
Early Validation and Verification of a Distributed Role-Based Access Control
Model

Saad Zafar1,4, Robert Colvin3,4, Kirsten Winter3,4, Nisansala Yatapanage2,4, and R. G. Dromey2,4
1Institute for Integrated and Intelligent Systems,

2Software Quality Institute, Griffith University, Australia
3School of Information Technology and Electrical Engineering, University of Queensland

4ARC Centre for Complex Systems (ACCS), Australia [website:http://www.accs.edu.au]
{s.zafar,n.yatapanage,g.dromey}@griffith.edu.au, {robert, kirsten}@itee.uq.edu.au

Abstract

To ensure correct implementation of complex
access control requirements, it is important that the
validated and verified requirements are effectively
integrated with the rest of the system. It is also
important that the system can be validated and verified
early in the development process. In this paper we
present an integrated, role-based access control
model. The model is based on the graphical Behavior
Tree notation, and can be validated by simulation, as
well as verified using a model checker. Using this
model, access control requirements can be integrated
with the rest of the system from the outset, because: a
single notation is used to express both access control
and functional requirements; a systematic and
incremental approach to constructing a formal
Behavior Tree specification can be adopted; and the
specification can be simulated and model checked. The
effectiveness of the model is evaluated using a case
study with distributed access control requirements.

1. Introduction

Due to increasing complexity of data availability
and protection requirements, many modern systems
incorporate a complex set of access control policies.
The de facto approach to modeling these access control
requirements is Role-based access control (RBAC),
because it can greatly facilitate access management in
a flexible manner [1]. The flexibility and ease of use in
RBAC comes from the fact that most data protection
and availability policies are aligned to the roles that
individuals play within an organization; access
management is then a matter of assigning roles to
individuals, rather than managing the control rights for
each individual separately. In recent years a number of

RBAC models have been proposed to facilitate
specification and analysis of access control
requirements [2].

Traditionally, security engineering has been
performed in isolation from systems engineering [3].
This often results in late integration of security
requirements into system design in a post-hoc manner.
In this paper we propose extending an existing
requirements engineering notation, Behavior Trees,
with language constructs based on the NIST standard
for RBAC [1].

The Behavior Tree (BT) notation is a graphical
notation [4], which is used in a development approach
called Behavior Engineering (BE). The BE approach
provides systematic translation of informal
requirements into a formal representation [5]. An
integrated view of the requirements is generated in the
form of an Integrated Behavior Tree (IBT), which
provides a platform for requirements analysis and
design. With tool support the BT model can be
simulated and model-checked for correctness. The
approach has proved successful in industrial practice
[6].

By adding RBAC constructs to the BT notation we
extend its capabilities of handling systems with
security requirements. In addition, due to the nature of
the notation and the Behavior Engineering process, we
are able to avoid many of the problems associated with
incorporating security requirements into a system
design. Existing highly specialized RBAC models
often use a different notation to the design notation
making the integration process difficult [7].
Furthermore, the informal and semi-formal RBAC
models may not be completely verified for their
correctness, which may compromise the security of the
final system. On the other hand, the formally specified
models may not be easy to use and validate due to their
mathematical nature [8]. The trade off for the users is

14th Asia-Pacific Software Engineering Conference

1530-1362/07 $25.00 © 2007 IEEE
DOI 10.1109/ASPEC.2007.20

430

often between usability and formal tractability being
offered by the different models.

These problems are avoided in the BT-RBAC
because it is an integrated model that aims to simplify
formal specification, validation, verification and
integration of access control requirements in the
system design. The requirements translation process is
augmented with an access control specification
template which facilitates the requirements
specification process. Conflict resolution is supported
during the requirements integration process when an
IBT for the RBAC is generated. The model can be
validated via simulation of the IBT and can be model
checked using the automated translation into the input
language of the SAL model-checker [9], [10]. The
model’s integration with functional requirements is
assisted through the use of a single notation for all
types of requirements. We evaluate the effectiveness of
the model using a simple case study with distributed
access control requirements.

The paper is structured as follows. Section 2 gives a
brief background on RBAC and Behavior Engineering.
Section 3 introduces the BT-RBAC model. We show
how distributed RBAC requirements can be modeled
using a case study as a running example. Section 4
describes tool support for simulation and model-
checking. In Section 5 we review related work and
Section 6 presents conclusions and future work.

2. Background

2.1. Role-based access control

The access control mechanisms in computer
systems define the permission that users or processes
have to access protected resources in a computer
system. In a role-based access control (RBAC)
mechanism, these rights are defined based on the role
that individuals are assigned to in an organization. The
advantage of assigning access rights to roles instead of
individual users is that roles have more permanence in
an organizational context than users [11]. Individual
users can be assigned and de-assigned from roles
without having to manage the access control
permissions for each individual separately.

The NIST RBAC model [1] defines sets of basic
elements and relations that are needed to specify access
control requirements. The basic elements in the core

RBAC are users, roles, permissions, operations, and
objects. A user can be a human being, a machine or an
intelligent autonomous agent. A role corresponds to
the job function in the context of an organization which
has authority and responsibility associated with it. An
operation corresponds to an application-specific user
function. An object in a RBAC model may contain or
receive information. Permission is the authority to
perform an operation on protected objects within a
system. The model also defines a session during which
a user can activate some of the roles that have been
assigned to him or her. The constrained RBAC
specifies separation of duty constraints to avoid any
conflict of interests in a policy.

2.2. Behavior Engineering

The Behavior Engineering approach uses a
graphical notation, called Behavior Trees (BTs), to
formalize and integrate all system requirements in a
single tree structure [12]. The approach includes a
rigorous requirements translation process that
translates one informal requirement at a time into a
formal representation. The individual BTs,
representing each requirement, are then composed
together into a single tree-structure called an Integrated
Behavior Tree (IBT). Early defect detection is
supported as defects are tagged and resolved during the
translation process [13]. A BT node is marked with a
‘+’ sign if the associated behavior is implied and a ‘-’
sign to mark behavior that is missing in the
requirements. Requirements traceability is maintained
by marking each BT node with the corresponding
requirement number. Any integration defects need to
be resolved once all the requirements are composed
together. If a requirement does not integrate with other
requirements it indicates an incompleteness problem or
that the requirement does not form part of the system.
These defects need to be resolved before an integrated
view of the requirements can be finalized.

The use of a single notation throughout the process
facilitates an integrated approach to system design and
helps avoid accidental complexity that may be
introduced when a number of different representations
are used during different development phases [14].
Some of the recent research work based on the BT
framework include [6, 15, 16].

431

tag
Component

[State]

tag
Component

[Attribute:=Value]

tag
Component

? Selection ?

tag
Component
?? Event ??

tag
Component
< Data Out >

tag
Component
> Data In <

tag
Component

[State]

tag
Component

[State]
tag

Component
[State]

tag []

tag Component
? Selection ?

tag Component
? Selection ?

tag
Component

[State]

Component-State Composition Options

Component realizes a state

Attribute Assignment

Condition

Event

Data output

Data input

(a) Sequential Composition (b) Atomic composition

Concurrent composition

Alternate composition—one
branch is chosen non-
deterministically

tag Component
[State]

tag
Component

[State]

tag Component
[State]

tag
Component

[State]

tag Component
[State]

tag
Component

[State]

tag Component
[State]

tag
Component

[State]

Figure 1: A summary of core BT syntax

The core elements of the BT notation are given in

Fig. 1. A BT node is used to specify a component and
its state. It is also used to express conditions, events,
attribute assignment and data flow. Two BT nodes
joined together with an arrowed line represents a
causal behavior and the direction of flow of control.
Two nodes joined together with a line without an arrow
specify an atomic composition, i.e., no interleaving of
actions from parallel processes is allowed. The parallel
branches in the BT represent concurrent behavior by
default and represent alternate branching when marked
with the choice operator ‘[]’, in which case only one of
the branches is (non-deterministically) chosen to
execute.

RBAC models include sets of users and objects, and
therefore the BT notation has been extended with set
operators such as ‘+’, ‘-’ and ‘><’ for set union,
difference and intersection, respectively. We write |S|
for the cardinality of set S, and x:S for membership of
element x in set S. In addition, two constructs have
been introduced: one which models execution of a tree
BT(x) for all members x of a set S, and one which
models execution of BT(x) for some member x of set
S. These constructs are referred to as forall and
forone, respectively – see Fig. 2.

Selection Nodes
forall-construct forone-construct

C
|| x : S

BT(x)

C
[] x : S

BT(x)

Figure 2: forall and forone constructs.

2.3. The case study

We now present a simple case study that will be
used to evaluate the effectiveness of the BT-RBAC
model. The case study, presented in [17], is that of an
online-classroom system with distributed access
control requirements. In a course activity a member of
the Conveners role can initiate a course session. A

course session contains three roles: Instructors,
Assistants, and CStudents. Only one member from the
Staff role can be assigned to the Instructors role. A
member of the Staff role can be assigned to the
Assistants role if (i) the role membership count is less
than two, (ii) the member being assigned to the role is
not a member of the Students role, and (iii) a member
has already been assigned to the Instructors role.

The instructor of a course can initiate an exam
activity for that course. In the exam activity, the
instructor can admit members to the Graders and
Examiners roles. Members of these roles can be
selected from either the Instructors or the Assistants
role of the course. A member of the Examiners role can
create an exam paper if one has not been created
before. A participant of the Graders role can update
grades in the grade sheet for the course. Students
enrolled in the course, i.e., members of the set
CStudents, can join the Examinees role in the exam
activity. An examinee can then initiate an exam session
but not more than one. An examinee can read the exam
paper and write to the answer book during the exam
session. The grader can grade the answer book only
after it has been submitted by the examinee. The
session terminates when the member of the Graders
role has finished grading the answer book for a session.

The following features of RBAC have been
enforced in the case study: A role-cardinality
constraint requires that the capacity of the role should
not be increased by the addition of another member
[18]. In the case study, at most one member can be
assigned to the Instructors role (so an instructor can
also be a student) (1). A maximum of two members
can be assigned to the Assistants role (2). These
requirements are formalized in the following formulas
in linear temporal logic (LTL). G, F and U are
temporal operators in LTL [19] which have the
following meaning: the G(p) operator states that p is
always true; F(p) means that p will eventually be true;
and (p U q) states that q will hold eventually and p
holds until q holds.

432

In a separation of duty constraint, a business
process is divided into many sub-tasks and then these
sub-tasks are assigned to different persons to ensure
that no single person is responsible for performing a
critical business operation [20]. The concept of
separation of duty may be divided into two broad
categories; static separation of duty and dynamic
separation of duty. In static separation of duty (SSD)
policies, two roles are made mutually exclusive by
disallowing membership of one user in both roles [21].
The SSD requirement in the classroom case study
states that a member of the Students role of a course
cannot be assigned to the Assistants role of that course
(3).

A dynamic separation of duty (DSD) policy
requires that two restricted roles may have common
members but they may not join both the roles at the
same time [21]. A DSD policy may have other
variations [21]. In an object-based separation of duty
(OBSD), users are not allowed to act upon a single
object twice. For example, a student cannot initiate
another session if one has already been initiated for a
particular exam (4). History-based separation of duty
is a more flexible variation of DSD in which a user is
not only allowed to perform more than one action on
an object but may also be allowed to perform all the
actions in a business task as long as necessary
safeguards are implemented in the policy. For example,
a member from the Graders role can only grade the
answer book if it has been submitted (5); an examinee
from the Examinees role can read from the exam paper
and write to the answer book as long as it has not been
submitted (6); and a member of the Examinees role
cannot access the content of the question paper before
his/her exam session has been initiated (7).

∀c : Courses • G (size(c.Instructors) ≤ 1) (1)
∀c : Courses • G (size(c.Assistants) ≤ 2) (2)
∀c:Courses • G(c.CStudents ∩ c.Assistants=∅) (3)
∀u : Users, ∀s1, s2 : Sessions | s1 ≠ s2

 ∧ s1.exam_id = s2.exam_id •
 G ((s1.status = initiated ∧ s1.student = u) ⇒
 ¬(s2.status = initiated ∧ s2.student = u)) (4)
∀s : Sessions •
 G (s.answerBook ≠ submitted) ∨
 (s.answerBook ≠ graded
 U s.answerBook = submitted) (5)
∀s : Sessions •
 G ((s.answerBook = submitted) ⇒
 ¬ F (s.paper = read ∨
 s.answerBook = written)) (6)
∀e : Exams, ∀s : Sessions | s.exam_id = e.id •
 G (s.paper ≠ read U s.status = initiated) (7)

3. The BT-RBAC model

The BT-RBAC is an integrated model that aims to

simplify the formal specification, validation,
verification and integration of access control
requirements into the system design. All the basic
elements in the model, which have been derived from
the NIST RBAC standard [1], are specified using the
component-state model of the BT notation. To specify
access control requirements, the BT nodes representing
different components of the model are composed
together for each requirement using the BT-RBAC
template (Figure 3a). These requirements are integrated
together in the form of an IBT to generate an integrated
view of the complete policy.

The objects, sessions, and/or roles are first selected
using selection nodes (see Figure 2). This is followed
by a permission node that specifies the member action
associated with the permission being granted.
Semantically, the permission node is a BT event type,
which is associated with the component specified in
the node. The permission node also specifies the
relationship between the action and other components
that are involved in the permission being granted (see
Figure 3(a)). The permission node is then followed
(optionally) by constraint nodes. These are BT
selection nodes and can be used to specify constraints
on role membership, session operations or object
operations. Lastly, the operation node specifies the
operation on the object or the session component as a
BT state-realization or attribute-assignment node. It
may be noted that the permission, constraint and
operation nodes are atomically composed to avoid side
effects from any interleaving threads. The use of the
model is explained using the first few requirements of
the online-classroom system given in Table 1.

Table 1: Access control requirements

No Requirement
R1 A member from Conveners role in a course can

initiate a course activity.
R2 A member from Conveners role in a course can

assign a member from Staff role to course’s
Assistants role. A maximum of two assistants can
be assigned to Assistants role. A student cannot be
assigned to Assistants role. An Assistant is only
assigned to her role if Instructors role is not empty.

R3 A member from Conveners role in a course can
assign only one member from Staff role to course’s
Instructors role.

R4 A member from Conveners role in a course can
assign only members from Students role to
course’s CStudents role.

 Requirement R1 in Table 1 is formalized in Figure
3(b). First a Course session is selected from the
Courses set, using the forall BT construct. Next a
Convener is selected from the course’s Conveners role

433

using the same construct. Both the Course and the
Convener represent all the members in their respective
sets. The permission node specifies that when the
Convener component exercises the permission granted
to the role the subsequent nodes in the tree are
executed. The permission granted to the Convener is
that he/she can initiate a course. For the verb used in
the permission node (initiate) we can ask what, where,
when, who and how questions to identify all the objects
associated with the verb. These questions can help
guide the elicitation and ensure completeness of the
permission being specified. In this case we may ask the
question, “Convener assigns what?”. The answer is,
Session(Course). There are no constraints specified
with this requirement. When the operation node is
executed in the tree the Course.Status value is set to
Initiated.

(c)

tag
User

?? permission ??

Qn(p) C-Type(C-Namen)

tag ComponentName1
?Constraint Exp1 ?

... ...

tag ComponentNamei
?Constraint Expi ?

... ...

Qn(p) C-Type(C-Name1)

tag ComponentNamey
[Operation]

tag Rolex
User Selection Exp

tag Sessionsx
Session Selection Exp

tag Objectsx
Object Selection Exp

tag
User

?? permission ??

Qn(p) C-Type(C-Namen)

tag ComponentName1
?Constraint Exp1 ?

... ...

tag ComponentNamei
?Constraint Expi ?

... ...

Qn(p) C-Type(C-Name1)

tag ComponentNamey
[Operation]

tag Rolex
User Selection Exp

tag Sessionsx
Session Selection Exp

tag Objectsx
Object Selection Exp

R2 Convener
?? Assigns ??

R2 Course
? |Assistants | < 2 ?

R2 Students
?NOT(Assistant :Students)?

R2 Course
? NOT(Instructor={}) ?

What (to) Role(Assistants)

Who User (Assistant)

R2 Staff
[] Assistant : Staff

R2
Course

[Assistants := Assistants +
{Assistant}]

R2 Course
|| Convener : Conveners

R2+ Courses
| |Course : Courses

(a)

R1 Convener
?? Initiates ??

R1 Course
[Status:=Initiated]

What Session(Course)

R1 Course
|| Convener : Conveners

R1+ Courses
||Course : Courses

R1 Convener
?? Initiates ??

R1 Course
[Status:=Initiated]

What Session(Course)

R1 Course
|| Convener : Conveners

R1+ Courses
||Course : Courses

Selection Nodes

Permission Nodes

Constraint Nodes

Operation Nodes

Legend

Selection Nodes

Permission Nodes

Constraint Nodes

Operation Nodes

Legend

(b)

Figure 3: (a) The BT-RBAC model. (b) BT –

RBAC specification for R1, (c) R2.

Similarly, the requirement R2 from Table 1 is
modeled as in Figure 3(c). The member of the
Conveners role for a course is given the permission to
assign members to the course’s Assistants role. After

selecting the course, conveners and staff members
from their respective sets, the permission node is
specified to permit the Convener to assign
User(Assistant) to Role(Course.Assistants).

When the event ‘Convener Assigns’ occurs, a
number of constraints are checked before the ‘add
member to the Assistants role’ operation is executed.
The role Course.Assistants has a limit of two members
on the cardinality of the set. Only if this condition
holds the subsequent BT will be executed. The next
constraint specifies that a member can only be assigned
to the Course.Assistants role if he/she is not already a
member of the Students role. Lastly, a member can be
added to the Assistants role only if a member has
already been assigned to the Instructors role. In the last
node we add the chosen assistant to the set of course
assistants.

Alternative
Branching – A
branch is chosen
non-deterministically

Reversion Nodes– Control is
transferred back to the matching
node higher up in the tree.

R2 Staff
[] Assistant : Staff

R2 Convener
?? Assigns ??

R2 Course
? | Assistants| < 2 ?

Who User(Assistant)

What(to) Role(Course.Assistants)

R2
Course

?NOT(Assistant:Students)
?

R2 Course
? NOT(Instructors={}) ?

R2
Course

[Assistants:=Assistants +
{Assistant}]

R3 Staff
[] Instructor : Staff

R3 Convener
?? Assigns ??

R3 Course
? Instructors={} ?

Who User(Instructor)

What(to) Role(Course.Instructors)

R3
Course

[Instructors:=Instructors +
{Instructor}]

R4 Students
[] Student : Students

R4 Convener
?? Assigns ??

Who User(Student)

What(to) Role(Course.CStudents)

R4
Course

[CStudents:=CStudents +
{Student}]

R1, R2,
R3, R4 + []

R2+
 ^

[]

R3+
 ^

[]

R4+
 ^

[]

R1+ Course
| | Course : Courses

R1 Course
|| Convener : Conveners

R1
Course

[Status:=Initiated]

R1 Convener
?? Initiates ??

What Session(Course)

The ‘+’ indicates
implied behavior—
not explicitly stated
in the requirements

≈

Figure 4: An IBT for R1, R2, R3 and R4

After the individual requirements have been

translated, they are integrated into an IBT, as outlined
in Sect. 2.2. The integration of the requirements in
Table 1 is shown in Fig 4. Functional requirements
may also be freely integrated at this stage, since the BT
notation can also express such requirements; for
brevity, in this paper we focus on integration of
security requirements.

434

4. Tool support

In this section we describe how the method is
supported by simulation and model checking. The
interface to these tools is managed by a BT editor,
called Integrare [22]. The trial version of the tool is
available at [http://www.behaviorengineering.org].

4.1. Validation via simulation

A BT may be executed via a simulation tool,
BTSim that is based on an operational semantics for
the BT notation [23]. Each “step” in the execution
corresponds to the application of a rule of the
operational semantics, and typically describes the
effect a node has on the value of the components in the
system. BTSim can generate a single trace of the
system by randomly resolving nondeterminism (such
as that introduced by concurrency), or can generate all
traces of a (finite) system, subject to hardware
constraints. The simulator can check safety properties
of the system, and some basic progress properties.
Using the simulator, it is possible to quickly check the
typical operation of a system in a way that is
straightforward for someone familiar with the BT
notation.

The Classroom BT-RBAC model was initially
simulated in BTSim to check that the basic behavior of
the system conformed to the intention. The process
uncovered typographical errors and places where the
level of atomicity had to be increased, and pointed the
way to some simplifications. This stage typically
involved relatively small numbers of courses, students,
etc. After this process, the model was checked against
some of the security requirements outlined in the last
section. The simulations in this phase involved
increased numbers of courses, students, exams, etc.
Properties 1, 2, 3, 4 and 7 were checked through
several complex runs of the system, which resulted in
modifications to the model to properly capture the
intended behavior. Because the simulator has only a
partial implementation of temporal logic operators,
properties 5 and 6 were omitted from the simulations.
The iterative simulation/validation and modeling
process established reasonable confidence that the
model satisfied many of the requirements under a
number of typical executions, and that the model was
therefore mature enough for an exhaustive formal
verification of the security requirements.

4.2. Verification

Using the BT editor’s facilities we automatically
translate the BT model of the Classroom RBAC into
the input notation of the SAL tool set [9]. This allows
us to run checks for the satisfiability of temporal logic
formulas (bounded and unbounded) as well as
deadlock checks. In the past the translation of BTs into
SAL code has been used successfully for supporting
Failure Modes and Effect Analysis [10].

The translation to the SAL language was extended
for the BT-RBAC model to handle the forall and
forone constructs, and to deal with components of type
set. Most set operations can be readily translated by
making use of the pre-defined set context which
provides the standard set operations for the SAL
language (this context has been further developed by
the work of Smith and Wildman [24] which describes a
translation from the set-based language Z into the SAL
language). To map the forall and forone construct we
developed an unfolding algorithm which works as
follows:

|| s : S . T(s). ⇝ T(s1) ||…||T(sn) (forall)

[] s : S . T(s). ⇝ T(s1) []…[] T(sn) (forone)

Assuming S = {s1,…,sn} is a static set, then n
threads T(si) are executed in parallel (forall), or one of
n threads is non-deterministically chosen (forone). If S
changes its content dynamically we consider the
maximal size it can grow to instead of n (the maximal
size of a set is given through its type, which is
provided by the user in a textual representation in an
accompanying file). The entrance to each thread T(si)
in this case will be additionally guarded with the
condition that the element si is currently in the set S.

To render the model checking process feasible we
have to limit the size of the set variables regarded by
the system. For this purpose the user needs to input the
maximal size of the sets. Since the sets Students, Staff,
Instructors and Assistants for each course, etc., all have
to be of the same type to be comparable, those sets will
be of the same cardinality too. Due to hardware
limitations we applied the model checker to small
instances of the BT-RBAC model. After correcting one
variable initialization error we were able to prove all
the properties (1-7) of the model.

5. Related work

In recent years, a number of techniques and
methods have been proposed to address the integration
of security engineering with systems engineering from
different perspectives. Not surprisingly, UML, being a
widely used modeling language, has been the focus of

435

many researchers. Jürjens [8] has proposed UMLsec,
which is an extension of UML with a formal semantics
to support analysis of security properties in the
modeled requirements. The graph-based formal
semantics of SecureUML and View Policy Language
(VPL) proposed by Basin et al [7] and Koch and Pauls
[25], respectively, allows the designers to reason about
the preservation of access control constraints in the
final UML-based system models using the model
driven approach. In recent work, support for interactive
theorem proving has been provided for SecureUML
[26]. However, in most of the UML-based approaches
a more exhaustive and complex analysis is generally
not supported. In comparison the BT-RBAC model
provides model checking support for verification of
critical properties.

The RBAC specification techniques that do support
rigorous analysis do not always explicitly address their
integration into functional requirements. In [27] and
[17], the specification languages Alloy and SPIN,
respectively, have been used to verify the security
properties using a model-checker. However, the
formalization of access control requirements can
compromise the expressive power of more informal
representation. In addition, highly specialized models
make it difficult to integrate access control
requirements with other functional requirements of the
system [7] and often requirements traceability is lost.
In comparison, the BT-RBAC model does not only
provide automated support for validation and
verification but also supports the integration of the
access control requirements into the functional
requirements.

Perhaps the closest work to our approach is the
Secure Tropos development methodology, which
provides a formal framework for integrating security
requirements into the software development process
[28]. Secure Tropos is an extension of a more generic
agent-oriented development methodology. Since the
underlying model is the same, the integration of the
security requirements is possible from the early stages
of the development process. We differentiate our work
from Secure Tropos on the basis of a systematic
translation process that allows us to develop a system
out-of-its-requirements, the support for early defect
detection, effective requirements traceability, and
conflict resolution through the requirements integration
process.

6. Conclusion

Although there is a greater emphasis on the need for
better security in computer-based information systems,
security requirements are still typically considered late

in the development cycle and are often applied as an
afterthought [3]. There are four major problems that
are typically faced in effectively integrating RBAC
models into the functional requirements of a system:
(1) the informal models may not be formally verified
for correctness; (2) the formally specified models may
not be easy to understand and validate; (3) the often
highly specialized formal models use different notation
to the specification and design notation; and (4) the
overall development process does not support early
integration of security requirements into the design
process, and requirements traceability is often lost.
Based on a graphical notation with a formal semantics
the BT-RBAC model provides support for automated
validation and verification of access control policies.
The integration of access control requirements is
assisted through the use of a single notation throughout
the development process. Other features of the model
include a systematic translation process, early defect
detection, requirements traceability and support for
requirements transformation into the system design.

In this paper we have illustrated, through the use of
a simple case study, how RBAC requirements can be
modeled and validated. The validation results are used
to correct the model before it is formally verified. We
have not included functional requirements in the case
study but the integration of simple access control
requirements have been illustrated in [15]. Our future
work includes optimizing the SAL code to improve the
efficiency of the model checking process as well as
providing tool support to formalize security properties
of the model in LTL. Our long term objectives include
extending the Behavior Engineering approach to other
areas of security engineering like threat modeling and
intrusion detection.

Acknowledgements

This work is partially funded by the Australian

Research Council (ARC) under the ARC Centers of
Excellence program. We thank our colleagues in the
Building Dependability into Complex Computer-Based
Systems project for helpful discussions.

7. References

[1] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

R. Chandramouli, "Proposed NIST Standard for Role-
Based Access Control," ACM Transactions on
Information and System Security, vol. 4, pp. 224-274,
2001.

[2] E. Ferrari, "Guest editorial: Special issue on access
control models and technologies," ACM Trans. Inf.
Syst. Secur., vol. 8, pp. 349-350, 2005.

436

[3] P. T. Devanbu and S. G. Stubblebine, "Software
Engineering for Security: A Roadmap," presented at
International Conference on Software Engineering
(ICSE 2000) - Future of SE Track, 2000.

[4] R. G. Dromey, "Formalizing the Transition from
Requirements to Design," in Mathematical
Frameworks for Component Software - Models for
Analysis and Synthesis, World Scientific Series on
Component-Based Development, J. He and Z. Liu,
Eds., 2006, pp. 156-187, (Invited Chapter).

[5] R. L. Glass, "Is This a Revolutionary Idea, or Not?,"
Communications of the ACM, vol. 47, pp. 23-25, 2004.

[6] D. Powell, "Requirements Evaluation Using Behavior
Trees - Findings from Industry," presented at 18th
Australian Conference on Software Engineering, 2007.

[7] D. Basin, J. Doser, and T. Lodderstedt, "Model driven
security: From UML models to access control
infrastructures," ACM Trans. Softw. Eng. Methodol.,
vol. 15, pp. 39-91, 2006.

[8] J. Jürjens, "UMLsec: Extending UML for Secure
Systems Development," presented at UML 2002 - The
Unified Modeling Language : 5th International
Conference, LNCS 2460, pp. 412-425, 2002.

[9] L. d. Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar,
M. Sorea, and A. Tiwari, "SAL 2," presented at
Computer Aided Verification: 16th International
Conference (CAV 2004), LNCS 3114, pp. 496-500,
2004.

[10] L. Grunske, P. Lindsay, N. Yatapanage, and K. Winter,
"An Automated Failure Mode and Effect Analysis
based on High-Level Design Specification with
Behavior Trees," presented at Fifth International
Conference on Integrated Formal Methods (IFM2005),
LNCS 3771, pp. 129-149, 2005.

[11] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman, "Role-Based Access Control Models," IEEE
Computer, vol. 29, pp. 38-47, 1996.

[12] R. G. Dromey, "From Requirements to Design:
Formalizing the Key Steps," presented at First
International Conference on IEEE International
Conference on Software Engineering and Formal
Methods (SEFM 2003), IEEE Computer Society, pp. 2-
11, 2003.

[13] R. G. Dromey and D. Powell, "Early requirements
defects detection," TickIT Journal, vol. 4Q05, pp. 3-13,
2005.

[14] R. G. Dromey, "Climbing over the 'No silver bullet'
brick wall," IEEE Software, 2006.

[15] S. Zafar and R. G. Dromey, "Integrating Safety and
Security Requirements into Design of an Embedded
System," presented at Asia-Pacific Software
Engineering Conference, IEEE Computer Society, pp.
629-636, 2005.

[16] L. Grunske, K. Winter, and R. Colvin, "Timed
Behavior Trees and their application to verifying real-
time systems," presented at 18th Australian Conference
on Software Engineering (ASWEC'07), 2007.

[17] T. Ahmed and A. R. Tripathi, "Static verification of
security requirements in role based CSCW systems,"
presented at Eighth ACM Symposium on Access

Control Models and Technologies, ACM Press, pp.
196-203, 2003.

[18] D. F. Ferraiolo, J. Cugini, and D. R. Kuhn, "Role-
Based Access Control (RBAC): Features and
Motivations," Proceedings, 11th Annual Computer
Security Applications Conference, pp. 241-48, 1995.

[19] E. A. Emerson, "Temporal and modal logic," In van
Leeuwen, J., ed.: Handbook of Theoretical Computer
Science, vol. Volume~B, Elsevier Science Publishers,
1990.

[20] D. D. Clark and D. R. Wilson, "A Comparison of
Commercial and Military Computer Security Policies,"
IEEE Symposium on Security and Privacy, pp. 184-
194, 1987.

[21] R. T. Simon and M. E. Zurko, "Separation of Duty in
Role-based Environments," Proceedings: 10th
Computer Security Foundations Workshop, pp. 183-
194, 1997.

[22] L. Wen, R. Colvin, K. Lin, J. Seagrott, N. Yatapanage,
and R. G. Dromey, "'Integrare', a Collaborative
Environment of Behavior-Oriented Design," presented
at 4th International Conference on Cooperative Design,
Visualization and Engineering (CDVE2007), 2007.

[23] R. Colvin and I. J. Hayes, "A Semantics for Behavior
Trees," ARC Centre for Complex Systems April 2007.

[24] G. Smith and L. Wildman, "Model checking Z
specifications using SAL," presented at 4th
International Conference of B and Z Users (ZB 2005),
LNCS., Springer-Verlag 3455, pp. 85-103, 2005.

[25] M. Koch and K. Pauls, "An Access Control Language
for Dynamic Systems – Model-Driven Development
and Verification," presented at 12th International SDL
Forum, Springer Berlin / Heidelberg 3530, pp. 16-31,
2005.

[26] A. D. Brucker, J. Doser, and B. Wolff, "A Model
Transformation Semantics and Analysis Methodology
for SecureUML," presented at MoDELS 2006, Model
Driven Engineering Languages and System, LNCS
4199, pp. 306-320, 2006.

[27] G. Hughes and T. Bultan, "Automated Verification of
Access Control Policies," Computer Science
Department, University of California, Santa Barbara,
CA 93106, USA, Tech-Report 2004-22, September
2004.

[28] P. Giorgini, F. Massacci, J. Mylopoulos, and N.
Zannone, "Modeling Security Requirements Through
Ownership, Permission and Delegation," presented at
13th IEEE International Conference on Requirements
Engineering (RE'05), IEEE Computer Society, pp. 167-
176, 2005.

437

