
A Theory of Forgetting in Logic Programming∗

Kewen Wang1,2 and Abdul Sattar1,2 and Kaile Su1

1Institute for Integrated Intelligent Systems
2School of Information and Computation Technology

Griffith University, Australia
{k.wang,a.sattar,k.su}@griffith.edu.au

Abstract

The study of forgetting for reasoning has attracted consider-
able attention in AI. However, much of the work on forget-
ting, and other related approaches such as independence, ir-
relevance and novelty, has been restricted to the classical log-
ics. This paper describes a detailed theoretical investigation
of the notion of forgetting in the context of logic program-
ming. We first provide a semantic definition of forgetting un-
der the answer sets for extended logic programs. We then dis-
cuss the desirable properties and some motivating examples.
An important result of this study is an algorithm for comput-
ing the result of forgetting in a logic program. Furthermore,
we present a modified version of the algorithm and show that
the time complexity of the new algorithm is polynomial with
respect to the size of the given logic program if the size of
certain rules is fixed. We show how the proposed theory of
forgetting can be used to characterize the logic program up-
dates.

Introduction
The ability of discarding irrelevant information is a key fea-
ture that an intelligent agent must possess to adequately
handle reasoning tasks such as query answering, planning,
decision-making, reasoning about actions, knowledge up-
date and revision. This ability is referred to as forgetting (Lin
and Reiter 1994) or elimination (Brown 1990), and, often,
studied under different names such as irrelevance, indepen-
dence, irredundancy, novelty and separability (see (Subhra-
manian et al. 1997; Lang et al. 2003) for more details). For
example, we have a knowledge base K and a query Q. It
may be hard to determine if Q is true or false directly from
K. However, if we discard or forget some part of K that
is independent of Q, the querying task may become much
easier.

According to (Lin and Reiter 1994), if T is a theory in
propositional language and p is a ground atom, then the
result of forgetting p in T is denoted forget(T, p) which
can be characterized as T (p/true) ∨ T (p/false), i.e. the
disjunction of two theories obtained from T by replacing
p by true and false, respectively. For example, if T =

∗The third author was partially supported by the NSFC under
grants 60496327, 10410638 and 60473004
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

{(cooking∨cleaning)∧singing}, then forget(T, singing)
is the theory {cooking ∨ cleaning}.

The notion of forgetting has found its applications in ar-
tificial intelligence. However, the existing theories of for-
getting are mainly investigated in the context of classical
logics. It would be interesting to establish a theory of for-
getting in logic programming and nonmonotonic reason-
ing. This issue is first considered in (Zhang et al. 2005)
and consequently two kinds of forgetting are defined (the
strong and weak forgettings) by first transforming a logic
program P into a reduced form and then deleting some rules
(and literals). While they have been used to resolve conflicts
in logic programming, these approaches suffer from some
shortcomings: (1) There is no semantic justification for the
strong or weak forgetting. Specifically, the relationship be-
tween the semantics of a logic program and the result of the
strong or weak forgetting is unclear. (2) It is not addressed
in (Zhang et al. 2005) that what are the desirable properties
for a reasonable notion of forgetting in logic programming.
In particular, one may ask what is the difference of these
notions of forgetting from traditional approaches to dele-
tion of rules/literals in logic programming and databases. (3)
More importantly, both of the strong and weak forgettings
are syntax-sensitive. That is, equivalent programs may have
different results of forgetting about the same literal. For ex-
ample, P = {p ← . q ← not p} and P ′ = {p ←}
are equivalent programs under the answer sets. However,
WForgetLP(P, p) = {q ←} and WForgetLP(P ′, p) = {}
are not equivalent. Here WForgetLP(P, p) denotes the result
of the weak forgetting about p in P .

Thus, a more reasonable notion of forgetting is highly
desirable for nonmonotonic reasoning (and logic program-
ming). In this paper, we choose answer set programming
(ASP) (Lifschitz 2002) as the underlying nonmonotonic
logic. ASP is a paradigm of logic programming under the
answer sets (Gelfond and Lifschitz 1990) and it is becom-
ing one of the major tools for knowledge representation due
to its simplicity, expressive power, connection to major non-
monotonic logics and efficient implementations. First of all,
we believe that a reasonable semantic notion of forgetting in
ASP should satisfy the following criteria. Let P be a logic
program and P ′ be the result of forgetting about a literal l in
P .

(F1) The proposed forgetting is a natural generalization of



classical one: T (p/true) ∨ T (p/false).
(F2) No new symbol is introduced in P ′.
(F3) The reasoning under P ′ is equivalent to the reasoning

under P if l is ignored.
(F4) The definition of forgetting is not syntax-sensitive.

That is, the results of forgetting about l in equivalent pro-
grams are also equivalent.

(F5) The semantic notion of forgetting should be coupled
with a syntactic counterpart.

(F1) specifies the major intuition behind forgetting and clar-
ifies the difference of forgetting from deletion; (F2) is nec-
essary because the forgetting is to eliminate redundant sym-
bols. This is a difference of forgetting from some approaches
to revision, update and merging (it is another issue to com-
bine forgetting with other approaches to adding new infor-
mation); (F3) provides a semantic justification for the for-
getting. Note that P ′ and P may have different answer sets
in general (see Proposition 3); (F4) guarantees the notion of
forgetting is well-defined. (F5) is useful for applications of
forgetting in knowledge representation.

To our best knowledge, there is no theory of forgetting
in nonmonotonic reasoning or logic programming which is
based on the above criteria. However, the definition of for-
getting in classical logic cannot be directly translated to
logic programming. For example, if P is a logic program,
P (p/true)∨P (p/false) is not even a logic program in gen-
eral. Moreover, as we will see later, it is not straight forward
to replace P (p/true)∨P (p/false) by an appropriate logic
program.

In this paper, we first introduce a notion of forgetting in
answer set programming and then show that this notion of
forgetting satisfies the above criteria (F1)-F(4) as well as
some other attracting properties. Thus our notion of forget-
ting captures the classical notion of forgetting. To justify
(F5), we then develop an algorithm for computing the re-
sult of forgetting in a given logic program; and a variant
of the algorithm that is polynomial time if the size of cer-
tain rules is fixed. These results illustrate that our notion of
forgetting possesses all major properties of classical forget-
ting. The proposed theory of forgetting provides a general
framework for reasoning tasks such as merging, update and
revision of logic programs. As an example, we show how to
capture the update answer sets (Eiter et al. 2002) by using
our theory of forgetting. Our study also shows that develop-
ing a semantic theory of forgetting for logic programs is a
non-trivial task.

Preliminaries
We deal with extended logic programs (Gelfond and Lifs-
chitz 1990) whose rules are built from some atoms where
default negation not and strong negation ¬ are allowed. A
literal is either an atom a or its strong negation ¬a. For any
atom a, we say a and ¬a are complementary literals. For any
set X of literals, not X = {not l | l ∈ X}.

An extended logic program is a finite set of rules of the
following form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln (1)

where l0 is either a literal or empty, each li is a literal for
i = 1, . . . , n, and 0 ≤ m ≤ n. If l0 is empty, then the rule is
a constraint.

Without loss of generality, we consider propositional pro-
grams. For technical reasons, it should be stressed that the
body of a rule is a set of literals rather than a multiset. For
instance, a ← not b, c, c is not a rule in our sense while
a ← not b, c is a rule. That is, we assume that any rule of
a logic program has been simplified by eliminating repeated
literals in its body.

If a rule of form (1) contains no default negation, it is
called positive; P is a positive program if every rule of P is
positive.

If a rule of form (1) contains no body atoms, it is called
negative; P is a negative program if every rule of P is nega-
tive.

Given a rule r of form (1), head(r) = l0 and body(r) =
body+(r)∪not body−(r) where body+(r) = {l1, . . . , lm},
body−(r) = {lm+1, . . . , ln}. The set head(P ) consists of
all literals appearing in rule heads of P .

In the rest of this section we assume that P is an extended
logic program and X is a set of literals. If X does not contain
a pair of complementary literals, we say X is an interpreta-
tion of P .

A rule r in P is satisfied by an interpretation X , denoted
X |= r, iff “if body+(r) ⊆ X and body−(r) ∩ X = ∅,
then head(r) ∈ X”. An interpretation X is a model of P ,
denoted X |= P if every rule of P is satisfied by X .

The answer set semantics The reduct of logic program
P on a set X of literals, written PX , is obtained as follows:

• Delete every r from P such that there is a not q ∈
body−(r) with q ∈ X .

• Delete all negative literals from the remaining rules.

Notice that PX is a set of rules without any negative liter-
als. Thus PX may have no model or have a unique minimal
model, which coincides with the set of literals that can be
derived by resolution.

An interpretation X is an answer set of P if X is the
minimal model of PX .

A logic program may have zero, one or more answer sets.
We use ‖ P ‖ to denote the collection of answer sets of P .

A program is consistent if it has at least one answer set.
Two logic programs P and P ′ are equivalent, denoted

P ≡ P ′, if they have the same answer sets.
As usual, BP is the Herbrand base of logic program P ,

that is, the set of all (ground) literals in P .

Forgetting in Logic Programming
In this section we introduce a semantic definition of forget-
ting for extended logic programs. That is, we want to define
what it means to forget about a literal l in a logic program P .
The intuition behind the forgetting theory is to obtain a logic
program which is equivalent to the original logic program if
we ignore the existence of the literal l.

It is direct to forget a literal l in a set X of literals, that is,
just remove l from X if l ∈ X . This notion of forgetting can
be easily extended to subsets. A set X ′ is an l-subset of X ,



denoted X ′ ⊆l X , if X ′ − {l} ⊆ X − {l}. Similarly, a set
X ′ is a true l-subset of X , denoted X ′ ⊂l X , if X ′ − {l} ⊂
X − {l}.

Two sets X and X ′ of literals are l-equivalent, denoted
X ∼l X ′, if and only if (X −X ′) ∪ (X ′ −X) ⊆ {l}.

Given a consistent logic program P and a literal l, we
could define a result of forgetting about l in P as an ex-
tended logic program P ′ whose answer sets are exactly
‖ P ‖ −l = {X − {l} | X ∈‖ P ‖}. However, such a
notion of forgetting cannot even guarantee the existence for
some simple programs. For example, consider P = {a ←
. p← not q. q ← not p}, then ‖ P ‖= {{a, p}, {a, q}}
and thus ‖ P ‖ −p = {{a}, {a, q}}. Since {a} ⊆ {a, q}
and each answer set must be minimal, ‖ P ‖ −p cannot
be the set of answer sets of any logic program. So we need
a notion of minimality of answer sets which can naturally
combine the definition of answer sets, minimality and for-
getting together.

If a logic program is inconsistent, it would make no sense
to talk about the result of forgetting. However, we could dis-
cuss the possibility of removing inconsistency from a logic
program. For example, a logic program P may have partial
stable models (Sacca & Zaniolo 1991) while it is inconsis-
tent under the answer set semantics (i.e. the stable model se-
mantics). This topic may be interesting but not in the scope
of this paper. In the rest of this paper, we assume that P is a
consistent program.

Definition 1 Let P be a consistent logic program, l a literal
in P and X a set of literals.

1. We say that X is l-minimal in a collection S of sets of
literals if X ∈ S and there is no X ′ ∈ S such that X ′ is
a true l-subset of X . In particular, denote SP is the set
of models of P , then we say X is an l-minimal model of a
logic program P if X is a model of P and it is l-minimal
in SP .

2. An answer set X of an extended logic program P is l-
minimal iff it is l-minimal in ‖ P ‖. In this case, X is also
called an l-answer set of P .

For P = {a ← . q ← not p. p ← not q}, it has two
answer sets X = {a, p} and X ′ = {a, q}. X is a p-answer
set of P but X ′ is not. This example shows that, for a logic
program P and a literal l, an answer set may not be an l-
answer set.

Having the notion of minimality about forgetting a literal,
we are now in a position to define the result of forgetting
about a literal in a logic program.

Definition 2 Let P be a consistent logic program and l be
a literal. A logic program P ′ is a result of forgetting about l
in P if the following conditions are satisfied:

1. BP ′ ⊆ BP − {l}.
2. For any set X ′ of literals, X ′ is an answer set of P ′ if and

only if there is an l-answer set X of P such that X ′ ∼l X .

Notice that the first condition implies that l does not appear
in P ′. This condition can also be replaced with BP ′ = BP−
{l} by adding a rule q ← q to P ′ for every q ∈ BP − BP ′

with q 6= l.

An important difference of the notion of forgetting here
from existing approaches to logic program update and merg-
ing is that only l and possibly some other literals are re-
moved. In particular, no new symbol is introduced in P ′.

A logic program P may have different logic programs as
results of forgetting about the same literal l. However, it fol-
lows from the above definition that any two results of for-
getting about the same literal in P are equivalent under the
answer set semantics.
Proposition 1 Let P be an extended logic program and l a
literal in P . If P ′ and P ′′ are two results of forgetting about
l in P , then P ′ and P ′′ are equivalent (i.e. they have the
same answer sets).
We use forget(P, l) to denote the result of forgetting about l
in P .
Examples

1. If P1 = {q ← not p}, then forget(P1, p) = {q ←} and
forget(P1, q) = {}.

2. If P2 = {q ← not p. p← not q}, then forget(P2, p) =
∅. The reason is that P2 has two answer sets {p} and {q}
but only {p} is a p-answer set of P2. Thus forget(P2, p)
has a unique answer set {}.

3. Consider P3 = {q ← not p. p ←}, which has the
unique answer {p}. Thus forget(P3, p) = {} rather than
{q ←}. This is intuitive because we are forgetting all im-
pacts of p on P3. In particular, “forgetting about p” is dif-
ferent from “assuming not p”.

4. Let P4 = {a ← not b. b ← not a. p ←
not a. c ← not p}. According to (Zhang et al.
2005), the weak forgetting WForgetLP(P4, p) = {a ←
not b. b ← not a. c ←}; the strong forgetting of
SForgetLP(P4, p) = {a ← not b. b ← not a}. How-
ever, forget(P4, p) = {a ← not b. b ← not a. c ←
a}.

In the next section we will explain how to obtain
forget(P, l). The following proposition generalizes Propo-
sition 1 and shows that the criteria (F4) is satisfied.
Proposition 2 Let P and P ′ be two equivalent logic
programs and l a literal in P . Then forget(P, l) and
forget(P ′, l) are also equivalent under the answer sets.

Now we show that our notion of forgetting does satisfy
(F3).
Proposition 3 For any consistent program P and a literal l
in P , the following two items are true:

1. An l-answer set X of P must be an answer set of P .
2. For any answer set X of P , there is an l-answer set X ′ of

P such that X ′ ⊆l X .
This result implies that, if l is ignored, forget(P, l) is equiva-
lent to P under both credulous and skeptical reasoning with
respect to the answer set semantics.

The above definitions of forgetting about a literal l can
be extended to forgetting about a set F of literals. Specifi-
cally, we can similarly define X1 ⊆F X2, X1 =F X2 and
F -answer sets of a logic program. Those properties of for-
getting about a single literal can also be generalized to the



case of forgetting about a set. Moreover, the result of for-
getting about a set F can be obtained one by one forgetting
each literal in F .

Proposition 4 Let P be a consistent program and F = F ′∪
{l}. Then

forget(P, F ) ≡ forget(forget(P, l), F ′).

Computation of Forgetting
Since Definition 2 is a semantic one, it does not guaran-
tee the existence of the result of forgetting about l in P .
So one important issue is to study the problem of comput-
ing the result of forgetting. In the following we will justify
the criterion (F5) by developing algorithms for computing
forget(P, l) using program transformations. The basic idea
is to equivalently transform the original program P into a
standard form N first and then to obtain forget(P, l) directly
from N .

Program transformations
The program transformations in this section are introduced
in (Brass et al. 2001). P and P ′ are extended logic programs.
Elimination of Tautologies P ′ is obtained from P by the

elimination of tautologies if there is a rule r in P such
that head(r) ∈ body+(r) and P ′ = P − {r}.

Elimination of Contradiction P ′ is obtained from P by
the elimination of contradiction if there is a rule r in P
such that head(r) ∩ body−(r) 6= ∅ and P ′ = P − {r}.

Positive Reduction P ′ is obtained from P by the positive
reduction if there is a rule r in P and c ∈ body−(r) such
that c 6∈ head(P ) and P ′ is obtained from P by removing
not c from r.

Negative Reduction P ′ is obtained from P by negative re-
duction if there are two rules r and r′ in P such that
body(r′) = ∅ and head(r′) ∈ body−(r). and P ′ =
P − {r}.

Let r and r′ be two distinct rules in a logic program. We
say r′ is an implication of r if head(r) = head(r′) and
body(r) ⊂ body(r′).
Elimination of Implications P ′ is obtained from P by the

elimination of implications if there are two distinct rules
r and r′ of P such that r′ is an implication of r and P ′ =
P − {r′}.

For two rules r and r′ with head(r′) ∈ body+(r), the
unfolding of r with r′, denoted unfold(r, r′), is the rule
head(r)← (body(r)− {head(r′)}), body(r′).
Unfolding P ′ is obtained from P by unfolding if there is a

rule r such that

P ′ = P − {r}
∪{unfold(r, r′) | r′ ∈ P, head(r′) ∈ body+(r)}.

A special case of Unfolding is that there is no rule r′ such
that r′ is resolved with r. In this case, P ′ = P − {r}.
T denotes the set of the program transformations intro-

duced above.

Lemma 1 (Brass et al. 2001) Every logic program can be
transformed into a canonical form by T , which is a negative
program.

This lemma is also true for extended logic programs.

Algorithms for Computing forget(P, l)
We are now ready to present our basic algorithm for com-
puting a result of forgetting about a given literal in a logic
program.

Algorithm 1 (Computing a result of forgetting)
Input: logic program P and a literal l.
Procedure:

Step 1. Transform P into its canonical form N .
Step 2. Suppose that N has n rules having head l (but

body does not contain l due to the Elimination of tautology)
where n ≥ 0:

rj : l← not lj1, ...,not ljmj

where j = 1, . . . , n and mj ≥ 0 for all j.
If n = 0, then Q is the program obtained from N by re-

moving all appearances of not l.
If n = 1 and m1 = 0, then l ← is the only rule in N

having head l. In this case D1 is defined as false.
If n ≥ 1 and m1 > 0, then mi > 0, for i = 1, . . . , s,

by the Elimination of implications. Let D1, . . . , Ds be all
possible conjunctions (l1k1 , · · · , lnkn

) where 0 ≤ k1 ≤ m1,
..., 0 ≤ kn ≤ mn.

Replace every appearance of not l in rule bodies of N by
all possible Di and the resulting program is denoted Q.

Step 3. Remove all rules with head l from Q and the re-
sulting program is denoted N ′.

Output N ′.

The following result shows that this algorithm is sound wrt.
the semantic forgetting.

Theorem 1 For any consistent program P and a literal l,
let Algorithm 1 returns N ′. If X ′ is an answer set of N ′,
then X ′ is also an answer set of forget(P, l).

Consider two examples.

Example 1 Let P = {a ← not b. b ← not a. c ←
not b. p ← not a,not c. d ← not p}. Since P is a
negative program, we can directly get forget(P, p) = {a ←
not b. b← not a. c← not b. d← a. d← c}
Consider another program for which program transforma-
tions are needed.

Example 2 Let P = {p← not p1. p← p,not q1. p←
p1,not q1. p1 ← not p2. p1 ← p2,not q}. Then it can
be equivalently transformed into the program N = {p ←
. p1 ←}. So forget(P, p) = {p1 ←}, forget(P, q) = {p←
. p1 ←}, forget(P, p1) = {p←}.
For some special programs, it can be easier to compute
forget(P, l).

Corollary 2 Let P be a consistent program and N be the
canonical program obtained from P by T . Then



1. If l ∈ X for every X ∈‖ P ‖, then forget(P, l) is the
program obtained from N by removing all rules contain-
ing l. In this case, forget(P, l) coincides with the strong
forgetting defined in (Zhang et al. 2005).

2. If l 6∈ X for every X ∈‖ P ‖, then forget(P, l) is the pro-
gram obtained from N by removing all rules with head l
and all appearances of negative literal not l. In this case,
forget(P, l) coincides with the weak forgetting defined in
(Zhang et al. 2005).

While Algorithm 1 provides a canonical form for the result
of forgetting, it is exponential in the worst case. This may be
from two sources: the Unfolding and the construction of Di

for i = 1, . . . , s. However, we can replace the Unfolding by
a restricted version, that is, only unfolding on l.
Unfolding on a given literal: P ′ is obtained from P by un-
folding on a literal l if there is a rule r such that

P ′ = P − {r}
∪{unfold(r, r′) | there is a rule r′ ∈ P

such that head(r′) = l, l ∈ body(r)}.
Notice that we require head(r′) = l here. If we just want to
obtain forget(P, l), some program transformations are not
actually needed.
Algorithm 2 Input: logic program P and a literal l.
Procedure:

Step 1. Fully apply Elimination of Tautology, Elimination
of Contradiction, Negative Reduction and the Unfolding on
l to program P and the resulting program is denoted N .

Step 2. Suppose that N has n rules whose head contains
l (but body does not contain l due to the Elimination of tau-
tology) where n ≥ 0:

rj : l← l′j1, ..., l
′
jnj

,not lj1, ...,not ljmj

where nj ,mj ≥ 0 for all j (1 ≤ j ≤ n).
If n = 0, then N ′ is the program obtained from N by

removing all appearances of not l.
If n = 1, n1 = 0 and m1 = 0, then l ← is the only rule

in N whose head is l. In this case D1 is false.
If n ≥ 1 and n1 + m1 > 0, then ni + mi > 0, for i =

1, . . . , s, by the Elimination of implications. Let D1, . . . , Ds

be all possible conjunctions (L1k1 , · · · , Lnkn
) where each

Liki
is either not l′iki

or liki
for i = 1, . . . , n.

Replace every appearance of not l in rule bodies of N by
all possible Di and the resulting program is denoted Ql.

Step 3. Remove all rules with head l and the resulting pro-
gram is denoted N ′.

Output N ′ as forget(P, l).
Similar to Theorem 1, we can prove that Algorithm 2 is cor-
rect but the proof is more tedious since N is not negative.
Theorem 3 For any consistent program P and a literal l,
Algorithm 2 always returns a result of forgetting about l in
P .
Notice that the first step in Algorithm 2 can be finished in
polynomial time. In most cases, the size of rules having head
l is not very large compared to the size of the whole pro-
gram. So we can get a polynomial algorithm for computing
forget(P, l) if the size of rules having head l is bounded.

Corollary 4 If the size of rules in P having head l is
bounded, then Algorithm 2 is polynomial in the size of P .

Proof Sketch of Theorem 1
Since P is finite, Algorithm 1 will finally terminate.

We need only to show that, for any set X ′ of literals (with
l 6∈ X ′), if X ′ is an answer set of N ′, then there exists an
l-answer set X of N such that X ∼l X ′.

N can be split into three disjoint parts: N = N1∪N2∪N3

where N1 consists of rules in N in which l does not appear;
N2 = {r ∈ N | l ∈ head(r), l 6∈ body−(r)}; N3 = {r ∈
N | l 6∈ head(r), l ∈ body−(r)}.

Let N ′
3 be the program obtained from N3 by performing

transformations in Step 2. Then N ′ = N1 ∪N ′
3.

Let D1, D2, . . . , Ds denote the conjunctions constructed
from lij in Step 2. So each rule r in N with l ∈ body(r)
corresponds to s rules in N ′: head(r) ← Di, (body(r) −
{not l}) for i = 1 . . . , s.

If n = 0 or (n = 1 and m1 = 0), the proof is direct. So we
assume that n ≥ 1 and mi ≥ 1 for i = 1, . . . , n. Consider
two possible cases:

Case 1. X 6|= Di for all i = 1, . . . , s:
(1.1) We first show that X ′ = X ∪ {l} is a model of N .
Since l 6∈ X , we have
NX′

= (N1 ∪N2 ∪N3)X′
= (N1)X ∪ (N2)X .

It can be shown that X ′ is a model of both (N1)X and
(N2)X . Thus X ′ is a model of NX .

(1.2) We then show that X ′ = X ∪ {l} is an l-minimal
model of NX′

.
Suppose that X ′′ is the least model of NX′

. Notice that
l ∈ X ′′ because the rule l← is in NX . Thus we need only to
show that X ′ is the least model of NX′

. (1.2) We then show
that X ′ = X ∪ {l} is an l-minimal model of NX′

. By the
assumption, (X ′′−{l}) 6|= Di for all i with 1 ≤ i ≤ s. Thus
(X ′′−{l}) |= (N ′)X , which implies that (X ′′−{l}) = X .
So we have X ′′ = X ′. Therefore X ′ is l-answer set of N .

Case 2. If X |= Di0 for some i with 1 ≤ i0 ≤ s: We need
only to show that X is l-answer set of N .

(2.1) Since NX = (N1)X∪(N2)X∪(N3)X , we can show
that X is a model of NX .

(2.2) If X ′⊆lX such that X ′ |= NX , then we can show
that X is also l-answer set of N by distinguishing two pos-
sible subcases: l ∈ X ′ and l 6∈ X ′.

Logic Program Update by Forgetting
The theory of forgetting developed in previous sections is
a very general framework for update, revision, merging, in-
heritance hierarchy and even preference handling in logic
programming. In particular, the modified PMA (Doherty et
al. 1998), the update answer sets (Eiter et al. 2002), inheri-
tance answer sets (Buccafurri et al. 1999) and dynamic an-
swer sets (Alferes et al. 1998) can all be captured by our
forgetting operator. As an example, we show in this section
how to characterize the update answer sets using forgetting.

An update sequence is an ordered sequence P =
[P1, P2, . . . , Pt] where each Pi is an extended logic program
for i = 1, . . . , t and t ≥ 1.



Informally, Pi+1 is assumed to update the information
represented by [P1, . . . , Pi]. So Pi+1 represents more recent
information than Pi and thus the rules in Pi+1 are assigned
higher priority in case of a conflict.

In Eiter et al’s approach, an update sequence P is first
translated into a single logic program PC and the answer set
semantics of P is defined as the set of answer sets of PC. So
this is basically a syntactic approach.

To define the translated program PC, for each literals l, we
introduce new literals li and l−i where i = 1, . . . , t. For each
rule r, a new literal rej (r) is also introduced. The extended
Herbrand base is denoted B∗

P .

Definition 3 The update program PC = P1 C · · · C Pt

over B∗
P consists of the following rules:

1. All constraints in Pi (1 ≤ i ≤ t).
2. For each r ∈ Pi (1 ≤ i ≤ t):

li ← body(r),not rej (r) if head(r) = l
l−i ← body(r),not rej (r) if head(r) = not l

3. For each r ∈ Pi (1 ≤ i ≤ t):

rej (r) ← body(r), l−i+1 if head(r) = l
l−i ← body(r), li+1 if head(r) = not l

4. For each literal l in P ,

l−i ← l−i+1; li ← li+1; l← l1; ← l1, l
−
1 .

A set X of literals is an answer set of the update sequence
P if X = X ′ ∩BP for some answer set X ′ of PC.

To characterize the update semantics, we define

F (X) = ∪1≤i≤tFi(X)

where the sequence Fn(X), . . . , F1(X) for P are recur-
sively defined as Ft(X) = ∅, and for i < t,

Fi(X) = {head(r) | there exist r ∈ Pi and r′ ∈ Pj

s.t. head(r) and head(r′) are complementary,
X |= (body(r) ∩ body(r′)),
head(r′) 6∈ Fi+1(X) ∪ · · · ∪ Ft(X)}.

The intuition behind F (X) is that a literal will be forgot-
ten provided that its validity causes conflict with more recent
information.

Theorem 5 Let P = [P1, . . . , Pt] be an update sequence
and X a set of literals. Denote P = P1 ∪ · · · ∪ Pt. Then
X is an update answer set of P iff X is an answer set of
forget(P, F (X)).

Conclusion
We have proposed a novel semantic approach to forgetting
for reasoning with logic programs. The suitability of this no-
tion of forgetting is justified against four criteria as well as
illustrating examples. An important result is the algorithm
for computing the result of forgetting in a logic program.
Furthermore, we show that a variant of the algorithm is poly-
nomial in the size of the given logic program if the size of
certain rules is fixed. The proposed theory of forgetting is

a very general framework for a variety of AI tasks includ-
ing merging, update and revision of logic programs. In par-
ticular, we show that the update answer sets can be intu-
itively captured in our framework. Issues for future research
include (1) The relation of our approach to relevance, inde-
pendence and novelty. Note that the notion of relevance for
reasoning can be naturally defined once the forgetting is de-
fined. (2) Applications of our theory of forgetting in charac-
terizing some other approaches to conflict resolving, for ex-
ample, extended abduction introduced in (Sakama and Inoue
2003). (3) Determining classes of logic programs such that
the computing of forgetting is computationally tractable.

References
Alferes, J., Leite, J, Pereira, L., Przymusinska, H., and
Przymusinski, T. 1998. Dynamic logic programming. In
Proc. of KR’98, pp.98–109.
S. Brass, J. Dix, B. Freitag, and U. Zukowski.
Transformation-based bottom-up computation of the well-
founded model. Theory and Practice of Logic Program-
ming, 1(5):497–538, 2001.
F. Brown. Boolean Reasoning: The Logic of Boolean
Equations (2nd Edition). Dover Publications, 2003.
Buccafurri, F., Faber, W., and Leone, N. 1999. Disjunc-
tive logic programs with inheritance. In Proc. of ICLP’99,
pp.79–93.
Doherty, P., Lukaszewicz, W., and Madalinska-Bugaj, E.
1998. The pma and relativizing change for action update.
In Proc. of KR’08, pp. 258–269.
Eiter, T., Fink, M., Sabbatini, G., and Tompits, H. 2002. On
properties of update sequences based on causal rejection.
Theory and Practice of Logic Programming, 2:711–767.
Gelfond, M., and Lifschitz, V. 1990. Logic programs with
classical negation. In Proc. of ICLP’90, pp. 579–597.
J. Lang, P. Liberatore, and P. Marquis. Propositional inde-
pendence: Formula-variable independence and forgetting.
Journal of Artificial Intelligence Research, 18:391–443,
2003.
V. Lifschitz. Answer set programming and plan generation.
Artificial Intelligence, 138:39–54, 2002.
F. Lin and Y. Zhao. Assat: Computing answer set of a logic
program by sat solvers. Artificial Intelligence, 157:115–
137, 2004.
F. Lin and R. Reiter. Forget it. In Proc. of AAAI Symp. on
Relevance, pp. 154–159. New Orleans (LA), 1994.
Sacca, D., and Zaniolo, C. 1991. Partial models and three-
valued stable models in logic programs with negation. In
Proc. LPNMR, 87–101.
C. Sakama and K. Inoue. An abductive framework for com-
puting knowledge base updates. Theory and Practice of
Logic Programming, 3(6):671–713, 2003.
Subhramanian, D., Greiner, R., and Pearl, J. (editors).
1997. Artificial Intelligence: Special Issue on Relevance.
Y. Zhang, N. Foo, and K. Wang. Solving logic program
conflicts through strong and weak forgettings. In Proc. of
IJCAI, 2005 (accepted).


