
Collaborative Object Grouping in Graphics Editing Systems

Steven Xia

Griffith University

Brisbane, QLD 4111,

Australia

David Sun

University of California

at Berkeley

Berkeley, CA, USA

Chengzheng Sun

Nanyang Technological

University

Singapore 639798

David Chen

Griffith University

Brisbane, QLD 4111,

Australia

Abstract

Object grouping is an effective means for managing the

complexity in graphics editing. However, research on

collaborative object grouping has not been adequate. In this

paper, we contribute a novel collaborative object grouping

technique, called CoGroup. CoGroup can achieve maximal

combined effects among compatible operations and preserve all

users' work in the face of conflict without the overhead of

undoing and redoing conflict operations as in existing

serialization approaches. CoGroup has been implemented in

collaborative word processing (CoWord) and slide authoring

(CoPowerPoint) systems and is generally applicable to a range

of off-the-shelf commercial graphics applications, particularly

CAD/CASE tools.

1. Introduction

Object-based graphics editing systems are a special type of

graphics editing systems. A document of such systems consists

of a collection of graphic objects like lines, circles, text boxes,

etc. Each object has a set of attributes, such as color, size,

position, etc. Users are allowed to create, delete objects or

modify object attributes. Object-based graphics editing is the

foundation of a wide range of off-the-shelf commercial

applications, including slide authoring systems (e.g. Microsoft

PowerPoint), word processors (e.g. Microsoft Word), CAD

systems (e.g. AutoCAD) and CASE systems (e.g. Rational

Rose). The goal of our research is to apply the Transparent

Adaptation (TA) approach [16] to convert existing single-user

graphics editing applications into real-time collaborative

versions without changing their source code.

Documents of graphics editing applications (e.g. CAD

systems) often contain a large number of objects with complex

logical structures. Managing complex structures on the basis of

individual object would cost significant efforts or sometimes

may be infeasible. Object grouping, which packs multiple

logically related objects into a single group-object and vice

versa, is an effective means to help manage the complexity of

graphics editing. When objects are grouped, they behave like a

single object in response to modifications to any attribute. At

the same time, some attributes (e.g. fill color) of group members

can still be modified individually. Furthermore, a group-object

can be a member in another group-object, which provides a

multi-level hierarchical structure for managing complex

documents. In summary, object grouping can not only prevent

mistaken actions from breaking the logical relationship among

group members, but also provide the convenience of modifying

group members individually. Object grouping is a practically

useful and frequently used function in existing single-user

graphics editing applications, and thus must also be supported in

TA-based multi-user collaborative versions.

Supporting collaborative object grouping is nontrivial due to

the increased complexity in both the data model and the

operation model of the collaborative graphics editing technique.

First, existing collaborative graphics editing techniques often

treat graphic objects as independent entities, but object grouping

introduces the group relationships among graphic objects.

Second, existing collaborative graphics editing techniques focus

on supporting three types of basic operations: a CreateObj

operation creates a new object (e.g. a line, circle, square, or

textbox); a DeleteObj operation removes an existing object; and

a ChangeAtt operation changes an attribute (e.g. size, color, or

position) of an existing object. Object grouping requires support

for two additional operations: a Group operation packs a

collection of objects into a single group-object; and an Ungroup

operation unpacks a group-object into a collection of member

objects. We shall use the term grouping operation to mean

either a Group or an Ungroup operation. The main technical

challenge here is conflict resolution and consistency

maintenance in the presence of group-objects and grouping

operations in a TA-based real-time collaborative environment.

While collaborative editing has been an active area of

research in the past decades, little has been done on the

techniques for supporting collaborative object grouping. To our

knowledge, there is only one prior work on collaborative object

grouping in graphics editing systems, which is based on

operation serialization [5]. In this work, undo and redo

strategies are used to reorder operations for consistency

maintenance in the face of conflict. Apart from the inherent high

complexity and overhead involved in operation serialization, the

work in [5] is incapable of preserving all users’ work in the face

of conflict and is not suitable for application to existing graphics

editing systems (detailed analysis and comparison shall be given

in Section 5). In this paper, we contribute a novel collaborative

object grouping technique, called CoGroup, which is based on

the Operational Transformation (OT) technique [12][14][15]

and on the TA approach [16]. The use of OT enables the

CoGroup technique to resolve conflicts among grouping

operations without using internal undo/redo; and the TA

approach makes the CoGroup technique applicable to a wide

range of existing graphics editing systems without changing

their source code. The CoGroup work is the first collaborative

1-4244-0030-9/05/$20.00 ©2005 IEEE

object grouping technique based on OT and TA, and has been

implemented in the CoWord and CoPowerPoint systems [16].

This paper reports the main research findings in designing and

implementing the CoGroup technique.

The rest of this paper is organized as follows. Section 2

introduces background knowledge about OT and TA. Section 3

defines the conflict relations and MVSD combined effects

among conflict and/or compatible basic and grouping operations.

Section 4 discusses technical issues and solutions in supporting

object grouping in the TA framework. In Section 5, the

CoGroup approach is compared with related work. Finally,

contributions and future work are summarized in Section 6.

2. Background on OT and TA

2.1 Basics of the OT Technique

OT was originally designed to support multiple users to

insert and delete characters in replicated text documents

concurrently and consistently [3][12][14]. The basic idea of OT

is to transform an editing operation defined on a previous

document state according to the effects of executed concurrent

operations, so that the transformed operation can achieve the

correct effect in the current document state. Despite its text

editing origine, OT is independent of text documents and text

editing, and has been applied to support consistency

maintenance and user-initiated undo in collaborative editing of

both text and graphics documents [1][8][10][15][16].

There are two underlying models in the OT technique: one is

the data address model which defines the way data objects in a

document are addressed by operations; the other is the operation

model which defines the set of operations that can be directly

transformed by OT functions. Different OT techniques may

have different data and operation models.

In this paper, we assume the OT data address model is a tree

of multiple linear address domains [2], as shown in Figure 1. In

this model, a data object is mapped to a position in a linear

addressing domain only if it has the position number as its

address in this domain. A data object is a terminal object if it

has no internal data structure or its internal data structure is not

addressable. A data object is an intermediate object if it has an

addressable internal data structure. A terminal object has no link

out of it, but an intermediate object has a link leading to a lower

level addressing domain, which represents this object’s internal

addressing space. An object in this data address model can be

uniquely addressed by a vector of position integers:

],...,,...,,[10 ki ppppvp = where kipivp i ≤≤= 0,][,

represents one addressing point at level i.

3 4 5 6 …210 3 4 5 6 …210

3 4 …210 3 4 …210 …210 …210 3 4 5 …210 3 4 5 …210 3 …210 3 …210

…210 …210 3 …210 3 …2103 4 …210 3 4 …210 …210 …210

3 …210 3 …210 3 4 …210 3 4 …210

Figure 1. The OT address model.

The OT operation model assumed in this paper consists of

three generic Primitive Operations (PO) [15]:

1. Insert [pos, obj] denotes inserting object obj at position pos.

2. Delete [pos, obj] denotes removing object obj at position

pos.

3. Update [pos, key, old_value, new_value] denotes changing

the attribute key, from old_value to new_value, of an object

at position pos.

These POs are generic in the sense that they are independent

of object types. With these POs, OT does not need any

application-specific knowledge to do its work.

2.2 Basics of the TA Approach

TA is an innovative approach to converting single-user

applications for multi-user real-time collaboration, without

changing the source code of the original application [16]. The

TA approach is based on a replicated system architecture where

the shared single-user application is replicated at all

collaborating sites, the use of the single-user application’s API

(Application Programming Interface) to intercept and replay the

user’s interactions with the shared application, and the use of the

OT technique to manipulate the intercepted user operations for

supporting responsive and unconstrained (i.e. concurrent and

free) multi-user interactions with the shared application. The

central idea of the TA approach is to adapt the data address and

operation models of the shared application’s API to that of the

OT technique.

More precisely, the TA approach can be described by a

reference model, as shown in Figure 2. This reference model

consists of three components: Single-user Application (SA),

Collaboration Adaptor (CA), and Generic Collaboration Engine

(GCE). The main functionalities of these components are

sketched below.

The SA component provides conventional single-user

interface features and functionalities. This component can be

either an existing commercial off-the-shelf single-user

application, or a new single-user functionality component in a

multi-user collaborative system, but this component itself has no

knowledge about multi-user collaboration.

The CA component provides application-specific

collaboration capabilities and plays a central role in adapting the

SA for collaboration. This component has the knowledge of the

SA API but not its internals. At the center of this component is

the module of Adapted Operation (AO), which represents the

SA functionalities exposed by the API. The AO can be

generated by the Local Operation Handler (LOH) module by

intercepting local user’s interactions, or received by the Remote

Operation Handler (ROH) module from remote users. With the

AO residing between the API and OT, the task of adaptation

between the API and OT is decomposed into two modules:

API

A OCA

GCE

Session ManagementSM

Remote Operation HandlerROH

Workspace AwarenessWA

Singe-User ApplicationSA

Primitive OperationPO

Operational TransformationOT

Local Operation HandlerLOH

Generic Collaboration EngineGCE

Consistency MaintenanceCM

Collaboration AdaptorCA

Application Programming

Interface

API

Adapted OperationAO

Group UndoGU

Session ManagementSM

Remote Operation HandlerROH

Workspace AwarenessWA

Singe-User ApplicationSA

Primitive OperationPO

Operational TransformationOT

Local Operation HandlerLOH

Generic Collaboration EngineGCE

Consistency MaintenanceCM

Collaboration AdaptorCA

Application Programming

Interface

API

Adapted OperationAO

Group UndoGU

SA

API-AO Adaptation

AO-PO Adaptation

L

O

H

R

O

H

O T

W A

S M

C

M

G

U

Figure 2: The TA reference model.

1. The API-AO Adaptation module is responsible for bridging

the semantic gap between the API and the AO so that the

AO can be correctly replayed on the SA.

2. The AO-PO Adaptation module is responsible for mapping

between the AO and OT-supported PO so that the

underlying OT technique can be used to ensure the

correctness of the AO parameters in the presence of

concurrency.

The GCE component provides application-independent

collaboration capabilities. This component has no knowledge of

the single-user application functionality and therefore can be

used in adapting different applications. This component

encapsulates a package of collaboration supporting techniques,

including Consistency Maintenance (CM), Group Undo (GU),

Workspace Awareness (WA), and Session Management (SM),

etc. OT is at the core of this component for supporting

consistency maintenance, user-initiated undo, and workspace

awareness in a collaborative environment.

3. Conflict Resolution in the Presence of

Grouping Operations

3.1 Conflict Relations Among Operations

In an unconstrained collaborative environment, operations

can be generated concurrently, and concurrent operations may

conflict with each other if they target common objects and their

effects cannot be accommodated in the target or result objects at

the same time. For example, multiple users may simultaneously

generate ChangeAtt operations to change the same attribute (e.g.

size, color, or position, etc.) of the same existing object. These

concurrent ChangeAtt operations conflict since their effects

cannot be accommodated within the same target object at the

same time. Moreover, two concurrent Group operations may

also conflict with each other if they target common objects since

these common objects cannot belong to two different result

group-objects at the same time. In [11] and [15], we have

discussed in detail how to define and resolve conflicts among

ChangeAtt operations. In this paper, we extend our prior work

on conflict definition and resolution to grouping operations.

To define the conflict relation, we use the following notions:

(1) Type(O) denotes the type of operation O; (2) Target(O)

denotes the set of identifiers of target objects of operation O;

and (3) Att.Key(O) denotes the attribute type of operation O if O

is a ChangeAtt operation.

Definition 1. Conflict relation “ ”. Two operations O1 and

O2 conflict with each other, expressed as O1 O2, if and only

if (1) O1 and O2 are concurrent; (2) Target(O1) ∩ Target(O2)

; and (3)

a. Type(O1) = Type(O2) = Group; or

b. Type(O1) = Type(O2) = ChangeAtt and Att.Key(O1) =

Att.Key(O2).

Definition 2. Compatible relation “ ”. Two operations O1

and O2 are compatible, expressed as O1 O2, if and only if

they do not conflict with each other; that is, (O1 O2).

According to the above definitions, sequential operations are

compatible; operations without common target objects are

compatible; and operations of different types are compatible.

Conflict relations occur only between a pair of Group operations

or a pair of ChangeAtt operations under the conditions specified

in Definition 1. The conflict/compatible relations among the

three basic operations and the two grouping operations are

summarized in Table I (called a conflict relation triangle in

[11]). The meaning of shaded cells will be explained in Section

4.6.

Table I. Conflict relation triangle of five

operation types

CreateObj DeleteObj ChangeAtt Group Ungroup

CreateObj

DeleteObj

ChangeAtt /
Group /
Ungroup

3.2 Conflict Resolution by MVSD

For compatible operations, they can be applied without any

special treatment and their effects can be combined in the target

objects even if they target common objects. For conflict

operations, however, special treatment is needed to resolve their

conflict and maintain system consistency.

There are three possible ways of resolving operation conflict

while maintaining consistency [11][15]:

1. Null-effect: none of the conflict operations has any final

effect on the target object.

2. Single-operation-effect: only one operation has a final effect

on the target object.

3. All-operations-effect: all operations have final effects on the

target objects.

In [11] and [15], a Multi-Version Single-Display (MVSD)

technique has been devised to achieve the all-operations-effect:

multiple versions of the common target objects are created to

accommodate the effects of all conflict operations, but only one

version is displayed at the user interface. Users are allowed to

choose to display any version at a time by using the system

undo facility or a multi-version management tool [15].

The multi-versioning technique is capable of preserving all

users’ work even in the face of conflict; the single-display

strategy matches the single-user interface of existing graphic

editing applications, and lends itself to integration with OT [15].

3.3 Combined Effects for Conflict and

Compatible Operations

Based on the conflict/compatible relations given in Table I

and the MVSD technique, we specify the combined effects

among the five operations: CreateObj, DeleteObj, ChangeAtt,

Group, and Ungroup, in this subsection.

According to Table I, a CreateObj operation is always

compatible with all operations, including another CreateObj

operation because the object to be created cannot be targeted by

another concurrent operation.

Figure 3. Combined effects between graphics

editing operations. O1 = Group (G1, G5), O2 =

DeleteObj (G2), O3 = DeleteObj (G2), O4 =

ChangeAtt (G2, FillColor, red), O5 = Ungroup

(G5), O6 = Ungroup (G5).

A DeleteObj operation is always compatible with all other

operations as well because the effect of a DeleteObj operation

can be combined with the effect of any other concurrent

operation targeting the same object.

1. The combined effect with another DeleteObj operation is the

deletion of the target object (Figure 3-(b)). Their effects

have been combined in the sense that the deleted object can

be recovered only after undoing both operations [15].

2. The combined effect with a ChangeAtt operation is the

change of the attribute and the deletion of the target object

(Figure 3-(c)).

3. The combined effect with a Group operation is the creation

of a group-object containing all member objects targeted by

the Group operation, except the member object targeted by

the DeleteObj operation (Figure 3-(d)).

4. The combined effect with an Ungroup operation is the

unpacking of the member objects in the group-object

targeted by the Ungroup operation and the deletion of the

member object targeted by the DeleteObj (Figure 3-(e)).

A ChangeAtt operation may conflict with another ChangeAtt

operation under the condition specified in Definition 1; but it is

always compatible with other operations because the effect of a

ChangeAtt operation can be combined with the effect of any

other concurrent operation targeting the same object.

1. The combined effect with a DeleteObj operation is

illustrated in Figure 3-(c).

2. The combined effect with a Group operation is the creation

of a group-object containing all target member objects, and

the change of the attribute of one member object targeted by

the ChangeAtt operation (Figure 3-(f))

3. The combined effect with an Ungroup operation is the

unpacking of all member objects inside the target group-

object, and the change of attribute of the member object

targeted by the ChangeAtt operation (Figure 3-(g)).

Examples for illustrating the combined MVSD effects of

conflicting ChangeAtt operations targeting common non-group

objects can be found in [11] and [15]. An example for the

combined MVSD effects of conflicting ChangeAtt operations

targeting group-objects shall be given in Section 4.2.

A Group operation may conflict with another concurrent

Group operation if they target common objects; but it is always

compatible with other operations because the effect of a Group

operation can be combined with the effect of any other

concurrent operation targeting the same object.

1. The combined effect with a DeleteObj or a ChangeAtt

operation has been illustrated in Figure 3-(d) and Figure 3-

(f), respectively.

2. The combined effect with an Ungroup operation is the

creation of a group-object containing all member objects

targeted by the Group operation and the unpacking of the

group-object (a member object targeted by the Group

operation as well) targeted by the Ungroup operation

(Figure 3-(h)).

An example for illustrating the combined MVSD effects of

two conflict Group operations is given in Figure 4. Initially, the

document contains five objects: G1, G2, …, G5, and suppose

two operations O1 = Group(G1, G2, G3) and O2 = Group(G3,

G4, G5) are generated concurrently, as shown in Figure 4-(a).

Since O1 and O2 target a common object G3, they conflict with

each other. To achieve the MVSD effect, two versions G3O1 and

G3O2 should be created to accommodate the effects of both O1

and O2, but only G3O1 is displayed in the group-object created

by O1 (Figure 4-(b)), provided that O1 has a higher priority than

O2 [15]. The version G3O2 is maintained internally in the group-

object created by O2 but is invisible at the user interface due to

the single-display strategy. However, after O1 is undone, G3O2

shall become visible as shown in Figure 4-(c).
O1 O2

G2

G1

G3

G4

G5

(a)

G2

G1

G3O1

G4

G5

(b)

G6G6 G7G7

G2

G1

G3O2

G4

G5

(c)

G7G7

Figure 4. An example for illustrating the

combined MVSD effect of two conflict Group

operations.

An Ungroup operation is always compatible with other

operations for the reasons explained above and illustrated in

Figure 3-(e), Figure 3-(g) and Figure 3-(h) respectively. The

combined effect of two concurrent Ungroup operations targeting

the same group-object is the unpacking of the target group-

object (Figure 3-(i)). Both Ungroup operations have been

combined in the sense that the group-object can be recovered

only after undoing both operations [15].

4. Supporting object grouping in the TA

framework

In this section, we shall discuss the technical issues and

solutions involved in supporting object grouping by means of

OT in the TA framework.

4.1 The Group Objects Address Model

The first issue is how to map graphics objects, particularly

group-objects, into an object address model that is compatible

with that of OT as shown in Figure 1.

A wide range of graphics editing applications have provided

varieties of mechanisms (in their APIs) for mapping any graphic

objects, including group-objects, into a tree of linear addressing

domains [16]. To illustrate this address mapping, consider the

following example: Figure 5-(a) shows a graphic document

when viewed from the user interface; and Figure 5-(b) shows the

mapping of the graphic objects in this document to a tree of

linear addressing domains when viewed from the API. In this

example, the top three objects (G1, G2, and G3) are mapped

into the top-level linear addressing domain in the tree; the

member objects in the two group-objects G2 and G3 are mapped

into two second-level addressing domains, respectively; and the

member objects in group-object G4 are further mapped into a

third-level addressing domain. As shown in this example,

member objects of a group-object forms a separate linear

addressing domain; a group-object (e.g. G4) can be a member

object of a higher level group-object (e.g. G2), allowing

multiple levels of object grouping.

Under the address model in Figure 5-(b), any graphic object

can be accessed with the vector address used in OT (see Figure

1). For example, the address of the pentagon can be expressed as

a vector address [2, 0, 1], where “2” refers to the group-object

G3, “0” refers to the group-object G4; and “1” refers to the

pentagon object.

G7

G5

G8

G9

0 1

(a) The user interface representation (b) The address model in the API

0 1G4

0 1
G3

G6

2
G2

0 1
G1

G2G2 G3G3

G4G4

Figure 5. The group objects address model.

4.2 Basic AOs targeting Group-Objects

In the TA framework (see Section 2.2), the user’s

interactions with the single-user application are intercepted and

expressed as Adapted Operations (AO). For the three basic

operations, we have three corresponding basic AOs:

CreateObjAO, DeleteObjAO, and ChangeAttAO. Effects of

these basic AOs in the group-object address model can be fully

captured by POs, so the built-in mechanisms of OT are capable

of resolving conflicts among basic AOs without any additional

mechanisms at the AO level.

A example of resolving conflicts among ChangeAttAOs

targeting group-objects is shown in Figure 6. From the initial

document state (Figure 6-(a)), three operations are generated

concurrently: O1 = ChangeAttAO([0, 0, 0], FillColor, red) to

change the color of non-group object G1 into red, O2 =

ChangeAttAO([0, 0], FillColor, green) to change the color of

group-object G5 to green, and O3 = ChangeAttAO([0], FillColor,

blue) to change group-object G6 to blue. According to the

conflict definition, these three AOs conflict. Assume their

priority relation is O1 > O2 > O3.

Figure 6. A scenario of three conflict

ChangeAttAOs.
The conflicts among these AOs can be detected in OT from

their common PO types (all are type Update), target attribute

types (all are FillColor), and overlapping addresses, (O3.addr is

the prefix of O2/O1.addr, and O2.addr is the prefix of O1.addr).

These conflicts are solved with the conflict resolution algorithm

for the Update PO [15] and the combined MVSD effects, shown

in Figure 6-(b), is achieved. In this result, multiple versions for

objects targeted by conflict AOs are created, but only the

versions created by AOs with the highest priorities (e.g. G1O1,

G2O2 and G3O2) are displayed.

4.3 Grouping AO Representation

For object grouping, we have two grouping AOs, named as

GroupAO and UngroupAO, respectively. To determine the

representation of these grouping AOs, it is necessary to analyze

their effects on both the real objects (visible from the user

interface) and the object address model (visible from the API).

As illustrated in Figure 7, the effect of a GroupAO on the

real objects is to pack multiple target objects into a single

group-object; and its effects on the internal addressing model

include: (1) inserting a group-object in the current addressing

domain (at the position before the first target object); and (2)

moving all target objects into a lower level addressing domain

(linked to the group-object). In moving these target objects, their

original relative sequence relationships are preserved (see

Figure 7-(b)).

The effect of an UngroupAO on the real objects is to unpack

the target group-object into multiple member objects; and its

effects on the address model include: (1) moving all member

objects to the position of the target group-object in the higher

level addressing domain; and (2) deleting the target group-

object (see Figure 7-(c)).

0 1 2 0 1G

0 1

0 1 2

(b) The state after

grouping

(c) The state after

ungrouping

(a) The initial state

Group Ungroup

Figure 7. Effects of GroupAO and UngroupAO.
It should be pointed out that after executing the UngroupAO

operation, the document state returns to the previous state before

the execution of the GroupAO operation at the user interface;

but the internal addresses of these objects are not restored, as

can be seen by comparing Figure 7-(a) and (c). These object

grouping effects are supported by the APIs of all existing single-

users applications we have investigated, including MS Word,

MS PowerPoint and OpenOffice Presentation.

To facilitate grouping AOs adaptation, their representations

must capture their effects on both the data objects (needed for

replaying their effects in AO-API Adaptation (see Figure 2)),

and on the object addressing space (needed for OT-processing in

AO-PO Adaptation (see Figure 2)). Since both GroupAO and

UngroupAO have the effect of moving existing objects between

different addressing domains, we introduce a new operation,

named MoveAO, to represent this effect. The MoveAO can be

represented as follows:

• MoveAO(from, to, obj) denotes the effects of deleting the

object obj at the address from and inserting the same obj at the

address to.

Based on the basic AOs and MoveAO, the two grouping AOs

can be represented as follows:

1. GroupAO(CreateObjAO(addr, go), MoveAO(from-1, to-1,

obj-1), …, MoveAO(from-n, to-n, obj-n)) denotes the effects

of creating a group-object go at address addr and moving

the target member objects obj-1, …, obj-n from addresses

from-1, …, from-n, to new addresses to-1, …, to-n at a lower

level addressing domain.

2. UngroupAO(DeleteObjAO(addr, go), MoveAO(from-1, to-1,

obj-1), …, MoveAO(from-n, to-n, obj-n)) denotes the effects

of deleting the target group-object go at address addr and

moving the member objects obj-1, …, obj-n from addresses

from-1, …, from-n, to new addresses to-1, …, to-n at a

higher level addressing domain.

It should be stressed that the object addresses used in all AOs

are positional references in the tree of linear addressing domains

(see Figure 1), rather than the visual locations of the data objects

at the user interface.

4.4 Grouping AO Translation

OT works on an operation model that includes only three

POs (see Section 2.1). For conflict resolution and consistency

maintenance by OT, all AOs, including grouping AOs, must be

translated into suitable POs according to their effects on the OT-

related address model. Translation of the basic AOs is

straightforward: a CreateObjAO has the effect of inserting an

object in the address model, so it can be translated into an Insert

PO; a DeleteObjAO has the effect of deleting an object from the

address model, so it can be translated into a Delete PO; a

ChangeAttAO has the effect of changing an attribute of an

object in the address model, so it can be translated into an

Update PO.

On the other hand, GroupAO and UngroupAO are compound

AOs in the sense that they cannot be translated into a single PO.

The translation of a compound AO consists of translating each

composing AO into a list of POs.

Definition 3. Translation Rules for Grouping AOs. For each

composing AO in a grouping AO, it is translated as follows:

1. if the composing AO is a basic AO: CreateObjAO/

DeleteObjAO/ChangeAttAO, then it is translated into a

single PO: Insert/Delete/Update PO;

2. if the composing AO is MoveAO, then it is translated into a

pair of POs: Delete and Insert, where the two POs must

refer to the same object (which is different from a pair of

independent Delete and Insert).

Let GroupAO-POList denote the translated PO list for

GroupAO, UnGroupAO-POList denote the translated PO list for

UngroupAO. Based on the translation rules in Definition 3, we

have:

1. GroupAO-POList = [Insert(go-addr, go-ref), Delete(from-1,

moref-1), Insert(to-1, moref-1), …, Delete(from-n, moref-n),

Insert(to-n, moref-n)).

2. UngroupAO-POList=[Delete(go-addr, go-ref), Delete(from-

1, moref-1), Insert(to-1, moref-1), …, Delete(from-n, moref-

n), Insert(to-n, moref-n)).

It should be stressed that the translated PO list captures only

part of the grouping AO effects (including the timestamps for

detecting concurrency [14] and priorities), which are needed for

generic OT processing. Additional application-specific

mechanisms are needed to detect and resolve operation conflict

at the AO level, which are discussed in the following

subsections.

4.5 Grouping AO Conflict Detection

Based on the AO representation and translation schemes

discussed in Sections 4.3 and 4.4, conflicts among basic AOs

can be fully detected and resolved by the mechanisms built in

the generic OT technique [15]. However, detection of conflicts

among GroupAOs requires the knowledge of operation type

Group (see Definition 1), which is unknown to the OT

component in GCE (see Figure 2). Therefore, conflict detection

in the presence of grouping AOs requires additional mechanisms

at the AO level.

According to Definition 1, a pair of GroupAOs may conflict

under three conditions: (1) they are concurrent; (2) they have

overlapping target objects; and (3) they have the same operation

type GroupAO. OT is able to detect the first two conditions by

examining the POs translated from GroupAOs, but the third

condition must be checked at the AO level. To facilitate the

check of the third condition and to propagate the concurrency

and overlapping conditions result from the PO level to the AO

level, we have established bi-directional references between

each AO and its translated POs. A routine GetAO(PO) is

provided to get the AO associated with the PO. Moreover, the

underlying OT functions have been extended as follows: when a

PO1 is transformed against a concurrent PO2 and found to have

overlapping target objects with PO2, this finding and PO2’s

reference to its associated AO must be recorded in the

transformed PO1. At the AO level, a routine

POConcurrentAndOverlapping(PO1) is provided to check

whether PO1 has been found to be concurrent and overlapping

with another operation, and another routine GetCOAO(PO1) is

provided to get the AO associated with PO2. Based on the

above extensions, we are able to determine whether a GroupAO

is in conflict with another GroupAO by invoking the

GAOConflictDetection() routine defined in Figure 8.

GAOConflictDetection(TPO)

{

if(POConcurrentAndOverlapping (TPO) == true)

{

if(GetAO(TPO).type == GetCOAO(TPO).type == Group)

return true;

}

return false;

}

Figure 8. The routines for detecting grouping

AO conflicts.

4.6 Conflict Resolution and Combined Effects

4.6.1. The Need for AO-level mechanisms. OT is able to

resolve conflicts among basic AOs, but additional mechanisms

at the AO level are needed to resolve conflicts among

GroupAOs. This is because resolving GroupAO conflicts

requires semantic knowledge of the GroupAO and its

representation, which are not captured by individual POs and

hence unknown to the OT component in GCE. For the same

reason, to achieve combined effects among compatible AOs in

the presence of grouping AOs, additional mechanisms at the AO

level are also needed. In other words, resolving conflicts among

conflict operations and achieving the combined effects among

compatible operations require the interaction and collaboration

between the underlying generic OT component and the AO-PO

Adaptation module in the TA framework (Figure 2).

An overall picture of the responsibility distribution between

these two components is shown in Table I (see Section 3.1): the

non-shaded cells indicate the sole responsibility areas of the

generic OT component for resolving conflicts and achieving the

defined combined effects among basic AOs; the shaded cells

correspond to joint responsibility areas of OT plus additional

AO-level mechanisms (in the AO-PO Adaptation module) for

resolving conflict and achieving combined effects in the

presence of grouping AOs.

The rest of this section shall focus on mechanisms for

resolving conflicts and achieving combined effects for the

shaded cells in Table I.

In the following discussion, we shall use the following

auxiliary functions: (1) GetMove(POx) returns the composing

MoveAO from which the PO POx is translated; and (2)

GetCOMove(POx) returns the composing MoveAO of the

grouping AO whose reference is recorded in the PO POx.

Implementation of these functions is straightforward based on

the AO-PO association and AO reference recorded in a

transformed PO. Furthermore, we use the term Common Target

MoveAO (CT-MoveAO) to mean a composing MoveAO of a

grouping AO that moves a common target object targeted by

another concurrent AO.

4.6.2. Resolving GroupAO Conflicts. According to the MVSD

combined effect defined in Section 3.3, the conflict between two

GroupAOs is resolved based on their priorities. Given two

conflict GroupAOs: O1 with a higher priority and O2 with a

lower priority, their common target objects should be packed in

the group-object created by O1 and excluded from the group-

object created by O2.

In the GroupAO representation, the effects of moving target

objects are represented by composing MoveAOs. Therefore, for

a pair of conflicting GroupAOs O1 and O2, there must be a CT-

MoveAO in each of them, which target a common target object.

Based on this observation, the strategy of resolving the conflict

between O1 and O2 is as follows:

1. if the O1 is executed after O2, the from parameter of the CT-

MoveAO of O1 should be set to the to parameter of the CT-

MoveAO of O2, so that the common target object shall be

moved to the group-object created by O1.

2. if O2 is executed after O1, the CT-MoveAO of O2 should be

cancelled so that the common target object is excluded from

the group-object created by O2.

Based on the above strategy, the routine

GAOConflictResolution(TPO) is defined (Figure 9) for resolving

the conflict between the GroupAO (obtained by calling GetAO)

from which the TPO was translated and the GroupAO (obtained

by calling GetCOAO) with which TPO was associated due to

concurrency and overlapping relationship.

GAOConflictResolution(TPO)

{

if(GetAO(TPO).priority > GetCOAO(TPO).priority)

GetMove(TPO).from = GetCOMove(TPO).to;

else

GetMove(TPO).cancelled = true;

}

Figure 9. The routine for resolving conflicts

among GroupAOs.
Based on the MVSD effect, our conflict resolution approach

also supports selectively displaying versions that are hidden by

default. Assume that between the two conflict GroupAOs O1

and O2, O1 has a higher priority than O2. According to the

MVSD effect, two versions of the common target object are

created, but only the version created by O1 is displayed. To

display the version created by O2, a simple strategy is to undo

O1. The disadvantage of this strategy is that all O1's object-

packing effects are unnecessarily discarded, including those

non-common objects that are not targeted by O2. To preserve

O1's effects to the maximum extent, a better strategy is to

partially undo the composing CT-MoveAO of O1. From the

adjustment to this MoveAO while resolving the conflict between

O1 and O2, it is clear that the effect of this undo is only to move

the common target object from O1's group-object into O2's,

while all other member objects in O1's group-object are intact.

A detailed discussion on this partial-undo based version

selection scheme is beyond the scope and space limitation of

this paper. The reader is referred to [15] for a detailed

discussion on a full-undo based version selection scheme.

4.6.3. Achieving Combined Effects for Compatible

Operations in the Presence of GroupAOs. According to the

combined effects of concurrent and compatible operations

defined in Section 3.3 (see Figure 3), their effects should be

accommodated on the common target object at the same time.

Here we shall focus in scenarios in which two concurrent and

overlapping compatible AOs are involved and at least one of

them is a grouping AO. Given a pair of AOs, O1 and O2

involved in such a scenario, suppose O1 is executed after O2.

When O1 is executed, its parameters need to be adjusted

according to the changes caused by O2 to achieve the combined

effect. Next, we shall discuss adjustment strategies for different

AO type combinations.

In the routines discussed in this section, the input parameter

TPO is the transformed PO of the currently processed AO (i.e.

O1). With TPO, O1 can be obtained by calling GetAO; O2 can

be obtained by calling GetCOAO; the CT-MoveAO of O1 can be

obtained by calling GetMove if O1 is a grouping AO; and the

CT-MoveAO of O2 can be obtained by calling GetCOMove if

O2 is a grouping AO.

Consider the scenario in which O1 is a GroupAO and O2 is a

DeleteObjAO. When O1 is executed, the common target object

has been deleted by O2. Therefore, this object should be

excluded from the group-object created by O1. From the

GroupAO representation, we know that the effect of moving the

common target object is represented by the CT-MoveAO of O1,

so our strategy for this scenario is to cancel the CT-MoveAO of

O1. This strategy also applies to the AO combinations of

UngroupAO versus DeleteObjAO 1(the DeleteObjAO targets a

member object of the UngroupAO's target group-object) and

UngroupAO versus UngroupAO.

On the other hand, if O1 is a DeleteObjAO and O2 is a

GroupAO, when O1 is executed, its target object has been

moved into the group-object created by O1. Based on the

GroupAO representation, we know that the current address of

the common target object is indicated by the to parameter of

O2’s CT-MoveAO, so our strategy for this scenario is to set O1's

address to the to parameter of O2's CT-MoveAO. This strategy

also applies to AO combinations ChangeAttAO/DeleteObjAO

versus UngroupAO (the ChangeAttAO/DeleteObjAO targets a

member object of the UngroupAO's target group-object),

DeleteObjAO versus GroupAO, and UngroupAO versus

GroupAO.

Based on the above strategies, the routine for achieving

combined effects for concurrent and overlapping GroupAO and

DeleteObjAO is shown in Figure 10.

CE_GroupDeleteObj(TPO)

{

if(GetAO(TPO).type == GroupAO)

GetMove(TPO).cancelled = true;

else

GetAO(TPO).addr = GetCOMove(TPO).to;

}

Figure 10. The routine for achieving combined

effects for GroupAO and DeleteObjAO.
Consider the scenario in which O1 is a ChangeAttAO, O2 is

an UngroupAO and they both target the same group-object.

When O1 is executed, the common target group-object has been

unpacked into a continuous range of multiple objects by O2 (see

Figure 7-(c)). From the UngroupAO representation, we know

1 In this pair, the former AO is the AO current being processed

(i.e. O1), and the latter AO is the one concurrent and

overlapping with the former (i.e. O2).

that the address and length of the unpacked object range are

indicated by O2's composing MoveAOs. Therefore, our strategy

for this scenario is to set O1's effect range (i.e. address and

length) to cover all unpacked objects. This strategy also applies

to AO combinations DeleteObjAO versus UngroupAO(the

DeleteObjAO targets the same group-object as the UngroupAO)

and GroupAO versus UngroupAO.

In the scenario in which O1 is an UngroupAO and O2 is a

ChangeAttAO, when O1 is executed, O2 has applied its effect

on all member objects of the target group-object. To make sure

that after ungrouping, all the unpacked objects will still have

O2's effect, our strategy is to apply O2's effect to data objects of

all O1's composing MoveAOs.

CE_UngroupChangeAttGO(TPO)

{

if(GetAO(TPO).type == ChangeAttAO)

SetEffectRange(GetAO(TPO), GetCOAO(TPO));

else

{

for(i = 0; i < GetAO(TPO).MoveAOList.count; i ++)

ApplyChangeAtt(GetAO(TPO).MoveAOList[i].obj, GetCOAO(TPO));

}

}

Figure 11. The routine for achieving combined

effects for UngroupAO and ChangeAttAO

(targeting the group-object).
Based on the above strategies, the routine for achieving

combined effects for concurrent UngroupAO and ChangeAttAO

targeting the same group-object is shown in Figure 11.

4.7 Grouping AO-PO Adaptation Algorithm

With the routines discussed above, the AO-PO Adaptation in

the TA framework can be extended to support grouping AOs, as

shown in Figure 12.

First, the input AO is translated into a series of POs saved in

a PO list. Then, each PO in the list is processed as follows. The

PO is first transformed in OT. Then, if this AO involves in a

GroupAO conflict, the conflict resolution routine is invoked.

Otherwise, if this AO is overlapping with another concurrent

compatible AO and at least one of them is a grouping AO, the

CompatibleGAOCombinedEffects routine is invoked to apply

AO level mechanisms for achieving combined effects for

compatible AOs. In the CompatibleGAOCombinedEffects

routine, suitable routines discussed in Section 0 are invoked

according to AO type combinations.

GAO-POAdaptation(AO)

{

POList = TranslateAO(AO);

for(i = 0; i <POList.count; i++)

{

TransformPO(POList[i]);

if(GAOConflictDetection(POList[i]) == true)

GAOConflictResolution(POList[i]);

else if (POConcurrentAndOverlapping(POList[i]) == true &&

IncludingGroupingAO(GetAO(POList[i]), GetCOAO(POList[i])) == true)

CompatibleGAOCombinedEffects(POList[i]);

}

}

Figure 12. The routines for adapting AOs in the

presence of grouping AOs.

5. Comparison to Related Work

The CoGroup technique reported in this paper is the first

collaborative object grouping technique based on the OT

technique and designed in the TA framework. This work made

important extensions to our prior work on OT and TA in order

to support collaborative object grouping. Particularly, this work

contributes a new definition of conflict/compatible relations

among graphic editing operations in the presence of object

grouping operations, new definitions of desirable combined

effects among a mixture of basic and grouping operations to

maximize the natural combination of compatible operations and

to preserve all users work in the face of conflict, and novel data

and operation adaptation techniques to bridge the gap between

grouping operations and OT-supported primitive operations in

the TA framework. These extensions are essential to apply OT

and TA to a wider range of commercial off-the-shelf editing

systems, particularly CAD/CASE applications.

To the best of our knowledge, the operation serialization

technique reported in [5] is the only prior work on collaborative

object grouping in graphic editing systems. Both the CoGroup

work in this paper and the work in [5] address similar issues

involved in conflict resolution for a similar collection of

graphics editing operations, but these two work are very

different in their approaches to conflict definitions, combined

effects among conflicting/compatible operations, and techniques

for conflict resolution.

The notion of conflict in CoGroup is based on the conditions

that operations are concurrent, target common objects, and

cannot be accommodated in the common target objects. Under

this conflict definition, conflict may occur only between

ChangeAtt operations or between Group operations, and the

relations among all other operations are compatible (as shown in

Table I). Operation conflicts are resolved by an all-operations-

effect technique: multiple versions of the common target objects

are created to preserve the effects of all operations, but one

version at a time is displayed at the user interface (the MVSD

technique). CoGroup is based on and extends OT for conflict

resolution and consistency maintenance.

The notion of conflict in [5] is based on the conditions that

operations are concurrent and do not commute. Under this

conflict definition, conflict may occur not only between

ChangeAtt operations and between Group operations, as in the

CoGroup technique (see Table I), but also among other

operations, as shown Table II (in which the ChangeAtt operation

represents the setColor, SetBckColour, setZ, SetText, translate,

scale operations in [5]).

Table II. Conflict relation triangle of five

operation types in the prior work [5].

CreateOb

j

DeleteObj ChangeAtt Group Ungroup

CreateObj

DeleteObj / / / /
ChangeAtt / / /
Group / /
Ungroup /

For the purpose of resolving operation conflict, two types of

conflict are further distinguished in [5]: real conflicts are those

which can be resolved by preserving the effect of one of the

conflict operations (or none of them); and resolvable conflicts

are those which can be resolved by combining partial effects of

conflict operations. Regardless whether the conflict is real or

resolvable, conflict resolution is based on operation

serialization, which achieves the defined effects either by using

operation-specific ordering rules (specified in [5]) for resolvable

conflicts, or by using any priority scheme for real conflicts.

Serialization is essentially a single-operation-effect or null-effect

conflict resolution technique [11].

It is well known that the combined effects achievable by an

all-operations-effect technique cover all combined effects

achievable by a single-operation-effect technique, but the

inverse is not true [11]. Furthermore, some combined effects

among conflict Group operations achievable by CoGroup are

not achievable by the serialization work in [5]. For example,

when two concurrent Group operations target some common

and non-common objects, they are regarded as conflict

operations in both CoGroup and [5] (a real conflict). The

combined effects in CoGroup is following: both Group

operations shall succeed in creating their result group-objects;

both group-objects contain their non-common target objects, but

only one of them has the common target objects displayed (see

Figure 4). However, the combined effects in [5] is the following:

one of the two Group operations shall win and create the group-

object containing all target objects, but the other one shall lose

completely and has no any effect (not even the effect of

grouping the non-common target objects).

In [5], achieving the partially combined effects for some

resolvable conflicts is the main motivation for disqualifying OT

from being applied for this purpose and for devising the new

operation serialization technique. As shown in the example in

Figure 6, however, the partially combined effect in [5] can be

achieved by using the generic OT technique without additional

application-level support, and more comprehensive MVSD

combined effects can be achieved by extending OT with the

application-level adaptation. A major problem with operation

serialization is its undoing and redoing conflict operations when

they are executed out of the correct conflict resolution order,

which may cause potential interface disruption (when the

undo/redo effects are visible at the user interface) and major

performance overheads. It should be pointed out that the

undo/redo involved in operation serialization is different from

the collaborative undo capability in OT: the former is initiated

by the internal system out of the necessity for resolving conflict

among grouping operations, but the latter is initiated by the

external user for the purpose of eliminating the effect of error

grouping operations [13].

Last but not least, CoGroup is designed in the TA framework

so it can be applied to a wide range of commercial off-the-shelf

graphics editing systems (and this generality has been tested by

its successful application in CoWord2 and CoPowerPoint3,

whereas the work in [5] was designed in the context of a

collaboration-aware graphics editing system and its applicability

to collaboration-transparent applications is unknown.

It is worth pointing out that there exist other alternative

approaches to conflict resolution based on locking (e.g.

Ensemble [9] and GroupDraw [4]) or different kinds of

serialization (e.g. GroupDesign [7] and LICRA [6]), but none of

them addressed the issues related to collaborative object

2 CoWord Demo. http://reduce.qpsf.edu.au/coword.

3 CoPowerPoint Demo. http://reduce.qpsf.edu.au/copowerpoint.

grouping. The reader is referred to [11] and [15] for detailed

comparisons between the multi-versioning approach, on which

CoGroup is based, and these alternative approaches.

6. Conclusions and Future Work

In this paper, we have contributed a novel technique, called

CoGroup, to supporting collaborative object grouping in

graphics editing systems. The CoGroup technique is the first

collaborative object grouping technique based on the OT

technique in the TA framework. Major technical contributions

of this work include new definitions of conflict/compatible

relations among graphics editing operations in the presence of

object grouping operations, new definitions of desirable

combined effects among basic and grouping operations to

maximize the natural combination of compatible operations and

to preserve all users work in the face of conflict, and novel data

and operation adaptation techniques to bridge the gap between

grouping operations and OT-supported primitive operations in

the TA framework. The collaborative object group capability

provided by CoGroup is essential to expand the application

scope of OT and TA to a wider range of commercial off-the-

shelf editing systems, particularly CAD/CASE applications,

which are the new targets of our research plan.

7. Reference

[1] J. Begole, M. Rosson and C. Shaffer. Flexible collaboration

transparency: supporting worker independence in

replicated application-sharing systems. ACM Transactions

on Computer Human Interaction, 6(2), 1999, pp. 95 – 132.

[2] A. Davis, C. Sun and J. Lu. Generalizing operational

transformation to the standard general markup language. In

Proceedings of the ACM Conference on Computer-

Supported Cooperative Work. November 2002, pp. 58 – 67.

[3] C. A. Ellis and S. J. Gibbs, Concurrency control in

groupware systems. In Proceedings of ACM Conference on

Management of Data. May 1989, pp. 399 – 407.

[4] S. Greenberg and M. Roseman, and D. Webster. Issues and

experiences designing and implementing two group

drawing tools. In Proceedings of the 25th Annual Hawaii

International Conference on the System Sciences. January

1992, pp. 139 – 250.

[5] C. Ignat and M. C. Norrie. Grouping in collaborative

graphical editors. In Proceedings of Computer Supported

Cooperative Work. November 2004, pp. 447 – 456.

[6] R. Kanawati. LICRA: A replicated-data management

algorithm for distributed synchronous groupware

application. Parallel computing, 22, 1997, pp. 1733 –

1746.

[7] A. Karsenty, C. Tronche, and M. Beaudouin-Lafon.

Groupdesign: shared editing in a heterogeneous

environment. Usenix Journal of Computing Systems, 6(2),

1993, pp. 167 – 195.

[8] D. Li and R. Li. Transparent sharing and interoperation of

heterogeneous single-user applications. In Proceedings of

ACM Conference on Computer Supported Cooperative

Work. November 2002, pp. 246 – 255.

[9] R. E. Newman-Wolfe, M. Webb and M. Montes. Implicit

locking in the ensemble concurrent object-oriented

graphics editor. In Proceedings of the Computer Supported

Cooperative Work. New York, 1992, pp. 265-272.

[10] M. Ressel, D. Nitshe-Ruhland and R. Gunzenbauser. An

integrating, transformation-oriented approach to

concurrency control and undo in group editors. In

Proceedings of ACM Conference on Computer Supported

Cooperative Work. November 1996, pp. 288 – 297

[11] C. Sun and D. Chen. Consistency maintenance in real-time

collaborative graphics editing systems. ACM Transaction

on Computer-Human Interaction, 9(1), March 2002, pp. 1

– 41.

[12] C. Sun and C. A. Ellis. Operational transformation in real-

time group editors: issues, algorithms, and achievements.

In Proceedings of the ACM Conference on Computer

Supported Cooperative Work. 1998, pp. 59 – 68.

[13] C. Sun. Undo as concurrent inverse in group editors. ACM

Transactions on Computer-Human Interaction, 9(4),

December 2002, pp. 309 – 361.

[14] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.

Achieving convergence, causality-preservation, and

intention-preservation in real-time cooperative editing

systems. ACM Transactions on Computer-Human

Interaction, 5(1), March 1998, pp. 63 – 108.

[15] D. Sun, S. Xia, C. Sun, and D. Chen. Operational

transformation for collaborative word processing. In

Proceedings of ACM Conference on Computer Supported

Cooperative Work. November 2004, pp. 437 – 446.

[16] S. Xia, C. Sun, D. Sun, H. Shen, and D. Chen. Leveraging

single-user applications for multi-user collaboration: the

coword approach. In Proceedings of ACM Conference on

Computer Supported Cooperative Work. November 2004,

pp. 162 – 171.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

