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ABSTRACT 
Blind source separation (BSS) have found considerable 
interest in diverse applications.  However, there are some 
conditions where a more perceptually motivated approach 
is required.  In these cases, computational auditory scene 
analysis (CASA) provides the solution.  Harmonic 
relationships are particularly important for forming 
acoustical source separation and are hence an important 
area of research.  This paper presents a novel method for 
performing harmonic analysis and grouping. 

1 INTRODUCTION 
Blind source separation (BSS) techniques have been 
applied in fields as diverse as medicine and radar signal 
processing.  Under controlled conditions, BSS has proven 
useful to improve the performance of automatic speech 
recognition systems [1] to separate percussive musical 
sounds [2].  However, it has been shown that in 
unconstrained auditory environments, computational 
auditory scene analysis (CASA) systems offer superior 
performance. 

CASA is the endeavour to produce computational models 
of the perceptual phenomenon labelled acoustical scene 
analysis (ASA) by Al Bregman [3].  ASA is the perceptual 
process by which we to make sense of the cacophonous 
auditory world given the noisy signal that enters our ears.  
The basic principle is described by Figure 1. 
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Figure 1:  The basic process of ASA 

Thus it is apparent that the aims of CASA are somewhat 
similar to those of BSS.  However, there are also a number 
of distinctions.  Firstly, CASA systems approach the 
problem from the point of view of modelling the human 
perceptual process to varying degrees of accuracy.  In 
contrast, BSS is a purely analytical process in which the 
problem is posed as one of deconvolution.  Secondly, and 
most importantly, CASA systems assume no a priori 
knowledge of the nature of the sources nor their number.  
Finally, BSS systems are generally interested in accurately 
recovering only one of the sources, as a front end for a 
speech recognition system, for example, while CASA 
systems generally aim to accurately describe the entire 
acoustic ‘scene.’ 

The work reported here contributes to a larger project that 
aims to decompose audio signals for the purpose of audio 
information management tasks such as content-based 
retrieval and browsing.  In order to maximise the utility of 
the system no a priori knowledge of the data nor of the 
nature of queries can be assumed.  Thus, the complete 
picture that CASA systems offer is required. 

2 BACKGROUND 
CASA systems typically consist of several hierarchical 
processing stages that model, to varying degrees of 
biologic accuracy, the processes of the human perceptual 
system.  Roughly speaking all CASA systems consist of 
four principal stages: 

• Peripheral processing 
Performs a time-frequency analysis of the 
incoming audio signal.  Typically the transform 
will have non-uniform quantisation matching that 
of the low-level perceptual system which behaves 
somewhat like a constant-Q filter bank.  Only the 
amplitude peaks are retained. 

• Low-level feature extraction 
Organises the peaks into continuous tracks (or 
partials) through the time-frequency-amplitude 
space.  Tracks are monotonic along the time axis. 

• Mid-level grouping 
The tracks are organised into groups that form the 
building blocks of higher level streams.  The 
tracks in these groups will generally have a 
harmonic relationship and similar contours. 
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• High-level streaming 
Application dependent organisation of groups 
into streams.  Generally a stream is what would 
be perceived as a single sound ‘object’.  In the 
perceptual system, stream formation is highly 
context dependent and this is also reflected in 
CASA systems. 

At the mid-level grouping stage, it is known that the 
human perceptual system considers a number of partial 
characteristics in parallel to perform the grouping [3].  
Harmonicity is held to be the most important characteristic 
for grouping in the perceptual system [4] and is not 
surprisingly most often employed in CASA systems.  This 
paper presents a new algorithm to perform harmonic group 
formation.   

The utility of harmonic grouping of time-frequency 
trajectories goes beyond CASA systems.  Sinusoidal 
coding schemes also stand to benefit.  Forming harmonic 
track groupings is fundamental to the coding gain of 
codecs such as the harmonic and individual lines plus 
noise (HILN) system found in the MPEG4 standard [5]. 

3 PREVIOUS WORK 
Two basic approaches for harmonicity-based grouping 
exist.  The first involves either explicitly or implicitly 
estimating the fundamental frequency of each of the 
sources present in the signal using various standard and 
non-standard pitch estimation techniques and using these 
to generate a “harmonic sieve” [4] for each source.  A 
simplified harmonic sieve is illustrated in Figure 2. 
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Figure 2: Simplified harmonic sieve 

The chief problem associated with the existing harmonic 
sieve approaches is that the pitch estimation techniques 
employed generally assume that only one source exists in 
the given time-frame.  Hence, accurate pitch estimates can 
be difficult to obtain.  The method proposed in this paper 
applies a theory of pitch perception to determine all likely 
fundamental frequencies in a given analysis frame. 

The second method exploits the fact that if two 
frequencies are harmonically related, their ratio will be 
equivalent to the ratio of two small positive integers, (a, 
b): 

 
f i
f j

 =  
a
b  ( 1 )  

Determining whether two tracks are harmonically related 
is then simply a matter of determining whether their 
frequencies satisfy the above condition within acceptable 
error bounds. 

One example of the second technique was proposed by 
Virtanen and Klapuri [6] who used a look-up table to find 
integer ratio that was closest to the ratio of frequencies and 
then calculating the error between the two.  The range of 
allowable values for the integers a and b were restricted 
such that the fundamental frequency could not be below 
the minimum frequency in the data set.  Parenthetically, 
there is a disadvantage in this choice of minimum 
fundamental frequency as it is possible that the perceived 
fundamental frequency may not actually be present in the 
data [7]. 

4 BREGMAN’S PITCH PERCEPTION 
THEORY 

Bregman [3] observed that the differences between 
frequencies play an important role in pitch perception.  In 
the simplest case, we have a single harmonic series of 
frequencies: 

 f 1  =  f 0 ,  f 2  =  2 f 0 ,  f 3  =  3 f 0 ,  f 4  =  4 f 0 ,  …  ( 2 )  

It should be obvious that the difference between each pair 
of adjacent frequencies is equal to the fundamental 
frequency, f 0 .  That is, given H harmonics in the series: 

 ( f 2  –  f 1 )  =  ( f 3  –  f 2 )  = …  ( f H  –  f H  -  1 )  =  f 0  ( 3 )  

Further, the difference between any two non-adjacent 
frequencies will be some integer multiple of the 
fundamental.  For example,  

 f 3  –  f 1  =  3 f 0  –  f 0  =  2 f 0 .  ( 4 )  

If the data were perfectly noise free, and we only ever 
dealt with a single source, determining the fundamental 
frequency would thus be a very simple matter of 
determining the difference between any two adjacent 
frequencies in the frame.  In practice, however, to deal 
with both noisy data and multiple source separation, we 
must use a histogram to record the difference between all 
pair-wise combinations of peak frequencies available.  
This will obviously lead to a peak at each of the 
fundamental frequencies present.  Equation 4, shows that 
more accuracy can be achieved recording fractional 
differences as well. 

5 HARMONIC GROUPING 

5.1 Group Formation 
Harmonic grouping involves determining the fundamental 
track (or tracks in the case of a mixed source) and then 
using this as the basis for a harmonic sieve as illustrated in  
Figure 2.  It may be noted that Bregman’s pitch estimation 
procedure outlined in the previous section assumes that the 
signals (tracks) represent steady state tones of a single 
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frequency.  In practice, this will rarely be the case as even 
the simplified example in  Figure 2 illustrates.  

One possibility is to pick a single representative frequency 
for each track.  The major disadvantage of this approach is 
that no matter how this representative frequency is 
selected, it is highly likely that two totally unrelated tracks 
will appear the same  as shown in Figure 3. 
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Figure 3: Examples of ambiguity arising from single 

frequency representation of tracks 

To overcome this disadvantage the individual peak 
frequency values were used to populate a histogram that 
determines the fundamental frequency estimates as per 
Bregman’s procedure.  These estimates were then used to 
determine the most likely harmonic number of each peak 
in the corresponding time frame.  Finally, the most likely 
harmonic number of each track was deemed to be the 
harmonic number assigned to the majority of its peaks. 

5.2 Histogram generation 
Given that the resolution of the human ear is not fixed and 
that there is no restriction on the fundamental frequency of 
real data to be an integer, a conventional fixed-width 
histogram was inappropriate for the task since it is 
difficult, if not impossible, for a set of uniformly spaced 
frequency bins to adequately sort the data such that the 
fundamental frequencies become apparent. 

Hence, a proportionally spaced histogram was developed.  
The bin centres were derived from the actual data values 
and the bin width was an empirically determined 
proportion of the centre frequency.  Figure 4 illustrates the 
important parameters of a histogram bin. 
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Figure 4:  Histogram bin characteristics 

The algorithm for generating the histogram is as follows: 

 1. Place each data value in its own zero-width bin. 
 2. Sort the bins in ascending order of bin centre. 
 3. Set n to 0 
 4. WHILE n  < B  ,  
   IF bin[ ]n  < bin[ ]n + 1  × ( )1 – Th   (5) 

    bin[ ]n  = 
bin[ ]n  × cnt[ ]n   + bin[ ]n + 1

cnt[ ]n   + 1   (6) 

    increment cnt[ ]n   
   ELSE increment n 
  END WHILE 
where B is the number of bins and bin [ ]n  is the centre 
frequency of bin n and cnt [ ]n  is the number of entries in 
bin n. 
The peaks in the histogram will then provide the candidate 
fundamental frequencies, f 0 i ,  f o r  0  ≤  i  ≤  M  w h e r e  
M  i s  t h e  n u m b e r  o f  c a n d i d a t e  f u n d a m e n t a l  
f r e q u e n c i e s .  

5.3 Harmonic Number Determination 
Having obtained the fundamental frequency estimates as 
described above, the most likely harmonic number for 
each peak frequency, fn , in the current time frame is 
obtained as follows: 

Find e m i n  such that: 

 e m i n  =  M I N
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

⎪⎪
⎪

⎪⎪
⎪R O U N D

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫f n

 f 0 i
 –  

f n
 f 0 i

   ( 7 )  

for 0 ≤ i ≤ M 

The harmonic number, hn  is then: 

 h n  =  R O U N D
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫f n

 f 0 i m i n
  0  <_  n  <  N  ( 8 )  

where imin is the index corresponding to emin in 7. 

6 RESULTS 
Two versions of the algorithm were tested: the first 
populated the histogram with only frequency differences 
(BREG) while the second also included fractional 
differences (BREG FRAC).  These were tested against an 
implementation the Virtanen and Klapuri algorithm 
mentioned previously (V&K);  a slight variation, V&K 
(mod), and a third (original) method that used equation (1) 
and Euclid’s method of continuing fractions to determine a 
harmonicity metric.   

The algorithms were tested over a set 25 files containing 
various two source combinations of speech, music and 
artificially generated signals (chirps, tones and FM).  To 
provide a reference for the tests, the files were first 
grouped manually.  Once the algorithms were run, two 
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performance metrics were calculated by comparing the 
grouping achieved by the algorithm against the manually 
grouped reference.  The tests were performed over a range 
of threshold values.  This threshold represents the 
tolerance value in the harmonic sieve. 

The first performance metric was a straightforward 
measure of the number of files for which best possible 
grouping was achieved.  The second was the proportion of 
miss-grouped tracks with respect to the number of groups 
found.  This metric was calculated as follows: 

 M T  =  
1

M a
 ∑

i = 0

M a – 1

M T a i  ( 9 )  

 M T a i  =  
( 2 C o v e r  +  C u n d e r  +  C w r o n g )

N a i
 ( 1 0 )  

 C o v e r  =  ⎩
⎨⎧
N a i  –  N r j  N a i  >  N r j

0 o t h e r w i s e  ( 1 1 )  

 C u n d e r  =  ⎩
⎨⎧
N r j  –  N a i  N r j  >  N a i

0 o t h e r w i s e  ( 1 2 )  

 C w r o n g  =  
N a i  –  C o v e r  –  S I Z E { G a i  ∩  G r m }

N a i
 ( 1 3 )  

 m  ∋  S I Z E { }G r m ∩ G a i = M A X { }S I Z E { }G r j ∩ G a i  

 ∀  0  ≤  j ≤  N r j  ( 1 4 )  

The performance of all the algorithms is shown in Figure 
5.  This figure reveals that both original methods 
outperform the V&K algorithms with the straightforward 
BREG method performing the best.  Given previous 
discussion, it may be surprising that recording fractional 
differences would degrade performance.  However, this 
may be accounted for by the fact that recording fractional 
differences causes peaks to form in the histogram below 
the actual fundamental frequencies.  Because of increasing 
noise sensitivity at lower fundamental frequencies, this 
can cause ambiguity and errors in harmonic determination. 
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Figure 5:  Miss-grouped tracks performance measure 

Figure 6 shows an example of the grouping achieved using 
the Bregman-based algorithm recording only the raw 
frequency differences in the histogram. 
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Figure 6:  Example of grouping 

7 CONCLUSIONS 
Harmonic grouping plays an important role in 
computational auditory scene analysis (CASA) as well as 
other signal processing applications such as parametric 
coding.  A new algorithm to perform harmonic grouping 
of tracks in a sinusoidal representation has been presented 
and has been shown to outperform another recent CASA-
based approach. 
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