol.18, No.1, Jan.1996, pp.30-72.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

