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Abstract 
 

To ensure correct implementation of complex 
access control requirements, it is important that the 
validated and verified requirements are effectively 
integrated with the rest of the system.  It is also 
important that the system can be validated and verified 
early in the development process. In this paper we 
present an integrated, role-based access control 
model.  The model is based on the graphical Behavior 
Tree notation, and can be validated by simulation, as 
well as verified using a model checker. Using this 
model, access control requirements can be integrated 
with the rest of the system from the outset, because: a 
single notation is used to express both access control 
and functional requirements; a systematic and 
incremental approach to constructing a formal 
Behavior Tree specification can be adopted; and the 
specification can be simulated and model checked. The 
effectiveness of the model is evaluated using a case 
study with distributed access control requirements.  
 
1. Introduction 
 

Due to increasing complexity of data availability 
and protection requirements, many modern systems 
incorporate a complex set of access control policies. 
The de facto approach to modeling these access control 
requirements is Role-based access control (RBAC), 
because it can greatly facilitate access management in 
a flexible manner [1]. The flexibility and ease of use in 
RBAC comes from the fact that most data protection 
and availability policies are aligned to the roles that 
individuals play within an organization; access 
management is then a matter of assigning roles to 
individuals, rather than managing the control rights for 
each individual separately. In recent years a number of 

RBAC models have been proposed to facilitate 
specification and analysis of access control 
requirements [2]. 

Traditionally, security engineering has been 
performed in isolation from systems engineering [3]. 
This often results in late integration of security 
requirements into system design in a post-hoc manner.   
In this paper we propose extending an existing 
requirements engineering notation, Behavior Trees, 
with language constructs based on the NIST standard 
for RBAC [1].  

The Behavior Tree (BT) notation is a graphical 
notation [4], which is used in a development approach 
called Behavior Engineering (BE). The BE approach 
provides systematic translation of  informal 
requirements into a formal representation [5]. An 
integrated view of the requirements is generated in the 
form of an Integrated Behavior Tree (IBT), which 
provides a platform for requirements analysis and 
design. With tool support the BT model can be 
simulated and model-checked for correctness.  The 
approach has proved successful in industrial practice 
[6]. 

By adding RBAC constructs to the BT notation we 
extend its capabilities of handling systems with 
security requirements.  In addition, due to the nature of 
the notation and the Behavior Engineering process, we 
are able to avoid many of the problems associated with 
incorporating security requirements into a system 
design. Existing highly specialized RBAC models 
often use a different notation to the design notation 
making the integration process difficult [7]. 
Furthermore, the informal and semi-formal RBAC 
models may not be completely verified for their 
correctness, which may compromise the security of the 
final system. On the other hand, the formally specified 
models may not be easy to use and validate due to their 
mathematical nature [8]. The trade off for the users is 
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often between usability and formal tractability being 
offered by the different models. 

These problems are avoided in the BT-RBAC 
because it is an integrated model that aims to simplify 
formal specification, validation, verification and 
integration of access control requirements in the 
system design. The requirements translation process is 
augmented with an access control specification 
template which facilitates the requirements 
specification process. Conflict resolution is supported 
during the requirements integration process when an 
IBT for the RBAC is generated. The model can be 
validated via simulation of the IBT and can be model 
checked using the automated translation into the input 
language of the SAL model-checker [9], [10]. The 
model’s integration with functional requirements is 
assisted through the use of a single notation for all 
types of requirements. We evaluate the effectiveness of 
the model using a simple case study with distributed 
access control requirements. 

The paper is structured as follows. Section 2 gives a 
brief background on RBAC and Behavior Engineering. 
Section 3 introduces the BT-RBAC model. We show 
how distributed RBAC requirements can be modeled 
using a case study as a running example. Section 4 
describes tool support for simulation and model-
checking. In Section 5 we review related work and 
Section 6 presents conclusions and future work. 
 
2. Background 
 
2.1. Role-based access control 
 

The access control mechanisms in computer 
systems define the permission that users or processes 
have to access protected resources in a computer 
system. In a role-based access control (RBAC) 
mechanism, these rights are defined based on the role 
that individuals are assigned to in an organization. The 
advantage of assigning access rights to roles instead of 
individual users is that roles have more permanence in 
an organizational context than users [11]. Individual 
users can be assigned and de-assigned from roles 
without having to manage the access control 
permissions for each individual separately. 

The NIST RBAC model [1] defines sets of basic 
elements and relations that are needed to specify access 
control requirements. The basic elements in the core 

RBAC are users, roles, permissions, operations, and 
objects. A user can be a human being, a machine or an 
intelligent autonomous agent. A role corresponds to 
the job function in the context of an organization which 
has authority and responsibility associated with it. An 
operation corresponds to an application-specific user 
function. An object in a RBAC model may contain or 
receive information. Permission is the authority to 
perform an operation on protected objects within a 
system. The model also defines a session during which 
a user can activate some of the roles that have been 
assigned to him or her. The constrained RBAC 
specifies separation of duty constraints to avoid any 
conflict of interests in a policy.  
 
2.2. Behavior Engineering 
 

The Behavior Engineering approach uses a 
graphical notation, called Behavior Trees (BTs), to 
formalize and integrate all system requirements in a 
single tree structure [12]. The approach includes a 
rigorous requirements translation process that 
translates one informal requirement at a time into a 
formal representation. The individual BTs, 
representing each requirement, are then composed 
together into a single tree-structure called an Integrated 
Behavior Tree (IBT). Early defect detection is 
supported as defects are tagged and resolved during the 
translation process [13]. A BT node is marked with a 
‘+’ sign if the associated behavior is implied and a ‘-’ 
sign to mark behavior that is missing in the 
requirements. Requirements traceability is maintained 
by marking each BT node with the corresponding 
requirement number. Any integration defects need to 
be resolved once all the requirements are composed 
together. If a requirement does not integrate with other 
requirements it indicates an incompleteness problem or 
that the requirement does not form part of the system. 
These defects need to be resolved before an integrated 
view of the requirements can be finalized. 

The use of a single notation throughout the process 
facilitates an integrated approach to system design and 
helps avoid accidental complexity that may be 
introduced when a number of different representations 
are used during different development phases [14]. 
Some of the recent research work based on the BT 
framework include [6, 15, 16]. 
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Figure 1: A summary of core BT syntax 

 
The core elements of the BT notation are given in 

Fig. 1. A BT node is used to specify a component and 
its state. It is also used to express conditions, events, 
attribute assignment and data flow. Two BT nodes 
joined together with an arrowed line represents a 
causal behavior and the direction of flow of control. 
Two nodes joined together with a line without an arrow 
specify an atomic composition, i.e., no interleaving of 
actions from parallel processes is allowed. The parallel 
branches in the BT represent concurrent behavior by 
default and represent alternate branching when marked 
with the choice operator ‘[]’, in which case only one of 
the branches is (non-deterministically) chosen to 
execute. 

RBAC models include sets of users and objects, and 
therefore the BT notation has been extended with set 
operators such as ‘+’, ‘-’ and ‘><’ for set union, 
difference and intersection, respectively.  We write |S| 
for the cardinality of set S, and x:S for membership of 
element x in set S. In addition, two constructs have 
been introduced: one which models execution of a tree 
BT(x) for all members x of a set S, and one which 
models execution of BT(x) for some member x of set 
S.  These constructs are referred to as forall and 
forone, respectively – see Fig. 2.  
 

Selection Nodes
forall-construct forone-construct

C
|| x : S

BT(x)

C
[] x : S

BT(x)

 
Figure 2: forall and forone constructs. 

 
2.3. The case study 
 

We now present a simple case study that will be 
used to evaluate the effectiveness of the BT-RBAC 
model. The case study, presented in [17], is that of an 
online-classroom system with distributed access 
control requirements. In a course activity a member of 
the Conveners role can initiate a course session. A 

course session contains three roles: Instructors, 
Assistants, and CStudents. Only one member from the 
Staff role can be assigned to the Instructors role. A 
member of the Staff role can be assigned to the 
Assistants role if (i) the role membership count is less 
than two, (ii) the member being assigned to the role is 
not a member of the Students role, and (iii) a member 
has already been assigned to the Instructors role. 

The instructor of a course can initiate an exam 
activity for that course. In the exam activity, the 
instructor can admit members to the Graders and 
Examiners roles. Members of these roles can be 
selected from either the Instructors or the Assistants 
role of the course. A member of the Examiners role can 
create an exam paper if one has not been created 
before. A participant of the Graders role can update 
grades in the grade sheet for the course. Students 
enrolled in the course, i.e., members of the set 
CStudents, can join the Examinees role in the exam 
activity. An examinee can then initiate an exam session 
but not more than one. An examinee can read the exam 
paper and write to the answer book during the exam 
session. The grader can grade the answer book only 
after it has been submitted by the examinee. The 
session terminates when the member of the Graders 
role has finished grading the answer book for a session. 

The following features of RBAC have been 
enforced in the case study: A role-cardinality 
constraint requires that the capacity of the role should 
not be increased by the addition of another member 
[18]. In the case study, at most one member can be 
assigned to the Instructors role (so an instructor can 
also be a student) (1). A maximum of two members 
can be assigned to the Assistants role (2). These 
requirements are formalized in the following formulas 
in linear temporal logic (LTL).  G, F and U are 
temporal operators in LTL [19] which have the 
following meaning: the G(p) operator states that p is 
always true; F(p) means that p will eventually be true; 
and (p U q) states that q will hold eventually and p 
holds until q holds. 
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In a separation of duty constraint, a business 
process is divided into many sub-tasks and then these 
sub-tasks are assigned to different persons to ensure 
that no single person is responsible for performing a 
critical business operation [20]. The concept of 
separation of duty may be divided into two broad 
categories; static separation of duty and dynamic 
separation of duty. In static separation of duty (SSD) 
policies, two roles are made mutually exclusive by 
disallowing membership of one user in both roles [21]. 
The SSD requirement in the classroom case study 
states that a member of the Students role of a course 
cannot be assigned to the Assistants role of that course 
(3). 

A dynamic separation of duty (DSD) policy 
requires that two restricted roles may have common 
members but they may not join both the roles at the 
same time [21]. A DSD policy may have other 
variations [21]. In an object-based separation of duty 
(OBSD), users are not allowed to act upon a single 
object twice. For example, a student cannot initiate 
another session if one has already been initiated for a 
particular exam (4). History-based separation of duty 
is a more flexible variation of DSD in which a user is 
not only allowed to perform more than one action on 
an object but may also be allowed to perform all the 
actions in a business task as long as necessary 
safeguards are implemented in the policy. For example, 
a member from the Graders role can only grade the 
answer book if it has been submitted (5); an examinee 
from the Examinees role can read from the exam paper 
and write to the answer book as long as it has not been 
submitted (6); and a member of the Examinees role 
cannot access the content of the question paper before 
his/her exam session has been initiated (7). 

 
∀c : Courses • G (size(c.Instructors) ≤ 1) (1) 
∀c : Courses • G (size(c.Assistants) ≤ 2) (2) 
∀c:Courses • G(c.CStudents ∩ c.Assistants=∅) (3) 
∀u : Users, ∀s1, s2 : Sessions | s1  ≠ s2  

         ∧ s1.exam_id = s2.exam_id  • 
    G ((s1.status = initiated ∧ s1.student = u) ⇒ 
            ¬(s2.status = initiated ∧ s2.student = u)) (4) 
∀s : Sessions • 
   G (s.answerBook ≠ submitted) ∨ 
           (s.answerBook ≠ graded  
   U s.answerBook = submitted) (5) 
∀s : Sessions • 
   G ((s.answerBook = submitted) ⇒ 
         ¬ F (s.paper = read  ∨  
                        s.answerBook = written)) (6) 
∀e : Exams, ∀s : Sessions | s.exam_id = e.id  • 
   G (s.paper ≠ read U s.status = initiated) (7) 

3. The BT-RBAC model 
 
The BT-RBAC is an integrated model that aims to 

simplify the formal specification, validation, 
verification and integration of access control 
requirements into the system design. All the basic 
elements in the model, which have been derived from 
the NIST RBAC standard [1], are specified using the 
component-state model of the BT notation. To specify 
access control requirements, the BT nodes representing 
different components of the model are composed 
together for each requirement using the BT-RBAC 
template (Figure 3a). These requirements are integrated 
together in the form of an IBT to generate an integrated 
view of the complete policy. 

The objects, sessions, and/or roles are first selected 
using selection nodes (see Figure 2). This is followed 
by a permission node that specifies the member action 
associated with the permission being granted. 
Semantically, the permission node is a BT event type, 
which is associated with the component specified in 
the node. The permission node also specifies the 
relationship between the action and other components 
that are involved in the permission being granted (see 
Figure 3(a)). The permission node is then followed 
(optionally) by constraint nodes. These are BT 
selection nodes and can be used to specify constraints 
on role membership, session operations or object 
operations. Lastly, the operation node specifies the 
operation on the object or the session component as a 
BT state-realization or attribute-assignment node. It 
may be noted that the permission, constraint and 
operation nodes are atomically composed to avoid side 
effects from any interleaving threads. The use of the 
model is explained using the first few requirements of 
the online-classroom system given in Table 1. 

 
Table 1: Access control requirements 

No Requirement 
R1 A member from Conveners role in a course can 

initiate a course activity. 
R2 A member from Conveners role in a course can 

assign a member from Staff role to course’s 
Assistants role. A maximum of two assistants can 
be assigned to Assistants role. A student cannot be 
assigned to Assistants role. An Assistant is only 
assigned to her role if Instructors role is not empty. 

R3 A member from Conveners role in a course can 
assign only one member from Staff role to course’s 
Instructors role. 

R4 A member from Conveners role in a course can 
assign only members from Students role to 
course’s CStudents role. 

 Requirement R1 in Table 1 is formalized in Figure 
3(b). First a Course session is selected from the 
Courses set, using the forall BT construct. Next a 
Convener is selected from the course’s Conveners role 
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using the same construct. Both the Course and the 
Convener represent all the members in their respective 
sets. The permission node specifies that when the 
Convener component exercises the permission granted 
to the role the subsequent nodes in the tree are 
executed. The permission granted to the Convener is 
that he/she can initiate a course. For the verb used in 
the permission node (initiate) we can ask what, where, 
when, who and how questions to identify all the objects 
associated with the verb. These questions can help 
guide the elicitation and ensure completeness of the 
permission being specified. In this case we may ask the 
question, “Convener assigns what?”. The answer is, 
Session(Course). There are no constraints specified 
with this requirement. When the operation node is 
executed in the tree the Course.Status value is set to 
Initiated. 

(c)

tag
User

?? permission ??

Qn(p) C-Type(C-Namen)

tag ComponentName1
?Constraint Exp1 ?

... ...

tag ComponentNamei
?Constraint Expi ?

... ...

Qn(p) C-Type(C-Name1)

tag ComponentNamey
[Operation]

tag Rolex
User Selection Exp

tag Sessionsx
Session Selection Exp

tag Objectsx
Object Selection Exp

tag
User

?? permission ??

Qn(p) C-Type(C-Namen)

tag ComponentName1
?Constraint Exp1 ?

... ...

tag ComponentNamei
?Constraint Expi ?

... ...

Qn(p) C-Type(C-Name1)

tag ComponentNamey
[Operation]

tag Rolex
User Selection Exp

tag Sessionsx
Session Selection Exp

tag Objectsx
Object Selection Exp

R2 Convener
?? Assigns ??

R2 Course
? |Assistants |  < 2 ?

R2 Students
?NOT(Assistant :Students)?

R2 Course
? NOT(Instructor={}) ?

What (to) Role(Assistants)

Who User (Assistant)

R2 Staff
[] Assistant : Staff

R2
Course

[Assistants := Assistants +
{Assistant}]

R2 Course
|| Convener : Conveners

R2+ Courses
| |Course : Courses

(a)

R1 Convener
?? Initiates ??

R1 Course
[Status:=Initiated]

What Session(Course)

R1 Course
||  Convener : Conveners

R1+ Courses
||Course : Courses

R1 Convener
?? Initiates ??

R1 Course
[Status:=Initiated]

What Session(Course)

R1 Course
||  Convener : Conveners

R1+ Courses
||Course : Courses

Selection Nodes

Permission Nodes

Constraint Nodes

Operation Nodes

Legend

Selection Nodes

Permission Nodes

Constraint Nodes

Operation Nodes

Legend

(b)

 
Figure 3: (a) The BT-RBAC model. (b) BT –

RBAC specification for R1, (c) R2. 
 

Similarly, the requirement R2 from Table 1 is 
modeled as in Figure 3(c). The member of the 
Conveners role for a course is given the permission to 
assign members to the course’s Assistants role. After 

selecting the course, conveners and staff members 
from their respective sets, the permission node is 
specified to permit the Convener to assign 
User(Assistant) to Role(Course.Assistants).  

When the event ‘Convener Assigns’ occurs, a 
number of constraints are checked before the ‘add 
member to the Assistants role’ operation is executed. 
The role Course.Assistants has a limit of two members 
on the cardinality of the set. Only if this condition 
holds the subsequent BT will be executed. The next 
constraint specifies that a member can only be assigned 
to the Course.Assistants role if he/she is not already a 
member of the Students role. Lastly, a member can be 
added to the Assistants role only if a member has 
already been assigned to the Instructors role. In the last 
node we add the chosen assistant to the set of course 
assistants. 

Alternative 
Branching – A 
branch is chosen 
non-deterministically

Reversion Nodes– Control is 
transferred back to the matching 
node higher up in the tree.

R2 Staff
[] Assistant : Staff

R2 Convener
?? Assigns ??

R2 Course
? | Assistants|  < 2 ?

Who User(Assistant)

What(to) Role(Course.Assistants)

R2
Course

?NOT(Assistant:Students)
?

R2 Course
? NOT(Instructors={}) ?

R2
Course

[Assistants:=Assistants +
{Assistant}]

R3 Staff
[] Instructor : Staff

R3 Convener
?? Assigns ??

R3 Course
? Instructors={} ?

Who User(Instructor)

What(to) Role(Course.Instructors)

R3
Course

[Instructors:=Instructors +
{Instructor}]

R4 Students
[] Student : Students

R4 Convener
?? Assigns ??

Who User(Student)

What(to) Role(Course.CStudents)

R4
Course

[CStudents:=CStudents +
{Student}]

R1, R2,
R3, R4 + []

R2+
             ^

[]

R3+
             ^

[]

R4+
             ^

[]

R1+ Course
| |  Course : Courses

R1 Course
||  Convener : Conveners

R1
Course

[Status:=Initiated]

R1 Convener
?? Initiates ??

What Session(Course)

The ‘+’ indicates 
implied behavior—
not explicitly stated 
in the requirements

≈

 
Figure 4: An IBT for R1, R2, R3 and R4 

 
After the individual requirements have been 

translated, they are integrated into an IBT, as outlined 
in Sect. 2.2.  The integration of the requirements in 
Table 1 is shown in Fig 4.  Functional requirements 
may also be freely integrated at this stage, since the BT 
notation can also express such requirements; for 
brevity, in this paper we focus on integration of 
security requirements.  
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4. Tool support 
 

In this section we describe how the method is 
supported by simulation and model checking.  The 
interface to these tools is managed by a BT editor, 
called Integrare [22]. The trial version of the tool is 
available at [http://www.behaviorengineering.org]. 
 
4.1. Validation via simulation 
 

A BT may be executed via a simulation tool, 
BTSim that is based on an operational semantics for 
the BT notation [23].  Each “step” in the execution 
corresponds to the application of a rule of the 
operational semantics, and typically describes the 
effect a node has on the value of the components in the 
system.  BTSim can generate a single trace of the 
system by randomly resolving nondeterminism (such 
as that introduced by concurrency), or can generate all 
traces of a (finite) system, subject to hardware 
constraints.  The simulator can check safety properties 
of the system, and some basic progress properties.  
Using the simulator, it is possible to quickly check the 
typical operation of a system in a way that is 
straightforward for someone familiar with the BT 
notation. 

The Classroom BT-RBAC model was initially 
simulated in BTSim to check that the basic behavior of 
the system conformed to the intention.  The process 
uncovered typographical errors and places where the 
level of atomicity had to be increased, and pointed the 
way to some simplifications.  This stage typically 
involved relatively small numbers of courses, students, 
etc. After this process, the model was checked against 
some of the security requirements outlined in the last 
section.  The simulations in this phase involved 
increased numbers of courses, students, exams, etc.  
Properties 1, 2, 3, 4 and 7 were checked through 
several complex runs of the system, which resulted in 
modifications to the model to properly capture the 
intended behavior. Because the simulator has only a 
partial implementation of temporal logic operators, 
properties 5 and 6 were omitted from the simulations. 
The iterative simulation/validation and modeling 
process established reasonable confidence that the 
model satisfied many of the requirements under a 
number of typical executions, and that the model was 
therefore mature enough for an exhaustive formal 
verification of the security requirements. 
 
4.2. Verification 
 

Using the BT editor’s facilities we automatically 
translate the BT model of the Classroom RBAC into 
the input notation of the SAL tool set [9]. This allows 
us to run checks for the satisfiability of temporal logic 
formulas (bounded and unbounded) as well as 
deadlock checks. In the past the translation of BTs into 
SAL code has been used successfully  for supporting 
Failure Modes and Effect Analysis [10]. 

The translation to the SAL language was extended 
for the BT-RBAC model to handle the forall and 
forone constructs, and to deal with components of type 
set. Most set operations can be readily translated by 
making use of the pre-defined set context which 
provides the standard set operations for the SAL 
language (this context has been further developed by 
the work of Smith and Wildman [24] which describes a 
translation from the set-based language Z into the SAL 
language). To map the forall and forone construct we 
developed an unfolding algorithm which works as 
follows: 

 
|| s : S . T(s). ⇝ T(s1) ||…||T(sn) (forall) 

[] s : S . T(s). ⇝ T(s1) []…[] T(sn) (forone) 

Assuming S = {s1,…,sn} is a static set, then n 
threads T(si)  are executed in parallel (forall), or one of 
n threads is non-deterministically chosen (forone). If S 
changes its content dynamically we consider the 
maximal size it can grow to instead of n (the maximal 
size of a set is given through its type, which is 
provided by the user in a textual representation in an 
accompanying file). The entrance to each thread T(si) 
in this case will be additionally guarded with the 
condition that the element si is currently in the set S.  

To render the model checking process feasible we 
have to limit the size of the set variables regarded by 
the system. For this purpose the user needs to input the 
maximal size of the sets. Since the sets Students, Staff, 
Instructors and Assistants for each course, etc., all have 
to be of the same type to be comparable, those sets will 
be of the same cardinality too. Due to hardware 
limitations we applied the model checker to small 
instances of the BT-RBAC model. After correcting one 
variable initialization error we were able to prove all 
the properties (1-7) of the model.  
 
5. Related work 
 

In recent years, a number of techniques and 
methods have been proposed to address the integration 
of security engineering with systems engineering from 
different perspectives. Not surprisingly, UML, being a 
widely used modeling language, has been the focus of 
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many researchers. Jürjens [8] has proposed UMLsec, 
which is an extension of UML with a formal semantics 
to support analysis of security properties in the 
modeled requirements. The graph-based formal 
semantics of SecureUML and View Policy Language 
(VPL) proposed by Basin et al [7] and Koch and Pauls 
[25], respectively, allows the designers to reason about 
the preservation of access control constraints in the 
final UML-based system models using the model 
driven approach. In recent work, support for interactive 
theorem proving has been provided for SecureUML 
[26]. However, in most of the UML-based approaches 
a more exhaustive and complex analysis is generally 
not supported. In comparison the BT-RBAC model 
provides model checking support for verification of 
critical properties. 

The RBAC specification techniques that do support 
rigorous analysis do not always explicitly address their 
integration into functional requirements. In  [27] and 
[17], the specification languages Alloy and SPIN, 
respectively, have been used to verify the security 
properties using a model-checker. However, the 
formalization of access control requirements can 
compromise the expressive power of more informal 
representation. In addition, highly specialized models 
make it difficult to integrate access control 
requirements with other functional requirements of the 
system [7] and often requirements traceability is lost.  
In comparison, the BT-RBAC model does not only 
provide automated support for validation and 
verification but also supports the integration of the 
access control requirements into the functional 
requirements. 

Perhaps the closest work to our approach is the 
Secure Tropos development methodology, which 
provides a formal framework for integrating security 
requirements into the software development process 
[28]. Secure Tropos is an extension of a more generic 
agent-oriented development methodology. Since the 
underlying model is the same, the integration of the 
security requirements is possible from the early stages 
of the development process. We differentiate our work 
from Secure Tropos on the basis of a systematic 
translation process that allows us to develop a system 
out-of-its-requirements, the support for early defect 
detection, effective requirements traceability, and 
conflict resolution through the requirements integration 
process. 
 
6. Conclusion 
 

Although there is a greater emphasis on the need for 
better security in computer-based information systems, 
security requirements are still typically considered late 

in the development cycle and are often applied as an 
afterthought [3]. There are four major problems that 
are typically faced in effectively integrating RBAC 
models into the functional requirements of a system: 
(1) the informal models may not be formally verified 
for correctness; (2) the formally specified models may 
not be easy to understand and validate; (3) the often 
highly specialized formal models use different notation 
to the specification and design notation; and (4) the 
overall development process does not support early 
integration of security requirements into the design 
process, and requirements traceability is often lost. 
Based on a graphical notation with a formal semantics 
the BT-RBAC model provides support for automated 
validation and verification of access control policies. 
The integration of access control requirements is 
assisted through the use of a single notation throughout 
the development process. Other features of the model 
include a systematic translation process, early defect 
detection, requirements traceability and support for 
requirements transformation into the system design. 

In this paper we have illustrated, through the use of 
a simple case study, how RBAC requirements can be 
modeled and validated. The validation results are used 
to correct the model before it is formally verified. We 
have not included functional requirements in the case 
study but the integration of simple access control 
requirements have been illustrated in [15]. Our future 
work includes optimizing the SAL code to improve the 
efficiency of the model checking process as well as 
providing tool support to formalize security properties 
of the model in LTL. Our long term objectives include 
extending the Behavior Engineering approach to other 
areas of security engineering like threat modeling and 
intrusion detection. 
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